Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

Non-monotonic Temporal Logics that Facilitate Elaboration Tolerant Revision of
Goals

Chitta Baral and Jicheng Zhao
Department of Computer Science and Engineering
Arizona State University
Tempe, Arizona 85281-8809, U.S.A.
{chitta,jicheng} @asu.edu

Abstract

Temporal logics are widely used in specifying goals of
agents. We noticed that when directing agents, humans of-
ten revise their requirements for the agent, especially as they
gather more knowledge about the domain. However, all ex-
isting temporal logics, except one, do not focus on the revi-
sion of goals in an elaboration tolerant manner. Thus formal
temporal logics that can allow elaboration tolerant revision
of goals are needed. As non-monotonic languages are often
used for elaboration tolerant specification, we propose to ex-
plore non-monotonic temporal logics for goal specification.
Recently, a non-monotonic temporal logic, N-LTL, was pro-
posed with similar aims. In N-LTL, goal specifications could
be changed via strong and weak exceptions. However, in N-
LTL, one had to a-priori declare whether exceptions will be
weak or strong exceptions. We propose a new non-monotonic
temporal logic, that not only overcomes this, but is also able
to express exception to exceptions, strengthen and weaken
preconditions, and revise and replace consequents; all in an
elaboration tolerant manner.

Introduction

An important component of autonomous agent design is
goal specification. Often goals of agents are not just about
or not necessarily about reaching one of a particular set of
states, but also about satisfying certain conditions imposed
on the trajectory, or the execution structure. Besides, re-
active agents with maintenance goals may not have a par-
ticular set of final states to reach. Thus the use of tem-
poral logics and temporal connectives to specify goals has
been suggested in the autonomous agent community and
planning community (Barbeau, Kabanza, & St-Denis 1995;
Bacchus & Kabanza 1998; Giacomo & Vardi 1999; Niyogi
& Sarkar 2000; Pistore & Traverso 2001). In the deci-
sion theoretic planning community, suggestions have been
made to use temporal logics in specifying non-Markovian
rewards (Bacchus, Boutilier, & Grove 1996; 1997; Thiebaux
et al. 2006).

However, in many domains such as in a human-robot in-
teraction domain like a rescue and recovery situation, goals
once specified may need to be further updated, revised, par-
tially retracted, or even completely changed. This could be

Copyright (© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

406

because at the time of initially specifying the goal, the user
did not have complete information about the situation, or he
was in haste and hence he did not completely think through
the whole situation, and as the situation unveiled physically
or in the user’s mind, he had to make changes to his specifi-
cation. The following example illustrates these points.

Suppose John has an agent in his office that does errands
for him. John may ask the agent to bring him coffee. But
soon after he may remember that the coffee machine was
broken the day before. He is not sure if the machine is fixed
or not. He then revises his directive to the agent telling it
that if the coffee machine is still broken then a cup of tea
would be fine. Just after that he gets a call from a colleague
who says that he had called a coffee machine company and
asked them to deliver a new coffee machine. Then John calls
up the agent and tells it that if the new coffee machine is
already there then it should bring him coffee. (Note that the
old coffee machine may still be broken.) He also remembers
that he takes more sugar with his tea and that the tea machine
has various temperature settings. So he tells the agent that if
it is going to bring tea then it should bring him an extra pack
of sugar and set the tea machine setting to “very hot” right
before getting the tea.

One may wonder why does not John in the above example
give a well thought out directive at the start without making
further changes after that. As we mentioned earlier, some
of it is because he lacked certain information, such as a new
coffee machine having been ordered; in another case he had
forgotten about the coffee machine being broken, and since
he takes tea less often, he had also initially forgotten about
the extra sugar.

This is not an isolated case. In rescue and recovery situ-
ations with robots being directed by humans, there is often
so much chaos together with the gradual trickling of infor-
mation and misinformation that the human supervisors may
have to revise their directives to the robots quite often.

To make changes to the specification, one can of course
retract the earlier specification and give a completely new
specification. However, that may cost precious time in terms
of communication and formulation of the new specification,
and may not be even appropriate, as the agent may already
have started acting based on the earlier specification. A lan-
guage that can be revised in an elaboration tolerant manner
is necessary.

