
Semi-Supervised Ensemble Ranking

Steven C.H. Hoi
School of Computer Engineering
Nanyang Technological University

Singapore 639798
chhoi@ntu.edu.sg

Rong Jin
Dept. of Computer Sci. & Eng.

Michigan State University
East Lansing, MI 48824, U.S.A.

rongjin@cse.msu.edu

Abstract

Ranking plays a central role in many Web search and
information retrieval applications. Ensemble ranking,
sometimes called meta-search, aims to improve the
retrieval performance by combining the outputs from
multiple ranking algorithms. Many ensemble rank-
ing approaches employ supervised learning techniques
to learn appropriate weights for combining multiple
rankers. The main shortcoming with these approaches
is that the learned weights for ranking algorithms are
query independent. This is suboptimal since a rank-
ing algorithm could perform well for certain queries but
poorly for others. In this paper, we propose a novel
semi-supervised ensemble ranking (SSER) algorithm
that learns query-dependent weights when combining
multiple rankers in document retrieval. The proposed
SSER algorithm is formulated as an SVM-like quadratic
program (QP), and therefore can be solved efficiently by
taking advantage of optimization techniques that were
widely used in existing SVM solvers. We evaluated the
proposed technique on a standard document retrieval
testbed and observed encouraging results by comparing
to a number of state-of-the-art techniques.

Introduction
Ranking is crucial to many real-world applications, espe-
cially in the fields of Web search and information retrieval.
One way to address the ranking problem is ensemble rank-
ing, sometimes called meta-search. It improves retrieval per-
formance by combining the outputs from multiple ranking
algorithms. The ensemble ranking techniques can be ben-
eficial for many applications. For example, it can be used
to improve Web search by combining the ranking lists from
several Web search engines.

One simple approach for ensemble ranking is to first nor-
malize the output ranking scores from multiple ranking al-
gorithms, and then combine the normalized ranking scores
by weights that are usually tuned empirically. Despite its
simplicity, this heuristic approach often fails to deliver the
optimal performance because of the hand tuned weights.

In recent studies, ensemble ranking is usually formal-
ized as a machine learning problem, in which various su-

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

pervised learning techniques have been applied to learn op-
timal weights for combining multiple ranking algorithms.
Unlike typical supervised learning where each training ex-
ample consists of an input pattern x and a class label y, in
learning to rank, training data usually consist of a number
of queries, and each query is associated with a list of ob-
jects (e.g., documents) whose relevances have been manu-
ally judged by human subjects1. The goal of the ensemble
ranking is to learn optimal weights from the training data
to combine the ranking results output from multiple ranking
algorithms.

Many studies on ensemble ranking cast it into a super-
vised learning problem. For example, a well-known ranking
technique is Ranking Support Vector Machine (SVM) (Her-
brich, Graepel, & Obermayer 2000; Joachims 2002). To de-
cide an appropriate order for a set of objects, it considers
solving the ordering problem between any two objects xa

and xb, which can be further converted into a binary clas-
sification problem, i.e., whether or not xa be ranked before
xb. We refer to these approaches as “supervised ensemble
ranking”, or SER for short.

The main drawback of the SER approaches is that the
weight learned for each ranking algorithm is query inde-
pendent. This is only suboptimal since a ranking algorithm
could perform well for certain queries but poorly for others.
This motivates us to develop a query-dependent solution for
ensemble ranking, in which the weights assigned to differ-
ent ranking algorithms are affected by the characteristics of
queries. To this end, we propose a novel algorithm for Semi-
Supervised Ensemble Ranking (SSER), which learns query-
dependent combination weights for ensemble ranking.

