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Abstract
There has been much recent attention to the problem
of learning an appropriate distance metric, using class
labels or other side information. Some proposed algo-
rithms are iterative and computationally expensive. In
this paper, we show how to solve one of these methods
with a closed-form solution, rather than using semidefi-
nite programming. We provide a new problem setup in
which the algorithm performs better or as well as some
standard methods, but without the computational com-
plexity. Furthermore, we show a strong relationship be-
tween these methods and the Fisher Discriminant Anal-
ysis.

Introduction
In many fundamental machine learning problems, the Eu-
clidean distances between data points do not represent the
desired topology that we are trying to capture. Kernel meth-
ods address this problem by mapping the points into new
spaces where Euclidean distances may be more useful. An
alternative approach is to construct a Mahalanobis distance
(quadratic Gaussian metric) over the input space and use it in
place of Euclidean distances. This approach can be equiv-
alently interpreted as a linear transformation of the origi-
nal inputs, followed by Euclidean distance in the projected
space. This approach has attracted a lot of recent inter-
est (Xing et al. 2003; Bilenko, Basu, & Mooney 2004;
Chang & Yeung 2004; Basu, Bilenko, & Mooney 2004;
Weinberger, Blitzer, & Saul 2006; Globerson & Roweis
2006; Ghodsi, Wilkinson, & Southey 2007).

In this paper, we introduce a new algorithm which can be
solved in closed-form instead of the iterative methods de-
scribed by Xing et al., Globerson & Roweis and Ghodsi,
Wilkinson, & Southey. We also extend the approach by ker-
nelizing it, allowing for non-linear transformations of the
metric. We will start by providing a precise definition of the
problem before proposing our closed-form solution. Then,
we show that our proposed algorithm solves a constraint op-
timization objective. We also show the effect of this alter-
native constraint and illustrate the connection between the
metric learning problem and Fisher Discernment Analysis
(FDA).
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Learning Distance Metrics

Problem Definition
The distance metric learning approach has been proposed
for both unsupervised and supervised problems. Consider a
large data set {xi}Ni=1 ⊂ Rn (e.g. a large collection of im-
ages) in an unsupervised task. While it would be expensive
to have a human examine and label the entire set, it would be
practical to select only a small subset of data points and pro-
vide information on how they relate to each other. In cases
where labeling data is expensive, one may hope that a small
investment in pairwise labeling can be extrapolated to the
rest of the set.

Note that this information is about the class-
equivalence/inequivalence of points but does not necessarily
give the actual class labels. Consider a case where there are
four points, x1,x2,x3, and x4. Given side information that
x1 and x2 are in the same class, and x3 and x4 also share a
class, we still cannot be certain whether the four points fall
into one or two classes. However, two kinds of class-related
side information can be identified. The first is a set of pairs
of similar or class-equivalent pairs (i.e. they belong to the
same class)

S : (xi,xj) ∈ S if xi and xj are similar
and the second is a set of dissimilar or class-inequivalent
pairs (i.e. they belong to different classes)

D : (xi,xj) ∈ D if xi and xj are dissimilar
We then wish to learn a n ×m transformation matrix W

(m ≤ n) which transforms all the points by f(x) = WTx.
This will induce a Mahalanobis distance dA over the points

dA(xi,xj) =‖ xi−xj ‖A=
√

(xi − xj)TA(xi − xj) (1)

where A = WWT is a positive semidefinite (PSD) matrix.
The distances between points in this new space can then be
used with any unsupervised technique (e.g. clustering, em-
bedding).

This setting can be easily extended to the supervised sce-
nario. In this case, the data points with the same label will
form the set S, and data points with different labels will con-
struct the set D. The distances between points in this case
can then be used with any supervised technique (e.g. classi-
fication).
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Related works
One proposed method for this problem is described by Xing
et al. (Xing et al. 2003). In this work, a new distance met-
ric is learned by considering side information. Xing et al.
used side information identifying pairs of points as “simi-
lar”. They then construct a metric that minimizes the dis-
tance between all such pairs of points. At the same time,
they attempt to ensure that all “dissimilar” points are sepa-
rated by some minimal distance. A key observation is that
they consider all points not explicitly identified as similar to
be dissimilar.

min
A

∑
(xi,xj)∈S ‖ xi − xj ‖2A

s.t.
∑

(xi,xj)∈D ‖ xi − xj ‖A≥ 1

A � 0 (2)

Note that using
∑

(xi,xj)∈D ‖ xi − xj ‖2A≥ 1 as a con-
straint, would always result in a rank one A, and the current
constraint (i.e. squared root of Mahalanobis distances) is
chosen to avoid that situation. An iterative algorithm for op-
timizing this objective is presented in which gradient ascent
followed by the method of iterative projections is used to
satisfy the constraints.

