
Zero-data Learning of New Tasks

Hugo Larochelle and Dumitru Erhan and Yoshua Bengio
Université de Montréal

Montréal, Québec
{larocheh,erhandum,bengioy}@iro.umontreal.ca

Abstract

We introduce the problem of zero-data learning, where a
model must generalize to classes or tasks for which no train-
ing data are available and only a description of the classes
or tasks are provided. Zero-data learning is useful for prob-
lems where the set of classes to distinguish or tasks to solve
is very large and is not entirely covered by the training data.
The main contributions of this work lie in the presentation
of a general formalization of zero-data learning, in an exper-
imental analysis of its properties and in empirical evidence
showing that generalization is possible and significant in this
context. The experimental work of this paper addresses two
classification problems of character recognition and a multi-
task ranking problem in the context of drug discovery. Fi-
nally, we conclude by discussing how this new framework
could lead to a novel perspective on how to extend machine
learning towards AI, where an agent can be given a specifica-
tion for a learning problem before attempting to solve it (with
very few or even zero examples).

Introduction

Machine learning research has helped develop tools that
can tackle ever more challenging problems. From the stan-
dard supervised learning setting, where all training exam-
ples are tagged with their desired target output, many solu-
tions adapted to other settings have been developed and stud-
ied so far. These settings are usually characterized by limited
labeled training data. Recognizing that labeled data is of-
ten scarce but unlabeled data usually is not, semi-supervised
learning algorithms (Chapelle, Schölkopf, & Zien 2006)
were proposed to make the most out of that situation. Also,
transfer learning or multi-task learning (Caruana 1997) was
proposed and developed so that labeled training sets from
different but related tasks could be grouped together in or-
der to improve performance for all these tasks, compared to
solving them separately. Life-long learning (Thrun 1996)
addresses a similar problem where a sequence of tasks must
be learned one after the other. One-shot learning (Miller
2002) attempts to solve the problem of recognizing a par-
ticular object from only one labeled example, also by using
labeled data from other categories of related objects. More
recently, self-taught learning (Raina et al. 2007) algorithms

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

were described for situations that combine the challenges
of both semi-supervised and transfer learning, i.e. unlabeled
data from a different but related classification problem must
be leveraged. One motivation behind these different types of
learning is that they move machine learning solutions closer
to the sort of learning humans are capable of, making possi-
bly small but significant steps towards artificial intelligence.
Actually, these types of learning are often inspired by intu-
itions or observations about human learning. For instance,
it seems reasonable to think that humans are able to transfer
what they have learned between different but similar tasks
(multi-task learning). There is also empirical evidence that
humans are able to recognize objects (such as faces) with
high accuracy (Moses, Ullman, & Edelman 1996) even af-
ter having been exposed to only one instance of that object
(one-shot learning). Moreover, most of the stimuli humans
receive are not labeled by an expert, which would mean that
humans are able to leverage unlabeled stimuli, a fact that has
been validated by experimental data (Zhu et al. 2007).

The work presented in this paper shares the same moti-
vations. We introduce zero-data learning, which aims at
solving classification problems where there is not enough
labeled training data to cover all the classes to discriminate,
or multi-task problems for which the available training data
does not provide examples of desired outputs for some of
the tasks to solve. However, it is assumed that descriptions
of the classes or tasks are available, which will be used to
compensate for the lack of labeled data. Though this situ-
ation can simply occur because there is little training data
to begin with, it can also come up because the number of
classes or tasks is too large. The latter case is particularly
relevant in the context of hard problems associated with AI,
such as vision problems. For example, the number of objects
that a human is able to discriminate has been estimated to up
to 30,000 (Bierderman 1987). Creating a database of labeled
data with a sufficient amount of instances for all these cate-
gories would be a very laborious task. Zero-data learning is
also appropriate when novel classes or tasks are introduced
without training data and one still has to derive a solution
for them, possibly until training data is collected (one can
use this as a first step for active learning). This particu-
lar use of zero-data learning means that one can communi-
cate a description of the task that the machine is expected
to perform, by means other than a training set. For example,

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

646

given a set of image classes (e.g. handwritten English words)
and labeled samples coming from these classes, it is easy to
conceive a representation of each class (e.g. as a sequence
of character symbols) that can also describe new classes of
images to detect (e.g. out-of-vocabulary words) in order to
build a new classifier for these classes, even before seeing
training examples for these particular classes.

