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Abstract

This paper presents a fast simulated annealing frame-
work for combining multiple clusterings (i.e. clustering
ensemble) based on some measures of agreement be-
tween partitions, which are originally used to compare
two clusterings (the obtained clustering vs. a ground
truth clustering) for the evaluation of a clustering algo-
rithm. Though we can follow a greedy strategy to op-
timize these measures as objective functions of cluster-
ing ensemble, some local optima may be obtained and
simultaneously the computational cost is too large. To
avoid the local optima, we then consider a simulated an-
nealing optimization scheme that operates through sin-
gle label changes. Moreover, for these measures be-
tween partitions based on the relationship (joined or
separated) of pairs of objects such as Rand index, we
can update them incrementally for each label change,
which makes sure the simulated annealing optimiza-
tion scheme is computationally feasible. The simula-
tion and real-life experiments then demonstrate that the
proposed framework can achieve superior results.

Introduction
Comparing clusterings plays an important role in the eval-
uation of clustering algorithms. A number of criteria have
been proposed to measure how close the obtained cluster-
ing is to a ground truth clustering, such as mutual informa-
tion (MI) (Strehl and Ghosh 2002), Rand index (Rand 1971;
Hubert and Arabie 1985), Jaccard index (Denoeud and
Guénoche 2006), and Wallace index (Wallace 1983). One
important application of these measures is to make objec-
tive evaluation of image segmentation algorithms (Unnikr-
ishnan, Pantofaru, and Hebert 2007), since image segmenta-
tion can be considered as a clustering problem.

Since the major difficulty of clustering combination is just
in finding a consensus partition from the ensemble of parti-
tions, these measures for comparing clusterings can further
be used as the objective functions of clustering ensemble.
Here, it is only different in that the consensus partition has
to be compared to multiple partitions. Such consensus func-
tions have been developed in (Strehl and Ghosh 2002) based
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on MI. Though a greedy strategy can be used to maximize
normalized MI via single label change, the computational
cost is too large. Hence, we resort to those measures be-
tween partitions based on the relationship (joined or sepa-
rated) of pairs of objects such as Rand index, Jaccard in-
dex, and Wallace index, which can be updated incrementally
for each single label change. Moreover, to resolve the local
convergence problem, we follow a simulated annealing op-
timization scheme, which is computationally feasible due to
the incremental update of objective function.

We have actually proposed a fast simulated annealing
framework for clustering ensemble based on measures for
comparing clusterings. There are three main advantages
to the proposed framework: 1) developing a series of con-
sensus functions for clustering ensemble, not just one; 2)
avoiding the local optima problem; 3) low computational
complexity of our consensus functions - O(nkr) for n ob-
jects, k clusters in the target partition, and r clusterings in
the ensemble. Our framework is readily applicable to large
data sets, as opposed to other consensus functions which are
based on the co-association of objects in clusters from an
ensemble with quadratic complexity O(n2kr). Moreover,
unlike those algorithms that search for a consensus parti-
tion via re-labeling and subsequent voting, this framework
can operate with arbitrary partitions with varying numbers
of clusters, not constrained to a predetermined number of
clusters in the ensemble partitions.

The rest of this paper is organized as follows. Section
2 describes relevant research on clustering combination. In
section 3, we briefly introduce some measures for compar-
ing clusterings and especially give three of them in detail.
Section 4 then presents the simulated annealing framework
for clustering ensemble based on the three measures. The
experimental results on several data sets are presented in sec-
tion 5, followed by the conclusions in section 6.

Motivation and Related Work
Approaches to combination of clusterings differ in two main
respects, namely the way in which the contributing compo-
nent clusterings are obtained and the method by which they
are combined. One important consensus function is pro-
posed by (Fred and Jain 2005) to summarize various cluster-
ing results in a co-association matrix. Co-association values
represent the strength of association between objects by an-
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alyzing how often each pair of objects appears in the same
cluster. Then the co-association matrix serves as a similar-
ity matrix for the data items. The final clustering is formed
from the co-association matrix by linking the objects whose
co-association value exceeds a certain threshold. One draw-
back of the co-association consensus function is its quadratic
computational complexity in the number of objects O(n2).
Moreover, experiments in (Topchy, Jain, and Punch 2005)
show co-association methods are usually unreliable with the
number of clusterings r < 50.