This raises the question of choosing a goal specification
language that can be revised or elaborated easily. As Mc-
Carthy says in (McCarthy 1998), a natural language would
be more appropriate. However, there is still a need of a for-
mal language, sometimes as an intermediary between a nat-
ural language and the machine language and other times as
a goal specification language. Considering the necessity and
usefulness of temporal logics in specifying trajectories in
standard planning and in specifying non-Markovian rewards
in decision theoretic planning, to remain upward compati-
ble with existing work in these directions, we prefer to stay
with the temporal connectives in temporal logics. The ques-
tion then is: What kind of temporal logic will allow us easy
revision of specifications?

In other aspects of knowledge representation, the use of
non-monotonic logics for elaboration tolerant representa-
tion (McCarthy 1998) is often advocated and for reasons
similar to our example: Intelligent entities need to rea-
son and make decisions with incomplete information and
in presence of additional information they should be able
to retract their earlier conclusions. Thus a non-monotonic
temporal logic could be a good candidate for our purpose.
Looking back at the literature, although there have been
many proposals for non-monotonic logics, we could find
only a few works (Fujiwara & Honiden 1991; Saeki 1987;
Baral & Zhao 2007) on non-monotonic temporal logics. The
first two are not appropriate for our purpose, as they do not
aim for elaboration tolerant revision of specifications. The
language N-LTL proposed in the last one (Baral & Zhao
2007) has many limitations such as it only allows strong
exceptions and weak exceptions but does not allow arbi-
trary revising or retracting existing sub-formulas. Besides,
when there is an exception in N-LTL, it must be predefined
whether it is a weak exception or a strong exception. These
limitations restrict the ability of N-LTL to specify goals in
an evolving scenario.

The main objective of this paper is to develop an appro-
priate non-monotonic temporal goal specification language
that allows elaboration tolerant revision of goal specifica-
tions. Thus, we develop the language ER-LTL, which is
based on LTL (Manna & Pnueli 1992). Each ER-LTL pro-
gram is composed of a set of rules of the form

(b [r](fr ~ f2)))

The symbol £ is referred to as the head of the rule and Rule 1
states that, normally, if formula f; is true, then the formula
f2 should be true, with exceptions given by rules with r in
their heads and this rule is an exception to a formula labeled
by h. In ER-LTL, we also take a similar approach as in
N-LTL and use Reiter’s idea of a surface non-monotonic
logic (Reiter 2001), sentences of which get compiled into
sentences of a more tractable logic and thus avoid increase
in complexity. We use the idea of completion when rules
about exceptions are given for the same precondition. We
will show that with simple rules such as Rule 1, we are
able to express various ways to revise goals. This includes
specification of exceptions to exceptions, strengthening and
weakening of preconditions, and revision and replacement
of consequents.

407

The rest of the paper is organized as follows: We first give
background on goal specification using LTL. We then pro-
pose the syntax and semantics of the new language ER-LTL.
We then illustrate with examples how ER-LTL can be used
in specifying goals and revising them in an elaboration toler-
ant manner. Finally we discuss related works and conclude.

Background: Goal Representation Using LTL

Syntactically, LTL formulas are made up of propositions,
propositional connectives V, A, and —, and future temporal
connectives (), 0, & and U. We now formally define truth
values of temporal formulas with respect to trajectories. A
trajectory is an infinite sequence of states.

Definition 1 Let (p) be an atomic proposition, (f) an LTL
formula.

() == @ICH AN T VN =)
|

|
OB 1) TKHU)

Definition 2 Let o given by sg, s1, ..., Sk, Sk+1,-.- be a
trajectory, p denote a propositional formula, s; (j > 0) de-
note a state in o, and f and f;s (¢ = 1, 2) denote LTL for-
mulas.

e (j,o) Epiff pistruein s;.

e (o) | ~f iff (j.0) i f.

i (]70) |_ (fl v f2) iff (j70‘) ‘: Jior (.7’ U)): f2.

o Gio) = (fi A fo) iff (7, 0) = fr and (7, 0) = fo

e Gio) = Ofiff (G +1,0) = 1.

o (j,o) = Ofiff (k,0) |= f, forall k > j.

o (j,o0) E<fiff (k,0) = f, for some k > j.