Zero-data learning attempts to solve a hard problem, but
not an impossible one. When it comes to recognizing classes
of patterns or objects, a general description of these classes
in terms of smaller components shared by these classes can
provide a lot of information, possibly worth more than ex-
amples of instances from these classes. For example, given
a description of one of the many thousands Chinese charac-
ters in terms of the sequence of pen strokes that produces it,
we can expect someone to be able to recognize handwritten
versions of that character with reasonable accuracy. Simi-
larly, a description decomposing a particular object in more
abstract shapes (cylinders, spheres, cubes, etc.) can be suf-
ficient for someone to identify a real world version of that
object. This generalization without actual training data is
possible because the knowledge about how to relate these
descriptions to the decision making process that permits to
solve these problems has been acquired.

In this paper, we formalize the problem of zero-data learn-
ing and show empirically that generalization is possible in
that context.

Zero-data Learning
Zero-data learning corresponds to learning a problem for
which no training data are available for some classes or tasks
and only descriptions of these classes/tasks are given. The
description of each class or task is provided in some repre-
sentation, the simplest being a vector of numeric or symbolic
attributes. Though classification and multi-task problems
are not exactly the same, we will use a common notation
for simplicity. The notation is illustrated in Figures 1 and 2,
which display how it is used in the contexts of classification
and multi-task problems. We note xt ∈ Xn for the tth input
vector of a data set, z for the identity of a class or task, with
d(z) its representation, and yz

t as the desired output (target)
for class/task z when the input is xt.

For example, in a classification setting, the desired output
yz

t would be 1 if sample xt belongs to class z and 0 other-
wise. Figure 1 shows an illustration of such a classification
problem with images of characters. Each row corresponds to
a sample, and column j corresponds to a 1-vs-rest classifi-
cation problem involving class j against some other classes.
The small 7 by 5 pixels images on each column correspond
to the task description vectors d(z). Hyphens correspond to
missing values. In the multi-task setting (see Figure 2), the
desired output is simply the value of the dependent variable
associated with xt for task z.

When evaluating zero-data learning algorithms, we wish
to measure the extent to which they can compensate for the
lack of labeled data by using the description vectors. To
accomplish this, we separate the training data Dtrain and
the test data Dtest in such a way that the training and test
sets contain labeled data from different classes or tasks. In

the multi-task setting of zero-data learning, the same input
can appear in the data of a training task and of a test task,
since the same input can be paired with more than one task.

Related Work

We already mentioned the various types of learning set-
tings which compensate for the lack of labeled data. Zero-
data learning shares some similarities with one-shot learn-
ing which can be seen as a particular case of zero-data
learning where the description of a class is a prototypical
sample from that class in Xn. It is also related to life-
long learning, for which a sequence of tasks have to be
learned, each task being associated to its own training set.
However, in zero-data learning, when learning a new task,
the algorithm uses a description of that task instead of a
training set. Moreover, class or task descriptions (features)
have been investigated before (Bakker & Heskes 2003;
Bonilla, Agakov, & Williams 2007; Tsochantaridis et al.
2005), but never in a setting where a task had no training
data at all.

Finally, though zero-data learning has never been investi-
gated as a general learning framework, it has been tackled in
particular application settings before. In the context of rec-
ommender systems, it is known as the “cold start” problem
(Schein et al. 2002) where a task corresponds to an object
to recommend.

Views of the Problem

There are at least two approaches to zero-data learning,
which correspond to two different views of the problem. We
refer to these approaches as the input space view and the
model space view.

Input Space View

The input space view considers the input of the learning
problem to be the concatenation [xt, d(z)] of the input xt

with the corresponding class/task description d(z). In this
framework, any supervised learning algorithm can then be
used to train a model that will give predictions for the value
of yz

t . The procedure to follow is simple:

1. For each (xt, y
z
t) ∈ Dtrain, produce new sample

([xt, d(z)], yz
t)

2. Use these samples as the training set for a chosen learning
algorithm to obtain trained model f∗(·)

The prediction or output for a new class or task z∗ and a
sample x∗ is then simply f∗([x, d(z∗)]). Also, in a classi-
fication setting where we want to discriminate between the
classes z∗1 and z∗2 , one can ask for their outputs and choose
the largest. This approach is really practical only if all yz are
of the same type (e.g. scalars or vectors of the same length).

