Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

New Compilation Languages Based on Structured Decomposability

Knot Pipatsrisawat and Adnan Darwiche
Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90095 USA
{thammakn,darwiche} @cs.ucla.edu

Abstract

We introduce in this paper two new, complete propositional
languages and study their properties in terms of (1) their sup-
port for polytime operations and (2) their ability to represent
boolean functions compactly. The new languages are based
on a structured version of decomposability—a property that
underlies a number of tractable languages. The key charac-
teristic of structured decomposability is its support for a poly-
time conjoin operation, which is known to be intractable for
unstructured decomposability. We show that any CNF can be
compiled into formulas in the new languages, whose size is
only exponential in the treewidth of the CNF. Our study also
reveals that one of the languages we identify is as powerful
as OBDDs in terms of answering key inference queries, yet
is more succinct than OBDDs.

Introduction

Knowledge compilation is an approach to inference which
is based on converting knowledge bases into target compila-
tion languages that support relevant inference tasks in poly-
time. Over the years, many target compilation languages
have been proposed for different inference tasks, includ-
ing OBDDs (Bryant 1986), prime implicates (Reiter and
de Kleer 1987; Marquis 1995), prime implicants (Schrag
1996), DNNF (Darwiche 2001a), and AOMDD (Mateescu
and Dechter 2006).

In this work, we focus our attention on the DNNF lan-
guage (Darwiche 2001a), which is a subset of negation
normal form (NNF) that satisfies decomposability. While
DNNF has many potential applications, it has never been
utilized in an actual system due to the lack of a prac-
tical compiler for converting CNF formulas into DNNF.
In practice, a subset of DNNF which satisfies the prop-
erty of determinism is used. This subset, which is called
d-DNNF, is less succinct than DNNF, and is supported
by a publicly available compiler that converts CNF to d-
DNNF (Darwiche 2004). This compiler is available at
http://reasoning.cs.ucla.edu/c2d/ and has been successfully
employed in many reasoning applications, including proba-
bilistic reasoning (Wachter and Haenni 2006; Chavira, Dar-
wiche, and Jaeger 2006), planning (Bonet and Geffner 2006;
Palacios et al. 2005), diagnosis (Barrett 2005; Elliott and

Copyright (© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

517

Williams 2006; Siddiqi and Huang 2007), and Max-SAT (Pi-
patsrisawat and Darwiche 2007; Ramirez and Geffner 2007).
None of these applications, however, except for probabilis-
tic reasoning, require determinism. Hence, these applica-
tions can well be handled by the more succinct DNNF lan-
guage, if one had access to an efficient DNNF compiler.
Yet, until today, one could not enforce the property of de-
composability efficiently without also enforcing determin-
ism as a side effect. Note also that the previous list of appli-
cations does not include classical applications from formal
verification that are based on unbounded model checking
(e.g., (Clarke, Grumberg, and Peled 2000)). These appli-
cations require bottom-up, incremental compilation of for-
mulas, where pieces of the knowledge base are compiled
independently and then conjoined together to produce a
compilation of the whole knowledge base. Neither DNNF
nor d-DNNF, however, support a conjoin operation in poly-
time (Darwiche and Marquis 2002), which happens to be
the key property of OBDDs that enables their use in formal
verification applications.

To address these challenges, we introduce the notion of
structured decomposability in this paper, leading to struc-
tured versions of DNNF and d-DNNF that provide support
for a polytime conjoin operation. As a result, we can now
develop bottom-up compilers for both DNNF and d-DNNF
that parallel the standard compilers for OBDD. Moreover,
we now seem to have the first practical compiler that can
enforce decomposability without enforcing determinism as
a side effect. We study the properties of the new languages
according to the metrics proposed in (Darwiche and Marquis
2002), where we show that structured d-DNNF supports as
many polytime queries as OBDD, while being strictly more
succinct than OBDD.

Basic Definitions

A Negation Normal Form (NNF) is a rooted, directed acyclic
graph (DAG) in which each leaf node is labeled with a lit-
eral, true, or false and each internal node is labeled with
a conjunction (A) or disjunction (V); see Figure 1. A DAG
node will be used to represent the formula rooted at the node.
An NNF is decomposable iff every child of every AND node
shares no variable with its siblings, leading to the DNNF lan-
guage (Darwiche 2001a). An NNF is deterministic iff every
child of every OR node shares no models with its siblings,

leading to the d-DNNF language (Darwiche 2001b). Lastly,
OBDD is a subset of d-DNNF that satisfies two additional
properties: (1) the root node is a decision node, (2) variables
appear in the same order on every directed path from the root
(See (Darwiche and Marquis 2002) for formal definitions).