The major contributions in this paper include: (1) we
present a new formulation for supervised ensemble ranking,
which significantly improves the learning efficiency com-
pared to the existing approaches such as Ranking SVM; (2)
we propose a novel algorithm for semi-supervised ensemble
ranking, which employs graph-based regularization to ex-
ploit the geometric relationship of the top retrieved objects
for a given query; (3) we evaluate the proposed algorithm on
a benchmark dataset by comparing it to several state-of-the-

1In certain applications (e.g., document retrieval), the rele-
vance judgments can be inferred indirectly from user interac-
tion data (e.g., click-through data) collected by Web search en-
gines (Joachims 2002)

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

634

art ranking algorithms.
The rest of this paper is organized as follows: first, we

briefly review the related work on the ensemble ranking and
supervised learning methods for ranking; second, we give
a formal formulation of the ensemble ranking problem and
present the proposed ensemble ranking solution; third, we
present an empirical study on a benchmark testbed for doc-
ument retrieval; finally, we set out our conclusion.

Related Work
Document retrieval has been extensively studied in the in-
formation retrieval and Web community (Baeza-Yates &
Ribeiro-Neto 1999). Traditional document retrieval meth-
ods often focus on the extraction of effective features (Salton
1971). The features can be either structural features, such as
term frequency and inversed document frequency, or query-
independent features, such as PageRank for Web document
retrieval. The traditional document retrieval methods usu-
ally formulate some ranking functions on the extracted fea-
tures, and then empirically tune the parameters of the rank-
ing functions as well as the combination weights for ag-
gregating the ranking scores output by different ranking
functions. Some well-known approaches include the Okapi
BM25 model (Robertson, Walker, & Beaulieu 1998) and
languages models in information retrieval (LMIR) (Ponte &
Croft 1998). We refer to these approaches as “unsupervised
ensemble ranking” methods.

Recently, the ranking problem of document retrieval has
been formalized as a supervised machine learning task, in
which a variety of machine learning techniques have been
actively investigated for solving the learning tasks. Reg-
ular approaches usually adapt typical supervised machine
learning techniques to solve the learning task. For exam-
ple, Herbrich et al. (Herbrich, Graepel, & Obermayer 2000)
propose to solve the ranking issue by applying SVM to solve
document retrieval tasks. We refer to their approach as the
Ranking SVM method. Joachims also applies the similar
method to learn an ensemble ranking solution for combining
the results from multiple search engines (Joachims 2002),
which even achieved better retrieval quality than Google
after proper training. Other variants of SVM related ap-
proaches for ranking can also be found in (Cao et al. 2006;
Nallapati 2004).

In addition to SVMs, there are also other machine learn-
ing techniques studied for ranking. For example, Freund et
al. proposed to solve the ranking problem by Boosting tech-
niques (Freund et al. 2003). Burges et al. proposed a neural
network approach to model the ranking function, which is
called RankNet (Burges et al. 2005). More other related
work on learning to rank topics can be found in (Usunier et
al. 2005; Li & Lin 2007; Agarwal 2006; Cao et al. 2007;
Agarwal & Chakrabarti 2007). In addition to general rank-
ing topics, there are some related work focusing on the rank-
ing aggregation problem, such as Markov Chain based rank
aggregation (Dwork et al. 2001) and supervised rank ag-
gregation (Liu et al. 2007b), etc. Most of these work are
often based on either unsupervised or supervised learning
approaches, which are different from our solution.

Semi-supervised Ensemble Ranking
In this section, we first introduce the ensemble ranking prob-
lem in the context of information retrieval. We will then for-
mulate ensemble ranking as a convex optimization problem
and propose a novel semi-supervised algorithm for ensemble
ranking. It is important to note that we focus on score-based
ensemble ranking approaches, which are different from the
order-based ensemble ranking approaches.

Problem Statement
We consider a general ensemble ranking problem that ag-
gregates results from multiple ranking algorithms for infor-
mation retrieval tasks. Let Q = {qi, i = 1, . . . , Nq} de-
note a collection of Nq queries in the training data, and
each query qi is associated with a list of Ni objects Di =
{di

1, . . . , d
i
Ni
}, in which each object di

j is manually judged
with relevance yi

j ∈ {−1, 0, +1}where+1 stands for highly
relevant, 0 for possibly relevant, and −1 for irrelevant. The
relevance judgement yi

j could be a degree of relevance that is
either provided directly by human subjects or inferred indi-
rectly from user computer interaction data, such as the click-
through data collected by search engines.