Some hypergraph-based consensus functions have also
been developed in (Strehl and Ghosh 2002). All the clusters
in the ensemble partitions can be represented as hyperedges
on a graph with n vertices. Each hyperedge describes a set of
objects belonging to the same cluster. A consensus function
can be formulated as a solution to k-way min-cut hypergraph
partitioning problem. One hypergraph-based method is the
meta-clustering algorithm (MCLA), which also uses hyper-
edge collapsing operations to determine soft cluster mem-
bership values for each object. Hypergraph methods seem
to work best for nearly balanced clusters.

A different consensus function has been developed in
(Topchy, Jain, and Punch 2003) based on information-
theoretic principles. An elegant solution can be obtained
from a generalized definition of MI, namely Quadratic MI
(QMI), which can be effectively maximized by the k-means
algorithm in the space of specially transformed cluster labels
of the given ensemble. However, it is sensitive to initializa-
tion due to the local optimization scheme of k-means.

In (Dudoit and Fridlyand 2003; Fischer and Buhmann
2003), a combination of partitions by re-labeling and voting
is implemented. Their works pursue direct re-labeling ap-
proaches to the correspondence problem. A re-labeling can
be done optimally between two clusterings using the Hun-
garian algorithm. After an overall consistent re-labeling,
voting can be applied to determine cluster membership for
each object. However, this voting method needs a very large
number of clusterings to obtain a reliable result.

A probabilistic model of consensus is offered by (Topchy,
Jain, and Punch 2005) using a finite mixture of multinomial
distributions in the space of cluster labels. A combined par-
tition is found as a solution to the corresponding maximum
likelihood problem using the EM algorithm. Since the EM
consensus function needs to estimate too many parameters,
accuracy degradation will inevitably occur with increasing
number of partitions when sample size is fixed.

To summarize, existing consensus functions suffer from
a number of drawbacks that include complexity, heuris-
tic character of objective function, and uncertain statistical
status of the consensus solution. This paper just aims to
overcome these drawbacks through developing a fast sim-
ulated annealing framework for combining multiple cluster-
ings based on those measures for comparing clusterings.

Measures for Comparing Clusterings
This section first presents the basic notations for compar-
ing two clusterings, and then introduces three measures of
agreement between partitions which will be used for com-
bining multiple clusterings in the rest of the paper.

Notations and Problem Statement
Let λa and λb be two clusterings of the sample data set
X = {xt}n

t=1, with ka and kb groups respectively. To com-
pare these two clusterings, we have to first give a quanti-
tative measure of agreement between them. In the case of
evaluating a clustering algorithm, it means that we have to
show how close the obtained clustering is to a ground truth
clustering. Since these measures will further be used as ob-
jective functions of clustering ensemble, it’s important that
we can update them incrementally for single label change.
The computation of the new objective function in this way
can lead to much less computational cost. Hence, we focus
on these measures which can be specified as:

S(λa, λb) = f({na
i }ka

i=1, {nb
j}kb

j=1, {nij}ij), (1)

where na
i is the number of objects in cluster Ci according to

λa, nb
j is the number of objects in cluster Cj according to

λb, and nij denotes the number of objects that are in cluster
Ci according to λa as well as in group Cj according to λb.

When an object (which is in Cj according to λb) moves
from cluster Ci to cluster Ci′ according to λa, only the fol-
lowing updates arise for this single label change:

n̂a
i = na

i − 1, n̂a
i′ = na

i′ + 1, (2)

n̂ij = nij − 1, n̂i′j = ni′j + 1. (3)

According to (1), S(λa, λb) may then be updated incremen-
tally. Though many measures for comparing clusterings can
be represented as (1), we will focus on one special type of
measures based on the relationship (joined or separated) of
pairs of objects such as Rand index, Jaccard index, and Wal-
lace index in the following.