We will introduce in the next section structured versions
of the DNNF and d-DNNF languages, which result from re-
quiring a structured version of the decomposability property.
For this, we need the following notion.

Definition 1 (V-tree) A v-tree for a set of variables PV is a
full, rooted binary tree whose leaves are in one-to-one cor-
respondence with the variables in PV .

Figure 1 depicts a v-tree for variables a, b, ¢, d and e. For a
v-tree node t, we use vars(t) to denote the set of variables
mentioned by the subtree rooted at ¢t. For a non-leaf v-tree
node t, we use t' (") to denote the left (right) child of ¢.
We will also say that T is a v-tree of the formula A if PV
includes the variables of A.

Structured Decomposability

In this section, we give a formal definition of a structured
subset of DNNF. We will also show that this language is a
complete proper subset of DNNF. For the remaining of this
paper, we will assume, without loss of generality, that every
conjunction has exactly two non-constant conjuncts, while a
disjunction can have any number of disjuncts.!

Definition 2 A DNNF A respects a v-tree T if for every
conjunction a N\ B in A, there is a node t in T such that
vars(a) C vars(t') and vars(B3) C vars(t").

Figure 1 depicts a v-tree T and a respecting DNNF A. Let
« be a sub-formula of DNNF A. The decomposition node
(d-node) of « is defined as the deepest node d in v-tree T’
such that vars(a) C vars(d). Figure 1 depicts examples of
d-nodes.

Definition 3 (DNNF) The set of all DNNFs that respect
a given v-tree T is denoted by DNNFr. Moreover,
structured DNNF (SDNNF) is the set containing all DNNF
foranyT.

Given any v-tree T for the formula A, we can always rep-
resent A in DNNF7. Just structure each model of A ac-
cording to T" and disjoin them together. Hence, DNNF and
SDNNF are complete languages. Moreover, the following
DNNF does not respect any v-tree: (((a Ab) A (¢ A —d)) V
((anc)A(bAd))). Hence, DNNF7 and SDNNF are proper
subsets of DNNF.

A Polytime Conjoin Operation for DNNF -

Now that we have defined a structured subset of DNNF, we
present the main result of our work. In particular, conjoining
any two DNNF7 formulas is a tractable operation because of
the imposed structure. This operation is important because
it allows any CNF formula to be converted into a DNNFr in

'A conjunction with a constant conjunct can always be trivially
simplified. To allow an arbitrary number of conjuncts, we only
need to modify the definition of v-tree slightly.

518

Figure 1: (left) A v-tree T with all internal nodes labeled
with their indices. (right) a DNNFr formula for (—aV —e) A
(aVb)A DV -—c)A(cV—d)A(=bV —d). Each internal
node is also annotated with the index of its d-node in 7.

an incremental (bottom-up) manner. Note that an efficient
conjoining algorithm does not exist for DNNF formulas in
general, unless P=NP (Darwiche and Marquis 2002).

Our conjoining algorithm is similar in spirit to the apply
operation for OBDD (Bryant 1986). The algorithm com-
putes the conjunction of two formulas by recursively con-
joining their sub-formulas and combining the results ap-
propriately. To avoid making too many recursive calls, we
maintain a cache which stores previously computed outputs
of the algorithms. With this cache, there are only polynomi-
ally many possible recursive calls. Each recursive call per-
forms a constant amount of computation, yielding a polyno-
mial time complexity of the overall conjoining operation.

This algorithm is presented in Algorithm 1, which relies
on several other components whose details are omitted due
to space constraints. In particular, it assumes that, before
the first call, the cache is properly initialized. We use nodes’
td field as a cache key. It also assumes that each node has
a dnode field. The helper function lca(s,t) computes the
lowest common ancestor of nodes s and ¢ in v-tree 7'. Read-
ers are referred to (Bender and Farach-Colton 2000) for a
constant-time implementation of this function.?