e (j,0) & (fi U fo) iff there exists k& > j such that
(

ko)lzfgandfora111]<z<k(z o) E fi. O

As usual, we denote (—f1V f2) as (f1 = f2). Often (Bac-
chus & Kabanza 1998) planning with respect to LTL goals is
formalized with the assumption that there is complete infor-
mation about the initial state, and the actions are determin-
istic. Let @ be a transition function that defines transitions
between states due to actions. ®(s;,ar) = s; iff the ac-
tion ay, transitions the agent from state s; to state s;. Let s
be a state designated as the initial state, and let aq,...,a,
be a sequence of deterministic actions whose effects are de-
scribed by a domain description. The trajectory correspond-
ing to s and a4, . . ., a, is the sequence sg, S1, . .., that sat-
isfies the following conditions: s = sg, $;+1 = P(s;, ai+1),
for0 <i <n—1,and s;41 = s;, for j > n. A sequence
of actions aq, . . ., a, is a plan from the initial state s for the
LTL goal f, if (0,0) = f, where o is the trajectory corre-
sponding to s and ay, ..., a,.

Let f1, and f5 be two LTL formulas. We define that f; |=
fao if for any index ¢ and trajectory o, (i,0) | f1 implies
(i,0) = f2. LTL is monotonic as for any LTL formulas fi,
f2, and f3, whenever f1 = fo, we have (f1 A f3) = fa.

ER-LTL
We now present the non-monotonic temporal logic ER-
LTL that is based on LTL; ER stands for “Exceptions and
Revisions”. We first define the syntax and semantics of the
language.

Syntax

Definition 3 (ER-LTL program) Let G, R, and P be three
disjoint sets of atoms. Let g be the only atom in G. Let (r)
be an atom in R, (p) be an atom in P. An ER-LTL formula
(f) is defined recursively as:

() A NN TUA VD [AHTO)]
O 1O AU TIPS ~ ()

An ER-LTL rule is of the form (h : [r](f1 ~ f2)), where
he GUR,r € R, and f; and f5 are two ER-LTL formulas;
h is referred to as the head, and [r](f1 ~ f2) as the body
of the rule. An ER-LTL program is a finite set of ER- LTL
rules.

We allow the symbols T and | as abbreviations for
propositional formulas that evaluate to true and false respec-
tively. For example, for atom ¢ € P, q V —q is abbreviated
as T, and g A\ —q is abbreviated as L.

In an ER-LTL program, rules with head g express the ini-
tial goal which may later be refined.

In comparison to LTL, [r](f1 ~ f2) is the only new con-
structor in ER-LTL. We refer to f; as the precondition and
f2 as the consequent of this formula. It states that normally
if the precondition f is true, then the consequent f5 needs to
be satisfied, with the exceptions specified via r. The condi-
tions denoting the exceptions labeled by r are defined using
other rules. When those exceptions are presented in the pro-
gram, we might need to satisfy other goals instead of fo. If
the sub-formula is preceded with a head atom h € RU G as
n {h: [r](f1 ~ fa2)), it further states that this sub-formula
is an exception to formulas labeled by h.

We now define several auxiliary definitions that will be
used in defining the semantics of ER-LTL.

Definition 4 (Atom dependency) Let 7" be an ER-LTL
program. Let k1, ho be atoms in RUG. Atom hy depends on
ho in T' if there is a rule in 7" such that hy occurs in the body
of the rule while & is the head of the rule. The dependency
relation is transitive. O

Example 1 Consider the following rules:

[r2](p ~ ((Og) ~ 7)) ()
[r2]((Op V [r3](Bg ~ (p U q))) ~ (©4)))(3)
Rule 2 is not a syntactically valid ER-LTL rule. ((Qq) ~)
in it is not a valid ER-LTL formula. It should be preceded

by a label in R. Rule 3 is a valid ER-LTL rule. With respect
to a program consisting of Rule 3, r1 depends on ro and rs.

<7’1 :
<T’1 :

Definition 5 (Loop-free) An ER-LTL program is loop-free

if in the formula, no atom in R depends on itself. O
Definition 6 (Leaf) In an ER-LTL program, an atom is
called a leaf if it does not depend on any atom in R. O
Semantics

We now define a translation from ER-LTL to LTL so as to
relate the semantics of ER-LTL to the semantics of LTL.
We use a similar technique as in N-LTL to capture temporal
relations among different rules to combine them to be one

408

temporal formula. The preconditions of rules are dealt with
as branches in a tree. Atom r; depends on ro states that ro
should be fully expanded before 7.