In our experiments with the input space view, we used
SVM classifiers with Gaussian and polynomial kernels. The
case of the Gaussian kernel actually corresponds to a par-
ticular case of the structured output framework using output
features, presented by Tsochantaridis et al..

647

z → 1 2 3 4 5

d(z) →

xt y1
t y2

t y3
t y4

t y5
t

1 0 0 - -

0 1 0 - -

0 0 1 - -

- - - 1 0

- - - 0 1

︸ ︷︷ ︸ ︸ ︷︷ ︸

training data test data

Figure 1: Notation in 1-vs-rest classi-
fication, with test data corresponding
to classes not seen at training time.

z → 1 2 3 4 5

d(z) →

xt y1
t y2

t y3
t y4

t y5
t

3 - -1 0.5 -

2.5 1 - - -

-2 3 - 0.25 2

-1 1 - -2 -3

1 - 1.5 3.5 4

︸ ︷︷ ︸ ︸ ︷︷ ︸

training data test data

Figure 2: Notation for multi-task
learning, with real-valued targets. The
’-’ entries are missing values.

Figure 3: Illustration of zero-data
classification for a character recogni-
tion problem.

Model Space View

The model space view considers the model fz(·) for a class
or task z to be a function of its description d(z), i.e.

fz(x) = gd(z)(x).

For example, gd(z)(x) could be a linear classifier for which

the weights are a function of d(z). To train the “model of
models” gd(z)(x), one can simply optimize its parameters
to minimize the average cost over input/target pairs in the
training set (where a different pair can exist for the same
input and different classes/tasks):

1

|Dtrain|

∑

xt,y
z

t

C(yz
t , gd(z)(xt)).

This approach is very similar to the multi-task learning
approach taken by Ghosn & Bengio, which propose to learn
simultaneously a family of models (which would be gd(z)(·)
here) and the coordinates d(z) on the manifold of models in-
duced by the parametrized family of models. The main dif-
ference here is that we assume that the coordinates d(z) for
the different tasks are provided rather than learned, which is
essential to be able to generalize to a zero-data task.

For a classification problem, one can easily come up with
a model space view model by first defining a joint distribu-
tion p(x, d(z)) and then setting gd(z)(x) = p(x|d(z)), where

x is the input and d(z) is the representation of the class as-
sociated to x. However, this is not the only way to define
gd(z)(x). One can simply choose a family of functions hθ(x)
parametrized by θ and arbitrarily define a function q(d(z))
whose output space is the same as the parameter space of
θ. Then, the model space view model is obtained by setting
gd(z)(x) = hq(d(z))(x).

This view is more general than the input space view
and hence might give rise to more interesting models. In-
deed, the input space view simply corresponds to setting
gd(z)(x) = g ([x, d (z)]). The main difference between the
input space view and the model space view is that the latter
explicitly discerns the input from the class/task description,
whereas the former ignores this information and asks that

the training algorithm figures it out automatically. We be-
lieve that this is a crucial distinction and that it best explains
the difference in the performance of the models from both
views.

Simple Models from the Model Space View

We developed and tested three linear models using the model
space view. The first one is a generative model for classifi-
cation, which considers that X ∼ N (A d(z),Σ) when X
belongs to class z, where Σ is diagonal. To lighten notation
we omit the bias term for the Gaussian mean, equivalently
represented by a constant component of value 1 in the rep-
resentations d(z). We call this model LinGen.

To learn this model, we can simply compute the value
of A and Σ that maximizes the likelihood of the inputs xt

given their corresponding classes. There is a simple analytic
solution to this maximum likelihood optimization problem:

Â =

(
T∑

t=1

xtd(zt)
′

)(
T∑

t=1

d(zt)d(zt)
′

)−1

where zt is the class to which xt belongs. This solution can
be easily verified by noticing that the optimization problem
corresponds to n regression problems from d(z) to each of

the components of xt. From Â, the diagonal terms of Σ can

then be estimated. We denote by Σ̂ the empirical estimate
of Σ. This generative model can then be used in a Bayes
classifier. By setting the prior on classes to be constant and
using Bayes rule, we obtain the following classification rule:

arg max
z

gd(z)(x) = arg max
z

(d(z)′B)x−d(z)′BCB′d(z)

where B = 2ÂΣ̂−1 and C = 1
4 Σ̂.