Ghodsi, Wilkinson, & Southey defined the following cost
function (Ghodsi, Wilkinson, & Southey 2007), which, at-
tempts to minimize the squared induced distance between
similar points, while maximizing the squared induced dis-
tance between dissimilar points

L(A) =
1
|S|

∑
(xi,xj)∈S ‖ xi − xj ‖2A −

1
|D|

∑
(xi,xj)∈D ‖ xi − xj ‖2A (3)

The optimization problem then becomes

min
A

L(A)

s.t. A � 0 (4)
Tr(A) = 1

The first constraint (positive semidefiniteness) ensures a
valid metric, and the second constraint excludes the trivial
solution where all distances are zero. The cost function is
then converted into a linear objective and solved by semidef-
inite programming (SDP) (Boyd & Vandenberghe 2004).

Note that the constant 1 in the constraint of this method,
as well as the constant in the Xing et al. method is arbitrary
and changing it simply scales the resulting space.

Globerson & Roweis proposed a metric learning method
for use in classification tasks (Globerson & Roweis 2006).
Similar to the methods proposed in (Xing et al. 2003)
and (Ghodsi, Wilkinson, & Southey 2007), their approach
searches for a metric under which points in the same class
are near each other and simultaneously far from points in
the other classes. For each training point xi, a conditional
distribution over other points is defined as

pA(j|i) =
e(−d

A
ij)

2∑
k 6=i e

(−dA
ik)2

i 6= j

where dAij = dA(xi,xj). In the ideal case, where all points
within a class are mapped to a single point and points in
other classes are pushed infinitely far away, we would have
the ideal “bi-level” distribution

p0(j|i) ∝

{
1 yi = yj
0 yi 6= yj

where y denotes the label of a training point. The objective
is to make the conditional distribution as close as possible to
the ideal case. This can be achieved by minimizing the KL
divergence between two distributions

min
A

∑
i

KL[p0(j|i)|pA(j|i)]

s.t. A � 0
This convex optimization problem is solved by a projected
gradient approach similar to the one used in (Xing et al.
2003). The algorithm itself is similar to the one used in
Neighborhood Component Analysis (NCA) (Goldberger et
al. 2005), but unlike NCA, the resultant optimization prob-
lem is convex.

Analytical solution to metric learning problem
The algorithms proposed in (Xing et al. 2003) and (Ghodsi,
Wilkinson, & Southey 2007) are both computationally ex-
pensive and can not be applied to large or high-dimensional
datasets due to this intensive complexity. In this section,
we show that the method presented in (Ghodsi, Wilkinson,
& Southey 2007) can be solved in closed form and without
using SDP. To see this, first replace equation (1) in (3) to
obtain

L(A) = 1
|S|
∑

(xi,xj)∈S(xi − xj)TA(xi − xj)−
1
|D|
∑

(xi,xj)∈D(xi − xj)TA(xi − xj) (5)

Since the terms in the summation of equation (5) are scalar,
the objective can be reformulated as

(xi − xj)TA(xi − xj)

= Tr
(
(xi − xj)TWWT (xi − xj)

)
= Tr

(
WT (xi − xj)(xi − xj)TW

)
This objective should be minimized subject to two con-
straints (see (4)). We can explicitly solve for W and relax
the first constraint. To add the second constraint we make
use of the Lagrange multiplier

max
W,λ

φ(W,λ) =

1
|S|

∑
(xi,xj)∈S

Tr
(
WT (xi − xj)(xi − xj)TW

)
−

1
|D|

∑
(xi,xj)∈S

Tr
(
WT (xi − xj)(xi − xj)TW

)
−

λ
(
Tr(WTW )− 1

)
(6)
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Taking the derivative and setting the result equal to zero im-
plies that