Definition 7 Given a finite loop-free ER-LTL program T,
we translate it to an LTL formula T'r(T") as follows:

1. For each sub-formula in 7" of the form [r¢](lz0 ~ fi0)
where for all rules with r; in the head:

<7“t : [Ttl](ltl ~ ft1)> ce <7”t : [Ttk](ltk ~ ftk)>
we have that ry; (1 < i < k) are leaf atoms, ly;, fi; (0 <
i < k) are LTL formulas.

(a) If [r¢](lz0 ~ fio) is not preceded with “:”, we replace
the formula [r¢](l;o ~ fio) with (Izo A —lgg A+ A
ik = fio) ANl ANly = fr) A Al Nlgke = fere)-
The resulting program is still called T’

(b) If [r](lzo ~ fio) is preceded with ““:”” and it is in a rule
of the form (r,, : [r¢](lzo ~ fi0)) where r, € GUR,
we replace the rule with:

(1o = [re)(lio A =lgr A=+ A=l ~ fro))
(ro = [red(lio ANler ~ fe1)) -+ (ro = [re(leo A L ~
fix))

The resulting program is still called 7.

2. Repeat Step 1 until it can no longer be applied further.

3. Suppose (g : [r;](l; ~ fi)) (0 < i < n) are all rules with
the head g. We define Tr(T') as A]_o(l; = fi). O

Example 2 An ER-LTL program T is given as follows':

(g ¢ [r1](bird ~ fly)) 4)
(r1 : [ro](penguin ~ —fly)) (5)
(r1 : [r3](wounded ~ T)) (6)
(ra : [ra](flying-penguin ~ fly)) (7

After the first processing of step 1 of Definition 7, we get
the set of rules:

(g« [r](bird ~ fly))

(
(r1 : [r2](penguin A —=flying_penguin ~ —fly))
(r1 : [rs](wounded ~ T))
(r1 @ [ro](penguin A flying_penguin ~ fly))

After the second processing of step 1, we get the set of
rules:

(g : [r1](bird A —penguin A —wounded ~ fly))

(g : [r1](bird A penguin A —flying_penguin ~ —fly))
(g : [r1](bird A wounded ~ T))

(g : [r1](bird A penguin A flying_penguin ~ fly))

"Here and in a later example we use the flying bird example
that has been used a lot in the non-monotonic reasoning litera-
ture. This is only for quick illustration purposes, and not to suggest
that our language is an alternative to traditional non-monotonic lan-
guages. There has been significant progress in the research on non-
monotonic reasoning and we are not ready to claim our language
as an alternative. Our claim is only with respect to non-monotonic
temporal logics, which have not been explored much.

Finally, based on step 3, we get Tr(T) and then simplify
it to: (bird N\ —penguin A —wounded = fly) A (bird N
penguin A —flying_penguin = —fly) A (bird A penguin A
flying _penguin = fly).
ER-LTL in Goal Specification
Loop-free ER-LTL programs have the following property.

Proposition 1 Given a loop-free ER-LTL program T,
Tr(T) is an LTL formula.

Given this property, we can define when a plan satisfies
an ER-LTL program.

Definition 8 Let T be a loop-free ER-LTL program, ¢ =

80,51, "+, Sk, -- be a trajectory, and ¢ be an index of o.
(i,0) = T in ER-LTL if (i,0) &= Tr(T) with respect to
LTL. O

We say an ER-LTL program 7T is equivalent to an LTL for-
mula 77 if Tr(T) and T’ are equivalent in LTL. For any
LTL formula G, we can have an ER-LTL program 7' such
that T'r(7T") and G are equivalent.

To plan with an ER-LTL goal 7', we find plans for LTL
formula T'r(T"). When T is updated to TUT’, we need to
find plans for LTL formula T'+(TUT").

Definition 9 (Entailment) Given that 7} and 75 are loop-
free ER-LTL programs, Ty = Ty if Tr(Ty) &= Tr(T3) in
LTL. O

Proposition 2 The entailment in Definition 9 is non-
monotonic.

This implies that it is possible that a plan satisfies an ER-
LTL program T} U T5 but not 7. It should be noted that the
opposite is also true.

Example 3 Consider the following two ER-LTL rules:

(g : [r](T ~ Op)) ®)
(r1: [ra](Cg~ ©q)) ©)

Let T be a program consisting of Rule 8, and Ts be a pro-
gram consisting of Rule 8 and Rule 9. Tr(Ty) = Op while
Tr(Ty) = ©Oq Vv Op. It is easy to see that Ty = T, while
Ty =Ty U{Rule 9} and Ty [~ Ty. Thus the entailment re-
lation defined in Definition 9 in ER-LTL is non-monotonic.