From this generative model, we derived two other dis-
criminative models directly defined using the same decision
function gd(z)(x) = (d(z)′B)x − d(z)′BCB′d(z), with C
constrained to be diagonal. We considered the following dis-
criminative cost functions:

1. Model LinDisc-1-vs-all uses a multi-class cost:

C(xt, y
z
t) = −1{yz

t
=1} log

(

egd(z)(xt)

∑

z′ eg
d(z′)(xt)

)

648

where the normalization is done over the classes instanti-
ated in the training set only.

2. Model LinDisc-0-1 uses a binary cost:

C(xt, y
z
t) = −yz

t log(sigm(gd(z)(xt)))

−(1 − yz
t) log(1 − sigm(gd(z)(xt))).

where sigm(·) is the sigmoid function.

Similarly to the input space view, to discriminate between
two new classes z∗1 and z∗2 , we simply compare the values
for gd(z∗

1)(x
∗) and gd(z∗

2)(x
∗).

Finally, we derived a non-linear version of LinDisc-0-1,
noted NNet-0-1, where the input xt is replaced by a learned
representation h(xt) = tanh(Wxt) corresponding to the
hidden layer of a feed-forward neural network. We chose
to derive such a non-linear version only for LinDisc-0-1 be-
cause it had the best performances among other linear model
space view models. Also LinDisc-0-1 is more general, as it
can also be used for multi-task learning when the yz

t ∈ [0, 1].
LinDisc-1-vs-all, LinDisc-0-1 and NNet-0-1 can be

trained using a gradient descent optimization algorithm on
the average training cost. Learning in NNet-0-1 implies
learning a good value for the matrix W and for the parame-
ters B and C simultaneously.

Description of the Datasets

In order to evaluate and empirically analyze the concept of
zero-data learning, we conducted experiments in two differ-
ent settings: multi-class classification and multi-task learn-
ing. The classification problems were taken in the context
of character recognition, and the multi-task problem in the
context of drug discovery.

Classification Problems: Character Recognition

We considered two character recognition problems. The first
one is to identify characters in license plates. A program
was used to generate images of European license plates and
simulate different effects such as shadows, mud, dirt and ge-
ometric distortions. The set of characters we considered in-
clude digits from 0 to 9, letters from A to Z and three other
accentuated characters, for a total of 40 classes. Each input
sample corresponds to a 30 by 15 pixel image containing one
centered character, for a total of 54413 samples. Because of
the large number of experiments performed, we used a lim-
ited number of samples per class (200).

The second dataset corresponds to handwritten alphanu-
meric characters1, where the input corresponds to a 20 by
16 pixel image in binary format. There are 36 classes, cor-
responding to the letters from A to Z and digits from 0 to 9,
and there are 39 examples per class.

We also constructed small 7 by 5 pixels “canonical” rep-
resentations of all characters found in both datasets, which
were used as task description binary vectors. It was inspired
by sys font characters of size 8. Some of these task descrip-
tions are displayed in Figure 3.

1Available in Matlab format at http://www.cs.

toronto.edu/∼roweis/data/binaryalphadigs.mat

Multi-task Problem: Multi-target Virtual
High-throughput Screening

In this domain, one is interested in building a decision-
making algorithm that can identify reliably whether a molec-
ular compound xt is active (yz

t = 1) in the presence of a po-
tentially new biological agent z (meaning that it might “cure
the disease” associated with that agent) or not (yz

t = 0).
Then, a ranking is produced by a model for a biological
agent by sorting the molecular compounds in order of the
model predictions for that agent.

All the molecular compounds used in this study were pro-
vided by an anonymous pharmaceutical company. We ex-
perimented on the same 7 agents for which Erhan et al. re-
ported results in a classical multi-task setting, in which each
of these agents is treated as a task. Note that they did not
report results when there was no training data for the agent
at test time, as we did here.