Let G = {g1(·), . . . , gm(·)} denote the ensemble of m
ranking functions where each function gi(d) : X → R. The
goal of ensemble ranking is to combine the ranking func-
tions in G to produce ranking lists that are better than any
individual ranking functions. In the simple form, the com-
bined ranking function, denoted by fw(·), is expressed as

fw(d) =
m∑

k=1

wkgk(d) (1)

where wk is the weight assigned to ranking function gk(·).
Hence, for most ensemble ranking methods, the key is to
learn the combination weights wk, k = 1, . . . , m.

To simplify the representation, we introduce an m-
dimensional feature vectorxi

j ∈ R
m to represent the ranking

scores output by m rankers for each object di
j , i.e.,

xi
j = (xi

j,1, . . . ,x
i
j,m) = (g1(di

j), . . . , gm(di
j)) (2)

Then, the ranking score for di
j by the combined ranking

function is calculated as fw(di
j) = w�xi

j .

Supervised Ensemble Ranking
One way to solve the ensemble ranking problem is to adopt
the Ranking SVM method. The basic idea is to decompose
a ranking list into a number of ordered example pairs. Given
a query qi and two objects (di

j) and (di
k), one can create a

training example (xi
j −xi

k, zi
jk), where the training label zi

jk

is defined as:

zi
jk =

{
+1 if di

j � di
k;

−1 if di
k � di

j .
(3)

where � stands for the prefer operator. Using the training
examples defined above, one builds an SVM model by solv-
ing the following optimization:

635

min
w

1
2
‖w‖2 + C

Nq∑
i=1

Ni∑
j=1

Ni∑
k=j+1

ξi
jk (4)

s.t. zi
jk(w · (xi

j − xi
k)) ≥ 1 − ξi

jk, i = 1 . . .Nq,

ξi
jk ≥ 0, j < k and j, k ∈ [1, . . . , Ni].

The above ranking SVM approach has a major drawback in
training efficiency because the number of example pairs is
quadratic in the number of objects. Thus, it is inefficient
when the number of objects is large.

In this paper, we propose a new approach for supervised
ensemble ranking that can improve the training efficiency
of Ranking SVM significantly. First, for each query qi, we
construct a relevance matrix Ai to represent the relevance
judgement, in which each elementAi

j,k is defined as follows:

Ai
j,k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+1 if yi
j = 1 and yi

k = −1;
−1 if yi

j = −1 and yi
k = 1;

θ if yi
j = 1 and yi

k = 0;
−θ if yi

j = 0 and yi
k = 1;

0 otherwise.

(5)

where θ ∈ (0, 1) is a constant that represents the chance for
a highly relevant object to be ranked before a possibly rel-
evant object. Furthermore, for each training query qi, we
summarize the ranking results output by a ranking function
gj(·) by a matrix R̃i,j , j = 1, . . . , m, where R̃i,j

k,l = 1 if di
k

is ranked before di
l by gj(·) and 0 otherwise. We smooth

the ranking matrix by R̃i,j + δI where δ is a small constant
for smoothing, and normalize the smoothed ranking matrix
to be a transition matrix Ri,j by a column-based normaliza-
tion, i.e.,

∑Ni

k=1 Ri,j
k,l = 1. Similarly, for a testing query q

and a collection of objects to be ranked, we obtain the rank-
ing scores generated by ranking function gi(·), and summa-
rize the ranking results into a transition matrix Bi, which
is subjected to the same summarization procedure used for
constructing Ri,j .