(MS −MD)W = λW

where

MS = 1
|S|
∑

(xi,xj)∈S(xi − xj)(xi − xj)T

and

MD = 1
|D|
∑

(xi,xj)∈D(xi − xj)(xi − xj)T

This is a standard eigenvector problem and the optimalW is
the eigenvector corresponding to the smallest nonzero eigen-
value. Our experimental results also confirm that this closed-
form solution is identical to the SDP solution proposed in
(Ghodsi, Wilkinson, & Southey 2007). This method always
produces rank one solutions, even in the multi-class case. In
other words, the original input space will be projected onto
a line by this transformation. However, in many cases it is
desirable to obtain a compact low-dimensional feature rep-
resentation of the original input space. Fortunately, this can
be achieved easily with a minor modification.

Alternative constraints and relation to FDA
We can require the transformation matrix W to satisfy
WTW = Im. Similar to the original constraint (i.e.
Tr(WWT ) = 1) this constraint does not allow the solution
to collapse to the trivial solution. In addition it will avoid
a rank one solution and also assures that the different co-
ordinates in the feature space are uncorrelated. Crucially,
this optimization can also be done in closed-form. The new
optimization problem becomes

min
W

Tr
(
WT (MS −MD)W

)
(7)

s.t. WTW = Im

If the symmetric and real matrix (MS − MD) has
eigenvalues λ1 ≤ . . . ≤ λn and eigenvectors v1, . . . , vn,
then the minimum value of the cost function satisfying the
constraint is λ1 + . . . + λm and the optimal solution is
W = [v1, . . . , vm] (Lütkepohl 1997). It is clear that in this
setting, the first direction (the eigenvector corresponding to
the smallest nonzero eigenvalue) is always identical to the
direction found in the original setting.

The constraints Tr(WWT ) = 1 and WTW = Im are
chosen to avoid the trivial zero solution. However, these
constraints are fairly arbitrarily. There exist many other con-
straints that do not allow the solution to collapse to the triv-
ial zero solution. Here we introduce an alternative constraint
which make a very close connection between metric learn-
ing and Fisher Discriminant Analysis (FDA) (Fisher 1936).
Consider the following optimization problem:

min
W

Tr
(
WT (MS −MD)W

)
(8)

s.t. WTMSW = Im

Similar to the previous constraints, this constraint pre-
vents the data from collapsing onto a point and removes an
arbitrary scaling factor. In addition, the matrix MS provides
a natural measure of covariance and therefore the constraint
scales directions of the feature space proportional to their
variance. This is in contrast to the previous constraint
(see equation (7)) that maps all data points onto the unit
hypersphere. Standard methods show that the solution is
provided by the matrix of eigenvectors corresponding to the
largest eigenvalues of the matrix M−1

S MD.

Since MS is positive definite, we can decompose it as
MS = HHT . Then, we can rearrange the cost function
to be

Tr
(
WT (MS −MD)W

)
= Tr

(
WT (HH−1)(MS −MD)(HT−1

HT )W
)

= Tr
(

(WTH)(In −H−1MDH
T−1

)(HTW )
)

If we take Q = HTW , the optimization problem can be
expressed as

min
Q

Tr
(
QT (In −H−1MDH

T−1
)Q
)

s.t. QTQ = Im

If (In − H−1MDH
T−1

) which is real and symmetric has
eigenvalues 1−λn ≤ . . . ≤ 1−λ1 and orthogonal eigenvec-
tors v1, . . . , vn, then the minimum value of the cost function
satisfying the constraint is m − (λn + . . . + λn−m+1) and
the optimal solution is Q = [v1, . . . , vm] (Lütkepohl 1997).
We can write

(H−1MDH
T−1

)Q = QΛ,
Λ = diag{λn, . . . , λn−m+1}

If we replace Q = HTW in the above equation, and multi-
ply on the left by HT−1

the result will be

(H−1MDH
T−1

)HTW = HTWΛ,

(HT−1
H−1︸ ︷︷ ︸

M−1
S

MD)W = WΛ (9)

So W is made of the first m eigenvectors of M−1
S MD.