We report results for two numerical description or fea-
tures of the molecular compounds. In the first approach,
469 real-valued features ranging from atom frequencies to
topological indices to 3D surface area descriptors were com-
puted in the Molecular Operating Environment (MOE, ver-
sion 2004.03, a package for high throughput discovery). The
numerical values were normalized to zero mean and unit
variance. In the second approach, 3640 binary features were
generated using the pharmacophore triplet module in the Tri-
pos software Sybyl6.9. The respective prediction power of
the two types of features in single tasks are similar, but can
vary slightly from task to task.

The pharmaceutical company also provided 25-
dimensional task description vectors specific to each
agent. The 25 features are based on the properties of the
so-called binding pockets of the biological agents and are
described in Erhan et al.. It should be noticed that not only
these descriptors do not come from the same space as the
input features, but in fact, they do not even “describe” the
same kinds of objects.

Experimental setup

For the classification problems, we used the following ex-
perimental setup. We tested the ability of the models to per-
form zero-data generalization by testing the discrimination
ability between two character classes not found in the train-
ing set. We measured performance by looking at the outputs
for the test classes, selecting the class for which the output
was the largest and comparing it with the labeled class. This
procedure is illustrated in Figure 3.

The experimental procedure we followed was designed to
measure the relationship between the number of classes in
the training set and the zero-data classification performance
at test time. For each fold of a multi-fold experiment, two
classes were selected for the test set and a subset of the re-
maining classes for the training set. The discrimination per-
formance among the two test classes was measured as more
classes were added to the training set. For instance, starting
from the fold example of Figure 3, we would train all mod-
els on the examples of classes ’1’, ’2’ and ’3’ and test on the
examples of classes ’A’ and ’B’. Then, we would insert in

649

the training set the examples from classes other than ’A’ and

’B’ and repeat the procedure. This was done for
(
6
2

)
= 15

folds, each constructed by picking 2 test classes among the
same 6 randomly selected classes. The inserted classes from
one training set size to the other are the same for all folds.

For the multi-task ranking problem, the experimental
setup was simple: each of the 7 biological agents (tasks)
was used as a test task when training from the 6 remaining
agents. Given that the dataset is unbalanced, we use a ROC-
like measure called Area under the LIFT curve or AUL (see
Quionero Candela et al. for more details). A random ranker
will obtain 1 under this measure on average and better rank-
ing yields higher scores.

For all models and all experiments, model selection was
done to select the hyper-parameters of the models such as the
weight decay factors, the number of hidden units in NNet-
0-1 or the SVM kernel parameters. Hyper-parameters were
chosen based on their associated performance (classification
error or AUL) on a validation set containing data from the
same classes/tasks as those in the training set. The LinDisc-
1-vs-all and LinDisc-0-1 models were trained using conju-
gate gradient descent for the classification problem. For the
multi-task ranking problem, because of the large number of
training examples, we used stochastic gradient descent with
early stopping on the validation set AUL. NNet-0-1 was also
trained using stochastic gradient descent. We only consid-
ered the second degree polynomial kernel in order to com-
pare its performance with the linear model space view mod-
els, which have similar parameterizations.

Results

Figure 4 shows for the two classification problems the rela-
tionship between zero-data error and the number of different
training classes, i.e. the number of classes instantiated in the
training set. We can see that classification error tends to im-
prove as the number of training classes increases. The Gaus-
sian kernel SVM gives the best performance on the license
plate character problem, reaching almost perfect general-
ization error, and the performance of NNet-0-1 is slightly
worse. On the binary alphanumeric dataset, all models be-
have similarly. The progression of the classification error for
the LinGen model is particularly surprising. Indeed, the er-
ror curve has a “U” shape, meaning that after a certain num-
ber of training classes, the classification error worsens. We
hypothesize that this is due to the effect of atypical classes
and the small capacity of the LinGen model. These “out-
lier” classes would particularly hurt a misspecified genera-
tive model such as LinGen.

We also measured the classification error when allowing
the models to produce as answer one of the training classes.
For character recognition, this setup might be more appro-
priate in certain contexts where new symbols are introduced
and must be considered by the system (e.g. the Euro sign
in 1996). This experiment is also informative of situations
where the total number of possible outputs is too large to be
covered by the training data. We did this by comparing the
models’ predictions among the union of the test classes and
training classes. The results are displayed in Figure 5. As

can be seen, the SVM classifiers, especially SVMrbf , almost
ignore the test classes in their prediction. On the other hand
LinDisc-0-1 frequently selects the correct label. One could
argue that this is a consequence of doing inadequate model
selection, on a validation set that contains the same classes
as those in the training set. So, we ran the same experiments
but with the validation and training sets containing data from
different classes. The general picture of 5 did not change and
the overfitting was only slightly reduced.