The code on Lines 4-7 simply handles the base cases,
where o or 3 is a boolean constant. Lines 11-14 handle
the cases when the inputs do not share a variable and when
they are both literals. The case on Lines 16-21 is the core
of the algorithm. In this case, the d-nodes are either the
same or have an ancestor-descendent relationship. For the
sake of brevity, we assume that o and (3 are appropriately
swapped such that (1) if both d-nodes are the same and there
is at least one OR node among «, (3, then « is an OR node
and (2) if both d-nodes are different, then o’s d-node is al-
ways the ancestor. With this assumption, if « is an OR node
(Line 16), we simply conjoin 3 with each of a’s children.
Otherwise, we decompose each input into the part that men-
tions variables in anc' and the one that mentions variables
in anc”. On Line 20, we use the notation a“ to refer to the

2To achieve this, a data structured must be setup by preprocess-
ing T prior to the first call to lca. Preprocessing takes O(|T'|) time
and space. See (Bender and Farach-Colton 2000).

Function name: conjoin
input : DNNF7 formulas o, 3
output: A DNNF formula equivalent to a A 3
if CACHE|a.id, 3.id] # null then

| return CACHE|«.id, 3.id]
end
if o = false || 8 = false then

| u«false //false input
else if o = true || 8 = true then

u «— (e =true?p : a) //true input

else

o XN R W N -

s < a.dnode, t «— [.dnode

anc — lca(s,t)

if anc is neither s nor t then

//a,8 do not share a variable
12 u—alf

13 else if o, 3 are both literal nodes then

14 | u«— (a=p%:false)

15 else

=
-

//a, B share some variables

16 if o is an OR node then

//Assume that a=\]_ a;

17 u — 1, conjoin(as, B)

18 else

//Both nodes are AND nodes
19 L — anc, R — anc”

20 u «— conjoin(a, B¥) A conjoin(a®, B7)
21 end

22 end

23 u.dnode «— anc

24 end

25 CACHE|w.id, 3.id] — u

26 return u

Algorithm 1: A pseudo-code of conjoin.

sub-formula of « that mentions only (a subset of) vars(d),
where d is a node of a v-tree.> After we decompose both in-
puts, we conjoin their sub-formulas appropriately (Line 20).

Note that, without structured decomposability in both in-
put formulas, we would not be able to easily decompose both
formulas and make simple recursive calls in this last case.
Next, we show that conjoin in fact conjoins two DNNF
formulas in time quadratic in the sizes of the formulas. Here,
given a formula «, we define its size, |a/, to be the number
of nodes in its DAG representation.

Theorem 1 Given DNNFr formulas « and (3,
conjoin(a, 8) returns a DNNFr formula equivalent
to o A B in time O(|a||5]).

The proof for this result is straightforward, as caching limits
the number of possible recursive calls, each of which per-
forms a bounded amount of computation.

We close this section by mentioning that every clause is
by itself a DNNFr formula (for any T'), because it contains
no conjunction. As a result we can convert any CNF formula
into a DNNF7 formula in a bottom-up manner. All we need
to do is convert each clause into its DAG form and conjoin
all clauses together.

*If o does not mention any variable in vars(d), o is true.

519

(mavevd)(bv-cvd)(avoevf)—bvevf)

Figure 2: (left) A d-tree with internal nodes labeled with
shared variables. (right) An induced v-tree.

Adding Determinism

‘We now consider a structured subset of d-DNNF.

Definition 4 (d-DNNF 1) The language d-DNNFr con-
tains all and only DNNFr formulas that satisfy determinism.
Moreover, the language deterministic structured DNNF (d-
SDNNF) is the union of all d-DNNF, for any T.

Both d-DNNF+ and d-SDNNF are complete, proper sub-
sets of d-DNNF. The argument given earlier for DNNF ap-
plies here in a similar manner. The following proposition
shows that Algorithm 1 preserves determinism and, hence,
can be use to conjoin d-DNNF7 formulas in polytime.

Proposition 1 Given two d-DNNF formulas o, 3, the out-
put of conjoin(a, 3) is a d-DNNF formula.

The only place where we create an OR node is on Line 17
of Algorithm 1. The children of this node cannot share a
model because « is by itself deterministic.