It should be noted that eigenvalues of M−1
S MD and

H−1MDH
T−1

are the same.

The solution of this optimization problem is closely re-
lated to FDA. For a general K-class problem, FDA maps
the data into a (K − 1)-dimensional space such that the
distance between projected class means WTSBW is max-
imized while the within class variance WTSWW is mini-
mized. Here SB and SW are defined as

SW =
K∑
k=1

∑
i∈Ck

(xi −mk)(xi −mk)T

SB =
K∑
k=1

Nk(mk −m)(mk −m)T
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where Ck is the set of points in class k and Nk is the
cardinality, i.e. the number of data points in class k and
mk = 1

Nk

∑
i∈Ck

xi and m = 1
N

∑N
i=1 xi. FDA then max-

imizes an explicit function of the transformation matrix W
in the form

J(W ) = Tr
(
(WSWW

T )−1(WSBW
T )
)

The maximum is attained when the matrixW consists of the
first m (m < K−1) eigenvectors of S−1

W SB correspond-
ing to the largest eigenvalues. Interestingly, the solution of
distance metric learning method (equation (9)) (i.e. eigen-
vectors of M−1

S MD) and the solution of FDA (i.e. eigen-
vectors of S−1

W SB) are closely related. It can be shown that
these two methods yield identical results in the binary class
problem when both classes have the same number of data
points.1.

Kernelized Metric Learning
In many cases we need to consider non-linear transforma-
tions of data in order to apply learning algorithms. One effi-
cient method for doing this is to use a kernel that computes
a similarity measure between any two data points. In this
section, we show how we can learn a distance metric in the
feature space implied by a kernel, allowing our use of side
information to be extended to non-linear mappings of the
data.

Conceptually, we are mapping the points into a feature
space by some non-linear mapping φ() and then learning a
distance metric in that space. Actually performing the map-
ping is typically undesirable (features may have large or in-
finite dimensionality), so we employ the well-known ker-
nel trick, using some kernel K(xi, xj) that can compute in-
ner products between feature vectors without explicitly con-
structing them. The squared distances in our objective have
the form

(xi − xj)TWWT (xi − xj)
This W matrix can be reexpressed as a linear combination
of the data points, W = Xβ, via the kernel trick. Rewriting
our squared distance,

(xi − xj)TWWT (xi − xj)

= (xi − xj)TXββTXT (xi − xj)

= (XTxi −XTxj)TββT (XTxi −XTxj)

= (ki − kj)TββT (ki − kj)

where ki = XTxi is the i-th column of K = XTX . We
have now expressed the distance in terms of inner products
between data points, which can be computed via the kernel

1In this case |S| = N2−2N
4

and |D| = N2. Then if we compute
the MS and MD and simplify the results, we have MS = 2(S1+S2)

N−2

and MD = 2
N

(S1 + S2) + (m1 − m2)(m1 − m2)
T . Finally

M−1
S MD can be written as N−2

2
( 2

N
In + (S1 + S2)

−1(m1 −
m2)(m1 −m2)

T ). It is clear that the eigenvectors of M−1
S MD

are the same as the eigenvectors of S−1
W SB = (S1 + S2)

−1(m1−
m2)(m1 −m2)

T

Dataset # data points # dimensions # classes
Wine: 178 13 3
Soybean: 47 35 4
Ion: 351 34 2
Protein: 116 20 6
Balance: 625 5 3
Spam: 461 57 2

Table 1: Description of the UCI datasets used for classifica-
tion experiments.

K. Instead of W , we need to optimize β. This will proceed
just as in the non-kernelized version. It should be noted that
even for low-dimensional but large data sets, K can be very
large. When the solution is not in closed form, applying ker-
nel methods to large problems is not feasible. However, due
to the very low computational complexity of the proposed
method, we can use kernels on any data set with reasonable
size.

Experimental Results
We have investigated the ability for different metric learning
algorithms to faithfully incorporate class equivalence infor-
mation into the learned metric. It is of particular interest to
determine if there is much computational penalty for using
the iterative methods, or whether the quality of their results
make up for the inefficiency.