This points to an unusual type of overfitting phenomenon.
Given an inappropriate choice of model, it seems that a
learning algorithm can heavily overfit on the training
classes, that is it can be relatively overconfident in its out-
put for the training classes with respect to the test classes,
regardless of the input. This is exemplified by the fact
that similar model structures can produce important differ-
ences in zero-data generalization performance. The dras-
tic change in relative performances of the polynomial SVM
and LinDisc-0-1 model is especially interesting, as both
models have bilinear terms and can be written as fz(x) =
d(z)′Wx + d(z)′V d(z) + x′Ux. The LinDisc-0-1 model
has more constraints, with W = B, V = BCB′ and U = 0.

For the multi-task ranking experiment, we only consid-
ered the input space view SVM models, the LinDisc-0-1
model and the NNet-0-1 model, the other models being inap-
propriate for this problem. We also allowed SVMrbf to have
two distinct bandwidth hyper-parameters for the task de-
scription and the input, since such model selection was com-
putationally feasible for this experiment. However, we ob-
tained only a slight performance improvement. This model
is more similar to what is proposed by Tsochantaridis et al..
The results are displayed in Table 6.

As can be seen, the model space view models generalize
better to the new biological agent than the input space SVM
models in the majority of cases. They are also more likely to
generalize to the new biological agent, i.e. to do better than a
random ranking. Though better results are usually obtained
when training data is available for an agent (AUL of more
than 2 are easy to reach), a zero-data ranker can be a nice
initial solution to determine which drugs to study first. In
other words, the zero-data ranker can be used to choose the
first samples to label in an active learning setting.

Conclusion and Discussion
We have introduced the problem of zero-data generalization
and have shown that it can be addressed. We have for-
malized and empirically investigated it, proposed two ap-
proaches to tackle this problem and have analyzed some of
their properties. Clearly, the performance one can obtain is
highly dependent on the quality of the task representations
and their relative consistency. How we can quantitatively
evaluate these important properties of the descriptions is not
obvious and is a question worth exploring. One of the inter-
esting experimental results is the observation of an overfit-
ting phenomenon at the level of classes.

We also believe that zero-data learning should be con-
sidered not necessarily as an answer to very specific
application-related problems, but also as an avenue to extend
the way machine learning algorithms are used. Generally

650

0 10 20 30 40
0

10

20

30

40

50

T
e
s
t
e
rr

o
r

(%
)

0 10 20 30 40
0

10

20

30

40

50

0 10 20 30 40
0

10

20

30

40

50

0 10 20 30 40
0

10

20

30

40

50

0 10 20 30 40
0

10

20

30

40

50

0 10 20 30 40
0

10

20

30

40

50

0 10 20 30 40
0

10

20

30

40

50

T
e
s
t
e
rr

o
r

(%
)

0 10 20 30 40
0

10

20

30

40

50

0 10 20 30 40
0

10

20

30

40

50

0 10 20 30 40
0

10

20

30

40

50

0 10 20 30 40
0

10

20

30

40

50

0 10 20 30 40
0

10

20

30

40

50

SVM poly, d=2

SVM poly, d=2

SVM rbf

SVM rbf LinGen

LinGen LinDisc−1−vs−all LinDisc−0−1 NNet−0−1

LinDisc−1−vs−all LinDisc−0−1 NNet−0−1

License Plate Characters

Binary Alphanumeric Characters

Figure 4: Zero-data task generalization error progression on classification
problems as the number of training classes increases. The error bars corre-
spond to the error standard deviation.

0 5 10 15 20 25 30
20

30

40

50

60

70

80

90

100

Number of training classes

T
e
s
t
e
rr

o
r

(%
)

LinDisc−0−1

SVM poly, d=2

NNet−0−1

SVM rbf

Figure 5: Zero-data task generalization error
progression on license plate characters dataset
when we allow to output a training class.