We formulate ensemble ranking as a problem of learning
optimal weights to minimize the difference between the rel-
evance matrix and the combined transition matrix. We cast
this idea into the following optimization problem:

min
w

1
2
‖w‖2 + C

Nq∑
i=1

ξi (6)

s.t. tr

⎛
⎝[Ai]�

⎡
⎣ m∑

j=1

wjR
i,j

⎤
⎦
⎞
⎠ ≥ 1 − ξi,

ξi ≥ 0, wj ≥ 0, i = 1 . . .Nq, j = 1 . . .m.

where tr(·) is a trace function that measures the similarity
between the relevance matrix Ai and the combined transi-
tion matrix

∑m
j=1 wjR

i,j . In the above optimization, we
formulate the problem by adopting the regularization frame-
work used in SVM. It is important to note that the supervised
ensemble ranking formulation in (6) differs from the ranking
SVM approach in (4) in that our formulation only engages
O(Nq) constraints, which is significantly smaller than the
number of constraints in (4).

We can further generalize the formulation in (6) by intro-
ducing a function s(A, B) to measure the similarity between
two matricesA and B. By replacing tr(A, B) with s(A, B),
we have (6) generalized as

min
w

1
2
‖w‖2 + C

Nq∑
i=1

ξi (7)

s.t.

m∑
j=1

wjs(Ai, Ri,j) ≥ 1 − ξi,

ξi ≥ 0, wj ≥ 0, i = 1 . . .Nq, j = 1 . . .m.

One choice for s(A, B) is to generalize the RBF function for
matrices, i.e., s(A, B) = exp(−d(A, B)/λ) where λ is the
scaling constant and d(A, B) is distance between matrices
A and B. For instance, we can measure d(A, B) by the
induced norm of matrixA−B; we can also measure d(A, B)
by the Bregman matrix divergence.

Semi-Supervised Ensemble Ranking
As pointed out in the introduction section, one major draw-
back of the supervised ensemble ranking approaches is that
they learn query-independent weights for different ranking
algorithms. We propose a Semi-Supervised Ensemble Rank-
ing (SSER) method that learns query-dependent weights by
exploiting the correlation among the objects retrieved for a
given query. The intuitive idea behind our method is that if
the contents of two retrieved objects are similar, they should
be assigned with similar ranking scores. Taking this factor
into consideration, we can extend (6) into a semi-supervised
ensemble ranking method:

min
w

1
2
‖w‖2 + C

Nq∑
i=1

ξi (8)

+
γ

2

Nu∑
k=1

Nu∑
l=1

skl

(
fw(dq

k) − fw(dq
l)

)2

s.t. tr

⎛
⎝[Ai]�

⎡
⎣ m∑

j=1

wjR
i,j

⎤
⎦
⎞
⎠ ≥ 1 − ξi,

ξi ≥ 0, wj ≥ 0, i = 1 . . .Nq, j = 1 . . .m.

whereDq = (dq
1, . . . , d

q
Nu

) is the set of objects to be ranked
for query q; skl is the similarity between dq

k and dq
l . Note

that the term
∑Nu

k,l=1 skl

(
fw(dq

k) − fw(dq
l)

)2

is introduced

to capture the idea that similar objects should be assigned
with similar ranking scores. It is this term that makes the
weights to be query dependent. γ ≥ 0 is a regularization pa-
rameter introduced for balancing the query-dependent regu-
larization term. We can simplify the query-dependent reg-
ularization term by using graph Laplacian (Chung 1997),
which has been successfully used in many semi-supervised
learning applications (Chapelle, Schölkopf, & Zien 2006).
Specifically, we put all the similarities sk,l into a matrix
S = [sk,l]Nu×Nu . We construct the normalized graph
Laplacian matrix L for S as follows:

L = I − D−1/2SD−1/2, (9)

636

where D = diag(d1, d2, . . . , dNu) is the degree matrix with
the diagonal elements defined as di =

∑Nu

j=1 sij . By adopt-
ing the normalized graph Laplacian, we can rewrite (8) as:

min
w

1
2
w�(I + γG�LG)w + C

Nq∑
i=1

ξi (10)

s.t. w�bi ≥ 1 − ξi,

ξi ≥ 0, wj ≥ 0, i = 1 . . .Nq, j = 1 . . .m.

where G is an Nu × m matrix with element Gij = gi(d
q
j),

1 ≤ i ≤ m, and 1 ≤ j ≤ Nu; bi = (bi
1, . . . , b

i
m) with

element bi
j = tr([Ai]�Ri,j).