We can convert every clause into a d-SDNNF formula in
time linear in the clause size (Darwiche 2002). This en-
ables incremental compilation of CNF into d-SDNNF.* The
choice of v-tree has a crucial impact on the sizes of SDNNF
and d-SDNNF formulas, similar to how a variable order is
to OBDD. Although constructing the right v-tree for a com-
pilation is still a subject of current research, we have the
following guarantee.

Proposition 2 Given a CNF A, we can always construct an
equivalent d-SDNNF (hence, SDNNF) formula whose size is
only exponential in the treewidth of A.

In (Darwiche 2001b), an algorithm for compiling CNF
into d-DNNF with the above treewidth guarantee is pre-
sented. The algorithm utilizes a data structured called d-
tree to guide the (unstructured) decomposition. A d-tree is a
binary tree whose leaves are in one-to-one correspondence
with the clauses in the CNF. In general, a v-tree can be nat-
urally induced from any d-tree. Figure 2 shows an example
of a d-tree and a v-tree induced from it. Due to space con-
straints, we refer the readers to (Pipatsrisawat and Darwiche
2008) for a detailed discussion of this process. The algo-
rithm in (Darwiche 2001b) can be slightly modified to make
the output d-DNNF formula respect a v-tree induced from
the d-tree, without affecting the treewidth guarantee.

* A bottom-up DNNF; compiler is an ongoing research subject.

Supported Queries and Transformations

In this section, we examine the new languages, DNNF and
d-DNNFr with respect to the criteria proposed in (Darwiche
and Marquis 2002). The criteria fall into two categories:
queries and transformations. A query on a formula (for-
mulas) can be viewed as a decision problem about the for-
mula(s) that may result in a positive (1) or negative (0) an-
swer without modifying the formula(s). A transformation,
on the other hand, is an operation that returns a modified
formula. Due to space limit we will only discuss proofs of
the less obvious results.

We first discuss query-related properties of the new lan-
guages. We say that a language satisfies a property if and
only if there exists a polytime algorithm for answering the
query based on formula in the language. The following
queries are considered:

e CO (VA): Is the formula consistent (valid)?

e CE Does the formula entail a given clause?

e IM: Does a given term imply the formula?

o EQ: Are two formulas logically equivalent?

e SE: Does one formula entail another formula?
e CT: How many models does the formula have?
e ME: Enumerate the models of the formula.

Readers are referred to (Darwiche and Marquis 2002) for
formal definitions of queries and transformations discussed
here.

Table 1 summarizes query-related properties of the new
languages. Properties of DNNF, d-DNNF, and OBDD. are
also shown here for comparison.’

[Query[DNNF| DNNF7 [d-DNNF[d-DNNF;[OBDD. |
CO v
VA

CE
M
EQ
SE

CT
ME

<Jo|o|o|o|< o<
SN R OSSN
<SS ===
<SS S =<

<Jololo|o|<|o

Table 1: Query table. / indicates that the language satisfies
the property. o indicates that the language does not satisfy
the property unless P=NP. ? reflects our ignorance about
whether the property holds for the language.

Proposition 3 The results in Table 1 hold.

The positive results for DNNFr are inherited from
DNNEF. The proofs for the negative results are very similar to
those for DNNF, which are given in (Darwiche and Marquis
2002). Similarly, most positive results for d-DNNF7 are in-
herited from d-DNNF. The results for EQ and SE, however,
are enabled by the fact that d-DNNF7 supports polytime
conjunction of a bounded number of formulas. In particular,

>OBDD- contains all OBDDs respecting the variable order <.

520

two d-DNNF7 formulas A;, As are equivalent iff they have
the same model count, which also equals the model count of
Aj A Asy. Since the language satisfies CT, this test can be
performed in polytime. A similar proof applies for SE.

According to Table 1, imposing additional structure on
DNNF does not result in any additional query support. On
the other hand, adding structure to d-DNNF allows both
equivalence and sentential entailment to be checked in poly-
time, making all queries tractable.

The next set of properties considered are related to for-
mula transformations. A property is satisfied if and only if
there exists a polytime algorithm for transforming formulas
in the language into appropriate formulas in the same lan-
guage. We consider the following transformations:

e CD: The formula conditioned on a consistent term.

e SFO (FO): The result of existentially quantifying a vari-
able (an arbitrary number of variables) from the formula.

e ABC (AC): The conjunction of a bounded (unbounded)
number of formulas.

e VBC (VC): The disjunction of a bounded (unbounded)
number of formulas.

e —C: The negation of the formula.