Exceptions and Revisions in ER-LTL

We now illustrate the application of ER-LTL in modeling
exceptions and revisions. We start with the modeling of ex-
ceptions that happen mainly because the user has incomplete
information about the domain, the domain has been changed
after the initial goal is given, or the user does not have a clear
specification for the agent initially.

Exceptions

We first consider the differences between weak exceptions
and strong exceptions in goal specification.

409

Weak Exception and Strong Exception: Strong excep-
tions are to refute the default conclusion when exceptions
happen; Weak exceptions are to render the default inappli-
cable. In terms of goal specification, suppose f1 A fo is the
initial goal we have, after having the weak exception on f1,
we do not know whether sub-goal f; should be true or not,
we thus can remove the sub-formula f; from the existing
specification. On the other hand, if we have a strong excep-
tion on f7, we should conclude that f; is no longer true, and
cannot be true. Thus, we need to have —f; as a part of the
revised goal specification. Let us consider the following ex-
ample, again, for simplicity, given with respect to the birds
flying scenario.

Example 4 We know that birds normally fly. Penguins are
birds that do not fly. We do not know whether wounded birds
fly or not.

The initial statement can be written as Rule 4 in Exam-
ple 2. It is equivalent to the LTL formula bird = fly. If
we append Rule 5 to Rule 4, the program is equivalent to
the LTL formula ((bird A —penguin) = fly) A ((bird A
penguin) = —fly). If we append Rule 6 about wounded
birds to Rule 4, we have a program that is equivalent to the
LTL formula ((bird A ~wounded) = fly).

This example shows that when we need a strong excep-
tion, we can specify the negation of the initial consequents
explicitly as in Rule 5. When we need a weak exception,
we can simply say as in Rule 6 that under the exception, no
consequents are needed.

Exception to Exception: We illustrate the way we deal
with exceptions to exception by the following example.

Example 5 We know that birds normally fly. Penguins are
birds that do not fly. However, a flying penguin is a penguin
that can fly.

We write the initial statement as Rule 4 in Example 2.
Later, Rule 5 and Rule 7 are appended. Rule 7 is an ex-
ception to the exception stated in Rule 5. The program con-
sisting of the three rules is equivalent to the LTL formula
(bird A (—penguin V flying_penguin) = fly) A (bird A
penguin A ~flying_penguin = —fly).

Revision: Change User Intentions

We are also able to deal with various revisions in ER-LTL.
In ER-LTL, we split the requirements to preconditions and
consequents such that we may have goals as “if some condi-
tions are satisfied, the agent should satisfy some goals”. We
now list a few approaches of revising preconditions and con-
sequents. They help to revise any part of the initial ER-LTL
goal. In the following, we consider a simple example where
the initial ER-LTL program is:

(g : [r](f1~ f2))

where f1 and f5 are two LTL formulas.

(10)

Changing Consequents: We start with exploring ways to
change consequents in the goal.

Example 6 To Rule 10, if we append the ER-LTL rule

[r2](f1 ~ f3)), (11)

(ry:

where f3 is an LTL formula, the revised program is equiva-
lent to the LTL formula ((f1 A —f1) = fo) A ((fi A f1) =
f3), or f1 = f3. Now the consequent has changed from fo
to f3.

We can change the consequent to be stronger or weaker
than the initial specification, or we can revise it to one that is
different from the initial specification. We can make similar
revisions for preconditions.

Changing Preconditions: We now list a few examples il-
lustrating how to change preconditions in a goal specifica-
tion.

Example 7 (Making Preconditions Stronger) Suppose
we want to refine the goal given as Rule 10 by having a new
precondition fs together with f,. We refine the program by
appending the rule:

[r2](=f3~ T)).

The new formula states that if — f3 is satisfied, then the goal
is satisfied naturally. The refined program is equivalent to
the LTL formula (f1 A f3) = fo.

Example 8 (Making Preconditions Weaker) Suppose we
want to refine the goal given as Rule 10 so that under a new
condition f3, we also need to satisfy the consequent fo. This
refinement will weaken the precondition f1. We refine the
program by appending the rule:

(g :[r1](fz~ f2))-

The new program is equivalent to the LTL formula (f; V
f3) = fa.