Using the Lagrangemultipliers method, we can derive the
dual problem of (10) as follows:

max
α

Nq∑
j=1

αj − 1
2

(Nq∑
i=1

αib
i + η

)�
H

(Nq∑
i=1

αib
i + η

)
s.t. 0 ≤ αi ≤ C, i = 1, . . . , Nq (11)

ηj ≥ 0, j = 1, . . . , m (12)

where H =
(
I + γG�LG

)−1
. This is a standard quadratic

program (QP), similar to the dual optimization problem of
SVMs. We can solve the above optimization efficiently by
using either the standard QP solvers or the QP solvers used
for solving SVMs. Once the dual optimization is solved, we
can find w by applying the KKT condition, i.e.,

w =
(
I + γG�LG

)−1
Nq∑
i=1

αibi (13)

Experimental Results
Experimental Dataset
In our experiments, we adopt a standard experimental
testbed, i.e., the OHSUMED collection (Hersh et al. 1994),
which is a benchmark dataset widely used for document
information retrieval (Liu et al. 2007a; Cao et al. 2006;
Xu & Li 2007; Cao et al. 2007). This dataset is a collec-
tion of documents and queries on medicines, which contains
348,566 references and 106 queries. Relevance judgements
were made on 16,140 query-document pairs, in which three
relevance degrees are assigned: definitely relevant, possibly
relevant, and not relevant.

In our experiments, each instance is represented by an
m-dimensional vector, in which each dimension represents
the ranking score produced by a ranker for a given query-
document pair. In particular, 25 different ranking models
are used in the experiments, including 10 kinds of models on
low-level features from the fields of title and abstract respec-
tively, and 5 kinds of models on high-level features from the
combination of title and abstract. Table 1 and Table 2 show a
list of ranking models with low-level and high-level features
respectively.

Comparison Methods
To evaluate the performance of the proposed technique, we
engage several state-of-the-art ranking techniques recently

Table 1: A list of rank models based on low-level features
IDs Rank Models Descriptions

L1
∑

qi∈q∩d

c(qi, d) Term Frequency (TF)

L2
∑

qi∈q∩d

log(c(qi, d) + 1) Described in (Cao et al. 2006)

L3
∑

qi∈q∩d

c(qi, d)

|d| Normalized TF

L4
∑

qi∈q∩d

log
(c(qi, d)

|d|
)

+ 1 Described in (Cao et al. 2006)

L5
∑

qi∈q∩d

log
(|C|

df(qi)

)
Inv. Doc. Frequency (IDF)

L6
∑

qi∈q∩d

log
(
log

(|C|
df(qi)

))
Described in (Cao et al. 2006)

L7
∑

qi∈q∩d

log
(C

c(qi, C)
+ 1

)
Described in (Cao et al. 2006)

L8
∑

qi∈q∩d

log
(c(qi, d)

|d| log(
|c|

df(qi)
) + 1

)
Described in (Cao et al. 2006)

L9
∑

qi∈q∩d

c(qi, d)log
(|C|

df(qi)

)
TF*IDF

L10
∑

qi∈q∩d

log
(c(qi, d)

|d|
|C|

|c(qi, C)| + 1
)

Described in (Cao et al. 2006)

Table 2: A list of rank models based on high-level features
IDs Rank Models Descriptions

H1 BM25 score Okapi BM25 Model (Robertson et al. 1998)

H2 log(BM25 score) Modified Okapi BM25 (Robertson et al. 1998)

H3 LMIR-DIR Language model by DIR smoothing (Zhai et al. 2001)