Algorithm
MOE/FP input features results (AUL)

G1A G1D G1F G1H G1I G1S G1U

SVMrbf 1.99/3.02 0.94/0.88 1.07/0.83 0.99/1.03 1.50/1.36 0.99/0.68 0.94/0.89

SVMpoly,d=2 2.42/2.98 0.83/0.77 0.87/0.82 0.98/0.89 1.01/1.10 0.91/0.69 0.92/0.84

LinDisc-0-1 1.10/1.39 1.34/1.46 1.25/0.85 1.36/1.59 1.45/1.45 0.96/1.61 0.93/0.96

NNet-0-1 1.44/1.59 1.37/1.49 1.20/1.14 1.20/1.61 1.39/1.41 0.96/ 1.10 0.93/0.81

Figure 6: Zero-data task generalization performance for each biological agent, according to area under the LIFT curve (AUL)
score, with best performance put in bold when bigger than 1 (random ranker baseline) for each type of input features.

speaking, zero-data learning gives the possibility to define
some kind of user interface with the trained models via task
descriptions. It can then be considered as falling between
human engineered systems, which requires a full, manually-
specified description of a new task’s solution, and pure ma-
chine learning, which requires data for that task to come up
with an appropriate model for the solution. Zero-data learn-
ing combines aspects of both approaches, taking advantage
of human knowledge (task descriptions) and training data
(from related tasks), in such a way that it needs less hu-
man labor and training data for the new task. Moreover, one
would expect an artificial intelligence system to understand
instructions specifying a task and perform the task with-
out any additional supervised training, if it has already been
trained on related tasks described in the same language.

Acknowledgements

We thank Csaba Szepesvári for making the license plates
dataset available to us.

References

Bakker, B., and Heskes, T. 2003. Task clustering and gating
for bayesian multitask learning. Journal of Machine Learning
Research 4:83–99.

Bierderman, I. 1987. Recognition-by-components: A theory of
human image understanding. Psychological Review 94(2):115–
147.

Bonilla, E. V.; Agakov, F. V.; and Williams, C. K. I. 2007. Kernel
multi-task learning using task-specific features. In Proceedings
of AISTATS’2007.

Caruana, R. 1997. Multitask learning. Machine Learning
28(1):41–75.

Chapelle, O.; Schölkopf, B.; and Zien, A. 2006. Semi-Supervised
Learning. Cambridge, MA: MIT Press.

Erhan, D.; L’Heureux, P.-J.; Yue, S. Y.; and Bengio, Y. 2006.
Collaborative filtering on a family of biological targets. Journal
of Chemical Information and Modeling 46(2):626–635.

Ghosn, J., and Bengio, Y. 2003. Bias learning, knowledge shar-
ing. IEEE Transactions on Neural Networks 14:748–765.

Miller, E. G. 2002. Learning from one example in machine vi-
sion by sharing probability densities. Ph.D. Dissertation, Mas-
sachusetts Institute of Technology.

Moses, Y.; Ullman, S.; and Edelman, S. 1996. Generalization to
novel images in upright and inverted faces. Perception 25(4):443–
461.

Quionero Candela, J.; Rasmussen, C. E.; Sinz, F.; Bousquet, O.;
and Schlkopf, B. 2006. Evaluating Predictive Uncertainty Chal-
lenge. Lecture Notes in Computer Science : 3944. Heidelberg,
Germany: Springer. 1–27.

Raina, R.; Battle, A.; Lee, H.; Packer, B.; and Ng, A. Y. 2007.
Self-taught learning: transfer learning from unlabeled data. In
ICML, 759–766.

Schein, A. I.; Popescul, A.; Ungar, L. H.; and Pennock, D. M.
2002. Methods and metrics for cold-start recommendations. In
SIGIR ’02, 253–260. New York, NY, USA: ACM Press.

Thrun, S. 1996. Is learning the n-th thing any easier than learning
the first? In Touretzky, D., and Mozer, M., eds., Advances in
Neural Information Processing Systems 8, 640–646. Cambridge,
MA: MIT Press.

Tsochantaridis, I.; Joachims, T.; Hofmann, T.; and Altun, Y.
2005. Large margin methods for structured and interdependent
output variables. J. Mach. Learn. Res. 6:1453–1484.

Zhu, X.; Rogers, T. J.; Qian, R.; and Kalish, C. 2007. Humans
perform semi-supervised classification too. In AAAI, 864–. AAAI
Press.

651