Table 2 presents transformation-related properties of the
new languages. Again, properties of DNNF, d-DNNF, and
OBDD. are shown here for comparison.

[Trans.[DNNF| DNNF7 | d-DNNF| d-DNNF7 | OBDD_ |

D [V VI I 7 [V
FO N N o ° °
SFO v V4 o ? v/
AC o o o . °
ABC T o | v | o VA
vC N N o . .
VBC | \/ v o ? v
-C) o ? ? N

Table 2: Transformation table. / indicates that the lan-
guage satisfies the property. o indicates that the language
does not satisfy the property unless P=NP. e means the lan-
guage does not satisfy the property. ? reflects our ignorance
about whether the property holds for the language.

Proposition 4 The results in Table 2 hold.

A proof of this proposition is available in the Appendix.

As shown earlier, the additional structure makes the
bounded conjoining operation (ABC) tractable in the new
languages. This operation proves to be the only difference
between DNNF and DNNFr in Table 2. However, for d-
DNNF, the additional structure strengthens the negative re-
sults for several other properties, while making some others
become unknown. In particular, FO,AC, and VC cannot be
satisfied by d-DNNFr, whereas they were conditioned on
the fact that P#NP in the case of d-DNNF. There are two
additional properties that become unknown for d-DNNF7:
SFO and VBC. We point out here, however, that the open
questions in the d-DNNF7 column are very closely related.

In particular, we have the following relationship between
these results:

e The results for SFO and VBC have to be identical. This
is because Ay V Ay = X (X A A1) V (=X A Ay)),
where X ¢ vars(Ap) Uvars(Asg).

e A positive result (/) for ~C implies positive results for
SFO and VBC, because A1 V Ay = =(=A1 A =Ay)

e A negative result (o, e) for either SFO or VBC implies the
same negative result for =C, because of the same reason.

Succinctness

Another aspect that needs to be considered when choosing
a language for a task is its succinctness (Gogic et al. 1995).
Succinctness tells us how compact formulas in different lan-
guages are, relative to each other. A language L, is said to
be at least as succinct as Lo, written L1 < Lo iff every for-
mula «vin Lo has an L, equivalent, whose size is polynomial
in |a|. If Ly < Ly and Ly £ Ly, we say that L, is strictly
more succinct than Lo, denoted L; < Lo (see formal def-
initions in (Darwiche and Marquis 2002)). In this section,
we discuss the succinctness of SDNNF and d-SDNNF rela-
tive to other closely related languages. Interested readers are
referred to (Pipatsrisawat and Darwiche 2008) for proofs of
the claims made here.

First of all, let us consider the structured DNNF lan-
guage. Imposing structure on DNNF results in a language
that is strictly less succinct (DNNF < SDNNF). As it turns
out, this additional structure will also cause SDNNF formu-
las to blow up on some d-DNNF and FBDD formulas as
well (SDNNF# d-DNNF, SDNNF« FBDD).® In all these
cases, the circular bit-shift function (Fortune, Hopcroft,
and Schmidt 1978) provides an exponential separation be-
tween SDNNF and other languages. Interestingly, unless the
polynomial hierarchy collapses (Selman and Kautz 1996;
Cadoli and Donini 1997), there must be some SDNNF for-
mulas that cannot be represented compactly as d-DNNF
and FBDD as well (d-DNNFZSDNNF, FBDD« SDNNF).
These results show that SDNNF is not comparable to d-
DNNF and FBDD in terms of succinctness.

We saw in the last section that d-SDNNF is as powerful
as OBDD when it comes to query-related properties. As d-
SDNNF does not impose as much structure as OBDD, one
expects its formulas to be more compact. As it turns out,
d-SDNNF is indeed strictly more succinct than OBDD (d-
SDNNF<OBDD). The indirect storage access function de-
scribed in (Breitbart, H. Hunt, and Rosenkrantz 1995) sepa-
rates the two languages.

Related Work

(Mateescu and Dechter 2006) proposed a relaxation of
OBDD called AND/OR Multi-value Decision Diagram
(AOMDD). When restricted to boolean variables, AOMDD
is a strict subset of d-SDNNF. In particular, AOMDD uti-
lized a special form of v-tree called pseudo tree, whose

SFBDD is the language of free binary decision diagram, which
is BDD that satisfies the “test-once” property (see (Darwiche and
Marquis 2002)).