H4 LMIR-JM Language model by JM smoothing (Zhai et al. 2001)

H5 LMIR-ABS Language model by ABS smoothing (Zhai et al. 2001)

proposed in the information retrieval field. In particular, we
compare our solution with 5 state-of-the-art ranking tech-
niques as follows:

(1) RankBoost: the well-known ranking method that employs a
typical boosting approach by combining multiple weak rankers
to get a strong ranker (Freund et al. 2003);

(2) Ranking SVM: the well-known ranking SVM method, i.e., for-
mulating the ranking task as a binary classification problem on
example pairs, and then to solve the problem using SVMs (Her-
brich, Graepel, & Obermayer 2000);

(3) ListNet: a ranking method that considers a list of objects as
“instance” in the learning task (Cao et al. 2007);

(4) AdaRank: a ranking method using AdaBoosting (Xu & Li
2007), i.e., repeatedly constructing ’weak rankers’ on the basis
of re-weighted training queries and finally linearly combining
the weak rankers for making ranking predictions.

(5) MHR-BC: a recently proposed ranking method using multiple
hyperplanes, i.e., by learning multiple hyperplanes from train-
ing data, and then aggregating the ranking results of these hy-
perplanes to get the final ranked result (Qin et al. 2007).

(6) SER: the proposed supervised ensemble ranking method, which
is equivalent to the SSER when setting the regularization γ to 0;

(7) SSER: the proposed semi-supervised ensemble ranking method.

In our experiments, we implemented and evaluated the
proposed methods in MATLAB on a Windows PC with
Duro-Core 3.4GHz CPU and 3GB RAM. Specifically, for
implementing the SER and SSER algorithms, we employ a

637

standard QP solver to solve the optimization problems. The
normalized graph Laplacian matrix L is constructed by a
standard graph construction method, i.e., first building k-
nearest neighbor graph (k=5 in our experiments) with Eu-
clidean distance to obtain a sparse weight matrix S, and then
getting L by normalizing the weight matrix S with Eq. (9).

For the experimental setup, we conducted a set of 5 exper-
iments with 5-fold cross validation, in which 3-fold data are
used for training, 1-fold data are used for validation to deter-
mine parameters, and the rest 1-fold data are used for test-
ing. For the SSER algorithm, there are several parameters,
including γ, C, θ and δ. In our experimental approaches,C,
δ and θ are simply set to 1, 1 and 0.5 respectively without
tuning. We only determined the best parameter γ from the
validation set. In most cases, we found that setting γ = 0.5
tends to work fairly comparable to the best performance.

Figure 1: Comparison of MAP performance for the pro-
posed method with respect to other approaches.

Performance Evaluation
To evaluate the performance of the ensemble ranking algo-
rithms, we adopt the standard performance metric, average
precision (AP) and Mean average precision (MAP), which
are widely used in the information retrieval field (Baeza-
Yates & Ribeiro-Neto 1999). For a given query, the average
precision is defined as:

AP =
1

rel

∑
k=1

Prec@k (14)

where rel is the number of relevant documents, andPrec@k
is the percentage of relevant documents in the top k ranked
documents. MAP is the mean of the average precision scores
over a set of queries.

Figure 1 shows the MAP performance of the compared
methods obtained by averaging the results from 5 exper-
iments. From the results, we can see that the proposed
supervised ensemble ranking (SER) method outperforms
the RankBoost, AdaRank, and MHR-BC methods, but is
slightly worse than the ranking SVM approach. Among all
compared methods, the proposed semi-supervised ensem-
ble ranking (SSER) method achieved the best MAP perfor-
mance, outperforming all of the state-of-the-art approaches
in our comparisons. This shows that the proposed scheme is
effective for improving the retrieval performance.

Table 3: Evaluation on training time efficiency (seconds).
Algorithm Trial1 Trial2 Trial3 Trial4 Trial5 Avg.