It has been described how class-equivalence side infor-
mation can be used to learn a suitable metric for classifica-
tion. Furthermore, when labeled data is provided, all pos-
sible pairings of the input data can be added to the sets of
similar and dissimilar pairs. This allows the metric learning
algorithms to exploit the same information as any classifica-
tion algorithm. This is the approach we have taken to com-
pare FDA with the other methods under consideration. We
have compared the classification performance of the follow-
ing algorithms:

• Fisher’s Discriminant Analysis (FDA)

• Maximally Collapsing Metric Learning (MCML)
(Globerson & Roweis 2006)

• Closed-Form Metric Learning (CFML), which uses the
constraint WTW = I

• CFML-II, which uses the constraint WTMSW = I

• The algorithm proposed by Xing et al. (Xing et al. 2003)

Classification error rates are calculated for six labeled
UCI datasets (Asuncion & Newman 2007). The datasets are
described in Table 1. The average error rate is computed
across 40 random splits of the data; in each split we select
a random 70% training set and 30% test set. Every algo-
rithm uses the training set to learn a transformation matrix
W which induces a Mahalanobis distance dA over the input
data, where A = WWT . After projecting the data into the
transformed space, we use a simple one-nearest-neighbor
classifier to propose a label for each test point.
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Dataset Algorithm runtime (seconds)
CFML CFML-II FDA MCML Xing

Wine: 0.05 0.05 0.01 3.2 19.8
Soybean: 0.01 0.01 0.01 3.1 280.4
Ion: 0.7 0.7 0.01 31.5 279.4
Protein: 0.03 0.03 0.01 3.1 17.7
Balance: 0.3 0.3 0.01 16.1 24.4
Spam: 1.6 1.6 0.02 66.8 n/a

Table 2: Average algorithm run-times, in seconds. Note that
Xing et al.’s algorithm could not run on the Spam dataset
due to infeasibility.

Every algorithm that learns such a transformation W can
also be used to learn a low-dimensional metric Am of rank
m where m ≤ n. Thus, Am can be factorized as Am =
WmW

T
m where Wm is a transformation to a m-dimensional

subspace. Low-dimensional distance metrics are desirable
because they can drastically reduce the computational re-
quirements for working with the data, and they can often
provide noise reduction as well. To compute an appropriate
Am, the optimal rank-m reconstruction of A can be easily
computed from its spectral decomposition: whereas A can
be diagonalized as A =

∑n
i=1 λiviv

T
i we restrict Am to be

Am =
∑m
i=1 λiviv

T
i where λ1 ≥ λ2 ≥ · · · ≥ λn.

The results of our classification experiment are presented
in Figure 1 and Figure 2. For each dataset, the average clas-
sification error is plotted for several low-dimensional pro-
jections of each learned metric.

As noted before, the rank of the FDA solution is K-1
where K is the number of classes in the dataset. Thus the
FDA solution will be constant for any m-dimensional pro-
jection where m ≥ K − 1.

Note that in a realistic classification setting, one might se-
lect the target dimensionality m using a validation set (sub-
set of the training data) to select the dimensionality which
achieves the lowest error rate.

We have run several experiments using the kernel formu-
lation of CFML. However, we have not found a suitable ker-
nel for these datasets which results in much performance im-
provement.

The average observed running times of these algorithms
are shown in Table 2. It is interesting to note that while
Xing et al.’s method tends to perform poorly, it is also the
most computationally intensive. Also, the CFML methods
both appear to perform comparably with MCML but they
can be computed almost instantaneously, with no iteration
necessary.

Conclusions
Many different algorithms have been proposed for learning
a distance metric in the presence of side information. This
paper has investigated a few algorithms that have proposed
complicated cost functions that seemed to necessitate itera-
tive methods. We have proposed a closed-form solution to
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Figure 1: Classification error rate for three of the six UCI
datasets. Each learned metric is projected onto a low-
dimensional subspace, shown along the x axis.
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Figure 2: Classification error rate for three of the six UCI
datasets. Each learned metric is projected onto a low-
dimensional subspace, shown along the x axis.

one algorithm that previously required expensive semidefi-
nite optimization. The new method yields a substantial im-
provement over Xing’s method and FDA. It also has com-
parable performance to the MCML method but without the
runtime inefficiency.
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