Example 9 (Changing Preconditions) Suppose we want
to refine the goal given as Rule 10 so as to change the pre-
condition fy to f3. We can do this by appending the follow-
ing rules

(ry: (12)

(13)

(r1:[ra](fr~T))
(g : [rs](fs ~ f2))

to the program consisting of Rule 10. The new program is
equivalent to the LTL formula ((f1 A —f1) = fo) A (f1 A
fi = T) A (f3 = f2), which can be simplified as f3 = fa.

Revision after Revision: We now consider an example
that needs further revision after the first revision.

Example 10 In Example 6, the revised program is equiv-
alent to the LTL formula fi = f3. If we want to further
revise the consequent to f4, and make the program equiva-
lent to f1 = f4, we can add the rule (ry : [r3](f1 ~ fa)) to
the existing program.

Nested Revision: Nested revisions are also common when
we introduce a new goal to the domain while not clear about
the preconditions and consequents of the new goal. We need
rules that specify that the preconditions and consequents will
be given later. We illustrate this by the following example.

Example 11 Suppose the initial ER-LTL program is

(g2 [r](T ~ f1))- (14)

410

Suppose now we know in addition to f, some thing more
needs to be done; but we do not yet know what. We can
append the following rule to accommodate that possibility:

(r1 2 [r2](T ~ fr A[rs](T ~ T))), (15)

It will allow us to add additional requirements later.

Thus ER-LTL enables us in revising goals of an agent in
an elaboration tolerant manner. We now elaborate on how
we can represent the evolution of John’s requirement that
we introduced in the Introduction section.

Representing John’s Requirements in ER-LTL
Example 12 John can specify his initial goal in ER-LTL as:

(g : [ro](T ~ O(coffee A Oback))). (16)

It is equivalent to the LTL formula <(coffee N Oback). It
states that the agent needs to get a cup of coffee and then
come back.

After realizing that the coffee machine might be broken,
John can refine his goal by adding the following two rules:

[1](T ~ O([r2](T ~ coffee) A Oback))) (17)
(ro : [r3](broken ~ tea)) (18)

<T() :

Rule 17 now allows the sub-formula about coffee in the
initial goal to be further refined. The overall specifica-
tion is now equivalent to the LTL formula <((—broken =
coffee) A (broken = tea) A Oback). Notice that John did
not have to retract his previous goal and give a new goal;
neither did he have to change the earlier specification; he
Jjust had to add to his previous specification and the seman-
tics of the language takes care of the needed change. This is
an example of “elaboration tolerance” of a language.
Later, after knowing from a colleague that a new coffee
machine might be installed, John can give the agent a new
command by adding one more rule to the existing goal:

(r3 : [r4)(newMachine ~ coffee)) (19)

The overall goal is now equivalent to the LTL formula
O((broken N —newMachine = tea) A (—(broken A
—newMachine) = coffee) A Oback).

Finally, John can give the agent a new command by
adding the following rule.

(rs : [rs](mnewMachine ~ (hot A O(tea A sugar))))

The overall goal is now equivalent to the LTL formula:
O((broken A ~newMachine = (hot A O(tea A sugar)) A
(=(broken A —newMachine) = coffee)) A Oback).

Note that in this example, we illustrated the way of expand-
ing and revising the goal in an elaboration tolerant manner
by introducing a different consequent, weakening the re-
quirements, introducing exceptions to exceptions, and intro-
ducing nested exceptions.

Strengthen and Weakening in ER-LTL

In this section, we consider how the new rules added to the
program affect the existing ER-LTL program.

In ER-LTL, with the introduction of preconditions and
consequents, we branch on preconditions. Given a loop-
free ER-LTL program, adding a new rule with head g corre-
sponds to adding a new branch to the tree composed of the
branches. Adding a new rule with head » € R corresponds
to adding a new branch, or revising existing branches. A
new tree is introduced whenever there is a nested rule. We
can refine the tree by adding or removing some branches
based on the new rules added to the program. For example,
given an ER-LTL rule of the form:

[r2](f1 ~ f2))

Another rule with head r5 of the form

(ro : [r3](fs ~ fa))

introduces a new branch if f5 [~ f1. Otherwise, the existing
branch on f; is removed and the new branch on f, is added.

With the different rules added, we may make the goal eas-
ier or more difficult to satisfy:

Definition 10 Given two ER-LTL programs Ty and Ts, if
Ty UTy E Ty, we call Ty a strengthening of Tv; if Th =
Ty U T, we call T a weakening of T.