Rank.SVM� 43,035.1 50,681.3 31,280.6 30623.3 29761.9 37076.4

Rank.SVM† 1,327.4 1,295.2 1,422.1 1132.0 965.6 1228.5

SER 5.7 7.1 7.2 5.8 5.5 6.3

SSER 7.1 8.3 8.3 7.0 6.6 7.5
�Rank.SVM is based on SVMlight (Joachims 1999), which is implemented in C.
†Rank.SVM is based on SVMstruct (Yue et al. 2007), which is implemented in C.

SER and SSER are implemented using the default quadprog solver in MATLAB.

To further examine the performance in detail, we also
show the evaluation results of average precision on top re-
trieval documents in Figure 2. From the results, we found
that the proposed SSER method outperforms all of the com-
pared methods on rank-1 and rank-2 results. This is impor-
tant for an information retrieval task since users often click
only on top several ranked results. For example, some recent
survey on analyzingWeb search engine click rates 2 showed
that the percentage of clicks on rank-1 and rank-2 results
accounts for more than 50% of all clicks.

Further, we are aware that the regularization parameter γ
is critical to the performance of the SSER algorithm. Fig-
ure 3 illustrates the influence of different values of γ on the
retrieval performance in one experiment. From this result,
we can see that the optimal γ seems close to 0.5. Currently
we can only determine the best parameter by the validation
set. Advanced techniques may be studied in future work.

Finally, we evaluate the time efficiency of the proposed
algorithms. Table 3 shows the experimental results of time
performance by comparing our algorithms with two vari-
ants of ranking SVMs that use SVMlight and SVMstruct

respectively. Clearly, the proposed algorithms are signifi-
cantly more efficient than ranking SVMs. Specifically, both
ranking SVMs took more than 10 hours and 20 minutes re-
spectively for each training on average, while our algorithms
only need several seconds. As we explained the reason be-
fore, the ranking SVM in each trial (63 queries in the train-
ing set) has to engage about 350, 000 rank constraints, but
our approach only requires about 126 constraints on aver-
age.

Figure 3: Performance evaluation of the SSER method with
different values of the regularization parameter (γ).

Conclusion
This paper proposed a novel semi-supervised ensemble
ranking technique for document retrieval. We first formu-

2http://www.jimboykin.com/click-rate-for-top-10-search-results/

638

Figure 2: Evaluation of average precision performance on rank-1 to rank-10 retrieval documents.

lated a new supervised ensemble ranking method similar to
the ranking SVM approach but is significantly more effi-
cient. Based on the proposed scheme, we then presented the
novel semi-supervised ensemble ranking technique, which
is formulated as a quadratic program that can be solved ef-
ficiently. Encouraging experimental results validated the ef-
fectiveness of the proposed method.

One main drawback with the proposed framework is that
it has to learn a different set of weights online for each query
as opposed to supervised ranking approaches that learn com-
bination weights offline. Clearly, this drawback will make
the proposed ranking framework infeasible for very large-
scale applications. In the future, we plan to examine more
efficient approaches to alleviate the high computational cost
for online learning. In addition, the regularization parame-
ter used in the proposed framework is decided empirically.
In the future, we plan to investigate more systematical ap-
proaches for finding the optimal regularization parameter.

Acknowledgments
We would like to thank Dr. Liu at Microsoft Research Asia
for sharing the LETOR testbed for our experiments. The work
was supported in part by the National Science Foundation (IIS-
0643494), National Institute of Health (1R01-GM079688-01), and
Singapore NTU Academic Research Grant (RG67/07). Any opin-
ions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect
the views of NSF and NIH.

References
Agarwal, A., and Chakrabarti, S. 2007. Learning random walks
to rank nodes in graphs. In Proc. ICML2007.

Agarwal, S. 2006. Ranking on graph data. In Proc. ICML2006.

Baeza-Yates, R. A., and Ribeiro-Neto, B. A. 1999. Modern In-
formation Retrieval. ACM Press / Addison-Wesley.