521

structure depends on the structure of the formula to be com-
piled. Moreover, every AOMDD formula satisfies determin-
ism in a restricted way; every disjunct of each OR node must
disagree on the value of next variable in the ordering. The
added structure allows AOMDD to efficiently support the
apply operation, which makes operations such as negation,
(bounded) conjunction and disjunction tractable (given that
the formulas have compatible pseudo trees). Nevertheless,
given a pseudo tree, the language of AOMDDs that respect
the pseudo tree is not complete; not every formula may be
represented this way. For example, the clause (a VbV ¢) can-
not be represented by any AOMDD that respects the pseudo

tree , because b and c are not independent even af-

ter a is assigned. The only type of pseudo trees that induce a
complete language are linear trees, in which case AOMDD
reduces to just OBDD. d-SDNNF, on the other hand, does
not have any of these restrictions. Any properly labeled tree
can be used as a v-tree for any boolean formula, making d-
SDNNF more general and more flexible.

Conclusions

We introduced two new, complete compilation languages
based on structured decomposability. We showed that the
conjoin operation is tractable in the new languages and that
every CNF can be compiled into them with complexity ex-
ponential only in the treewidth. We studied the new lan-
guages in terms of supported operations and succinctness
and showed that d-DNNF7 is as powerful as OBDD_ in an-
swering key queries, yet is strictly more succinct.

Acknowledgments

This work has been partially supported by Air Force grant
#FA9550-05-1-0075 and by NSF grant #11S-0713166.

Proofs

We first present some lemmas that will simplify the proof of
Proposition 4. The next lemma states that every DNF for-
mula can be converted into a DNNF7 formula in polytime.

Lemma 1 Given a DNF formula A and a v-tree T of A, we
can convert A into a DNNF formula in O(|A||T)).

We just need to structure each disjunct in A according to 7T'.

Definition 5 A v-tree T is linear if every internal node has
at least one leaf node as its child.

A linear v-tree naturally induces a complete variable or-
dering (by depth). As a result, we will say that a linear v-
tree T' is compatible with an ordering of its variables if for
all z,y € vars(T), x < y iff the depth of x is less than or
equal to the depth of y.

Lemma 2 Given a linear v-tree T, every d-DNNF1 A can
be converted into an OBDD . in time O(|A||T)), if T and <
are compatible.

Proof of Proposition 4
Transformation Properties of DNNF -

e CD. Follows from the results in (Darwiche and Marquis
2002)

e VC and VBC. These properties are satisfied as disjoining
DNNFr formulas does not affect decomposability.

e FO and SFO. These properties follow from the results
in (Darwiche 2001a). In particular, the projection opera-
tion defined in Definition 8 of (Darwiche 2001a) does not
affect decomposability with respect to any v-tree.

e ABC. Follows from Theorem 1.

e AC. Unbounded conjunction, however, cannot be per-
formed in polytime unless P=NP. This is because ev-
ery clause is already a DNNF7. If we could conjoin an
arbitrary number of DNNFr formulas in polytime, SAT
would be solvable in polytime.

e —C. We cannot negate an arbitrary DNNFr formula in
polytime unless P=NP. If we could, we would be able
to decide SAT in polytime. To do so, we convert a given
CNF formula into its negation in DNF in time linear to the
size of the formula. Then, we convert the DNF formula
into a DNNFr formula in polytime (Lemma 1). After
that, we could negate the DNNF7 formula to get back a
formula that is equivalent to the original CNF formula.
Since DNNF satisfies CO, we would be able to decide
the satisfiability of the original CNF formula in polytime.