<7"1 :

Proposition 3 (a) A rule of the form
(h:[r)(f ~T))

is a weakening of any ER-LTL program, where h € RU G,
r € R, and [is a well defined ER-LTL formula.
(b) A rule of the form

(g:[r](fi~ f2))

is a strengthening of any ER-LTL program, where g € G,
r € R, and f1 and fs are well defined ER-LTL formulas.

After weakening a program, the new ER-LTL program is
satisfied by more policies and after strengthening a program,
the new ER-LTL program is satisfied by fewer policies.

Conclusion and Future Work

In this paper, we develop ER-LTL, a non-monotonic tem-
poral logic that can be used for specifying goals which can
then be revised in an elaboration tolerant manner. We bor-
rowed the idea of completion and exception from logic pro-
gramming and the idea of a surface non-monotonic logic,
sentences of which can be translated to sentences in a mono-
tonic logic, from Reiter. Our approach of extending LTL can
be used to extend other monotonic temporal logics such as
CTL and CTL*.

Earlier we mentioned the existing three non-monotonic
temporal logics and their relationship with our work. We
elaborate a bit more on how our work compares with N-
LTL (Baral & Zhao 2007). Similar to N-LTL, each ER-LTL
program is composed of a set of rules. Labels are used to
combine multiple rules to be a formula and denote the rela-
tions of multiple temporal formulas. But we have a richer
syntax and semantics than N-LTL, and have a different way
of computing completion. N-LTL does not have the ~» con-
struct, and there goal specifications could only be changed

411

via strong and weak exceptions; but one had to a-priori de-
clare whether an exception will be weak or strong exception.
ER-LTL not only overcomes this, but is also able to express
exceptions to exceptions, strengthening and weakening of
preconditions, and revise and replace consequents; all in an
elaboration tolerant manner.

One aspect of our research which we could not fit in these
pages is progressing of goals in ER-LTL. This is impor-
tant because, as an agent executes some actions and satisfies
some sub-goals, the remaining goal for the agent changes.
In terms of future work, the approach we use in syntactic
formula revision is not restricted to temporal formulas. Its
implications vis-a-vis existing non-monotonic logics, belief
revision mechanisms, and formalizing natural language dis-
courses needs to be explored.

References

Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goals. Annals of Math and Al 22:5-27.

Bacchus, F.; Boutilier, C.; and Grove, A. 1996. Rewarding
behaviors. In AAAI 96, 1160-1167.

Bacchus, F.; Boutilier, C.; and Grove, A. 1997. Structured
solution methods for non-markovian decision processes. In
AAAI 97, 112-117.

Baral, C., and Zhao, J. 2007. Non-monotonic temporal
logics for goal specification. In IJCAI-07, 236-242.

Barbeau, M.; Kabanza, F.; and St-Denis, R. 1995. Syn-
thesizing plan controllers using real-time goals. In IJCAI,
791-800.

Fujiwara, Y., and Honiden, S. 1991. A nonmonotonic
temporal logic and its kripke semantics. J. Inf. Process.
14(1):16-22.

Giacomo, G. D., and Vardi, M. 1999. Automata-theoretic
approach to planning for temporally extended goals. In
ECP, 226-238.

Manna, Z., and Pnueli, A. 1992. The temporal logic of
reactive and concurrent systems: specification. Springer
Verlag.

McCarthy, J.
Sense.

Niyogi, R., and Sarkar, S. 2000. Logical specification of
goals. In Proc. of 3rd international conference on Informa-
tion Technology, 77-82.

Pistore, M., and Traverso, P. 2001. Planning as model
checking for extended goals in non-deterministic domains.
In IJCAI’01, 479-486.

Reiter, R. 2001. Time, concurrency and processes. MIT.
chapter Knowledge in action: Logical Fundations for spec-
ifying and implementing dynamical systems, 149-183.
Saeki, M. 1987. Non-monotonic temporal logic and its
application to formal specifications (in japaneese). Trans-
actions of IPS Japan 28(6):547-557.

Thiebaux, S.; Gretton, C.; Slaney, J.; Price, D.; and Ka-
banza, F. 2006. Decision-theoretic planning with non-

markovian rewards. Journal of AI Research, pages 17-74,
2006. 25:17-74.

1998. Elaboration tolerance. In Common