Burges, C.; Shaked, T.; Renshaw, E.; Lazier, A.; Deeds, M.;
Hamilton, N.; and Hullender, G. 2005. Learning to rank using
gradient descent. In Proc. ICML’05, 89–96.

Cao, Y.; Xu, J.; Liu, T.-Y.; Li, H.; Huang, Y.; and Hon, H.-W.
2006. Adapting ranking svm to document retrieval. In Proc. SI-
GIR’06, 186–193.

Cao, Z.; Qin, T.; Liu, T.-Y.; Tsai, M.-F.; and Li, H. 2007. Learn-
ing to rank: from pairwise approach to listwise approach. In Proc.
ICML’07, 129–136.

Chapelle, O.; Schölkopf, B.; and Zien, A. 2006. Semi-Supervised
Learning. Cambridge, MA: MIT Press.

Chung, F. 1997. Spectral Graph Theory. American Mathematical
Society.
Dwork, C.; Kumar, R.; Naor, M.; and Sivakumar, D. 2001. Rank
aggregation methods for the web. In Proc. WWW’01, 613–622.
Freund, Y.; Iyer, R.; Schapire, R. E.; and Singer, Y. 2003. An
efficient boosting algorithm for combining preferences. Journal
of Machine Learning Research 4:933–969.
Herbrich, R.; Graepel, T.; and Obermayer, K. 2000. Large mar-
gin rank boundaries for ordinal regression. In Smola; Bartlett;
Schoelkopf; and Schuurmans., eds., Advances in Large Margin
Classifiers. MIT Press, Cambridge, MA.
Hersh, W.; Buckley, C.; Leone, T.; and Hickam, D. 1994.
Ohsumed: an interactive retrieval evaluation and new large test
collection for research. Proc. SIGIR 1994.
Joachims, T. 1999. Making large-scale SVM learning practical.
In Advances in Kernel Methods - Support Vector Learning. Cam-
bridge, MA: MIT Press. chapter 11, 169–184.
Joachims, T. 2002. Optimizing search engines using clickthrough
data. In Proceeding of ACM SIGKDD Conference, 133–142.
Li, L., and Lin, H.-T. 2007. Ordinal regression by extended binary
classification. In NIPS 19, 865–872.
Liu, T.-Y.; Qin, T.; Xu, J.; Xiong, W.; and Li, H. 2007a. Letor:
Benchmark dataset for research on learning to rank for informa-
tion retrieval. In SIGIR’07 Workshop: LR4IR 2007.
Liu, Y.-T.; Liu, T.-Y.; Qin, T.; Ma, Z.-M.; and Li, H. 2007b.
Supervised rank aggregation. In Proc. WWW’07, 481–490.
Nallapati, R. 2004. Discriminative models for information re-
trieval. In Proc. SIGIR’04, 64–71.
Ponte, J. M., and Croft, W. B. 1998. A language modeling ap-
proach to information retrieval. In Proc. SIGIR’98, 275–281.
Qin, T.; Zhang, X.-D.; Wang, D.-S.; Liu, T.-Y.; Lai, W.; and Li,
H. 2007. Ranking with multiple hyperplanes. In SIGIR’07, 279–
286.
Robertson, S.; Walker, S.; and Beaulieu, M. 1998. Okapi at trec-
7: Automatic ad hoc, filtering, vlc and interactive track. In Proc.
the Seventh Text REtrieval Conference.
Salton, G. 1971. The SMART retrieval system; experiments in
automatic document processing. Prentice-Hall, NJ.
Usunier, N.; Truong, V.; Amini, M. R.; and Gallinari, P. 2005.
Ranking with unlabeled data: A first study. In NIPS 2005 work-
shop: Learning to Rank.
Xu, J., and Li, H. 2007. AdaRank: a boosting algorithm for
information retrieval. In SIGIR’07, 391–398.
Yue, Y.; Finley, T.; Radlinski, F.; and Joachims, T. 2007. A sup-
port vector method for optimizing averageprecision. In SIGIR’07.

639