Transformation Properties of d-DNNF

e CD. Because conditioning preserves both decomposabil-
ity and determinism (Darwiche and Marquis 2002).

o ABC. Follows from Theorem 1 and Proposition 1.

e FO, AC and VC. These operations cannot be be per-
formed in polytime. This is because OBDD. C d-
DNNF7 (given that T and < are compatible). If we could
perform any of these transformations in polytime, the re-
sulting formula will still be a in d-DNNFr, which can be
efficiently converted into an OBDD . formula (Lemma 2).
This would allow us to perform any of these transforma-
tion on OBDD. formulas in polytime. This contradicts
the results in (Darwiche and Marquis 2002). O

References
Barrett, A. 2005. Model compilation for real-time planning
and diagnosis with feedback. In IJCAI-05, 1195-1200.
Bender, M. A., and Farach-Colton, M. 2000. The LCA
problem revisited. In LATIN-2000, 88-94.
Bonet, B., and Geffner, H. 2006. Heuristics for planning
with penalties and rewards using compiled knowledge. In
KR-06, 452-462.
Breitbart, Y.; H. Hunt, I.; and Rosenkrantz, D. 1995. On
the size of binary decision diagrams representing boolean
functions. Theor. Comput. Sci. 145(1-2):45-69.
Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Tran. Com. C-35:677-691.
Cadoli, M., and Donini, F. M. 1997. A survey on knowl-
edge compilation. AI Communications 10(3-4):137-150.
Chavira, M.; Darwiche, A.; and Jaeger, M. 2006. Compil-
ing relational Bayesian networks for exact inference. Inter-
national Journal of Approximate Reasoning 42(1-2):4-20.

522

Clarke, E. M.; Grumberg, O.; and Peled, D. A. 2000.
Model checking. MIT Press.

Darwiche, A., and Marquis, P. 2002. A knowledge compi-
lation map. JAIR 17:229-264.

Darwiche, A. 2001a. Decomposable negation normal form.
Journal of the ACM 48(4):608-647.

Darwiche, A. 2001b. On the tractability of counting the-
ory models and its application to belief revision and truth
maintenance. JANCL 11(1-2):11-34.

Darwiche, A. 2002. A compiler for deterministic, decom-
posable negation normal form. In AAAI-02, 627-634.

Darwiche, A. 2004. New advances in compiling CNF to
decomposable negational normal form. In Proceedings of
European Conference on Artificial Intelligence.

Elliott, P., and Williams, B. 2006. Dnnf-based belief state
estimation. In Proceedings of AAAI-06, 36-41.

Fortune, S.; Hopcroft, J. E.; and Schmidt, E. M. 1978. The
complexity of equivalence and containment for free single
variable program schemes. In Proc. of the 5th Colloquium
on Automata, Languages and Programming, 227-240.
Gogic, G.; Kautz, H. A.; Papidimitriou, C.; and Selman,
B. 1995. The comparative linguistics of knowledge rep-
resentation. In Mellish, C., ed., Proceedings of IJCAI-95,
862-869. San Francisco: Morgan Kaufmann.

Marquis, P. 1995. Knowledge compilation using theory
prime implicates. In Proceedings of IJCAI 95, 837-843.

Mateescu, R., and Dechter, R. 2006. Compiling con-
straint networks into and/or multi-valued decision dia-
grams (AOMDDs). In CP-06, 329-343.

Palacios, H.; Bonet, B.; Darwiche, A.; and Geffner, H.
2005. Pruning conformant plans by counting models on
compiled d-dnnf representations. In Proceedings of ICAPS
05, 141-150. AAAI Press.

Pipatsrisawat, K., and Darwiche, A. 2007. Clone: Solving
weighted max-sat in a reduced search space. In Proceed-
ings of 20th Australian Joint Conf. on Artificial Intel.

Pipatsrisawat, K., and Darwiche, A. 2008. New compila-
tion languages based on structured decomposability. Tech-
nical Report D-157, Automated Reasoning Group, Comp.
Sci. Department, UCLA.

Ramirez, M., and Geffner, H. 2007. Structural relax-
ations by variable renaming and their compilation for solv-
ing mincostsat. In CP-07.

Reiter, R., and de Kleer, J. 1987. Foundations of
assumption-based truth maintenance systems: Preliminary
report. In AAAI-87, 183-1809.

Schrag, R. C. 1996. Compilation of critically constrained
knowledge bases. In Proceedings of AAAI’96, 510-515.
Selman, B., and Kautz, H. 1996. Knowledge compilation
and theory approximation. J. of the ACM 43(2):193-224.
Siddiqi, S., and Huang, J. 2007. Hierarchical diagnosis of
multiple faults. In Proceedings of IJCAI-07.

Wachter, M., and Haenni, R. 2006. Logical compilation of
bayesian networks. Technical Report iam-06-006, Univer-
sity of Bern, Switzerland.