The comparison of partitions for this type of measures is
just based on the pairs of objects of X . Two partitions λa

and λb agree on a pair of objects x1 and x2 if these objects
are simultaneously joined or separated in them. On the other
hand, there is a disagreement if x1 and x2 are joined in one
of them and separated in the other. Let nA be the number of
pairs simultaneously joined together, nB the number of pairs
joined in λa and separated in λb, nC the number of pairs
separated in λa and joined in λb, and nD the number of pairs
simultaneously separated. According to (Hubert and Arabie
1985), we have nA =

∑
i,j

(
nij

2

)
, nB =

∑
i

(
na

i
2

) − nA,

and nC =
∑

j

(nb
j

2

) − nA. Moreover, we can easily obtain
nD =

(
n
2

) − nA − nB − nC .

Rand Index
Rand index is a popular nonparametric measure in statistics
literature and works by counting pairs of objects that have
compatible label relationships in the two clusterings to be
compared. More formally, the Rand index (Rand 1971) can
be computed as the ratio of the number of pairs of objects
having the same label relationship in λa and λb as:

R(λa, λb) = (nA + nD)/
(

n

2

)
, (4)

where nA + nD =
(
n
2

)
+ 2

∑
i,j

(
nij

2

) − ∑
i

(
na

i
2

) − ∑
j

(nb
j

2

)
.
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A problem with the Rand index is that the expected value
of the Rand index of two random partitions does not take a
constant value. The corrected Rand index proposed by (Hu-
bert and Arabie 1985) assumes the generalized hypergeo-
metric distribution as the model of randomness, i.e., the two
partitions λa and λb are picked at random such that the num-
ber of objects in the clusters are fixed. Under this model, the
corrected Rand index can be given as:

CR(λa, λb) =

∑
i,j

(
nij

2

) − hahb/
(
n
2

)
1
2 (ha + hb) − hahb/

(
n
2

) , (5)

where ha =
∑
i

(
na

i
2

)
and hb =

∑
j

(nb
j

2

)
. In the following,

we actually use this version of Rand index for combining
multiple clusterings.

Jaccard Index
In the Rand index, the pairs simultaneously joined or sep-
arated are counted in the same way. However, partitions
are often interpreted as classes of joined objects, the separa-
tions being the consequences of this clustering. We then use
the Jaccard index (Denoeud and Guénoche 2006), noted J ,
which does not consider the nD simultaneous separations:

J(λa, λb) =
nA(

n
2

) − nD

=

∑
i,j

(
nij

2

)
ha + hb − ∑

i,j

(
nij

2

) , (6)

where
(
n
2

) − nD = nA + nB + nC = ha + hb − nA.

Wallace Index
This index is very natural, and it’s the number of joined pairs
common to two partitions λa and λb divided by the number
of possible pairs (Wallace 1983):

W (λa, λb) =
nA√
hahb

=

∑
i,j

(
nij

2

)
√

hahb
. (7)

This last quantity depends on the partition of reference and,
if we do not want to favor neither λa nor λb, the geometrical
average is used.

The Proposed Framework
The above measures of agreement between partitions for
comparing clusterings are further used as objective functions
of clustering ensemble. In this section, we first give details
about the clustering ensemble problem, and then present a
fast simulated annealing framework for combining multiple
clusterings that operates through single label changes to op-
timize these measure-based objective functions.

The Clustering Ensemble Problem
Given a set of r partitions Λ = {λq|q = 1, ..., r}, with the
q-th partition λq having kq clusters, the consensus function
Γ for combining multiple clusterings can be defined just as
(Strehl and Ghosh 2002):

Γ : Λ → λ, Nn×r → Nn, (8)

which maps a set of clusterings to an integrated clustering.
If there is no prior information about the relative importance
of the individual groupings, then a reasonable goal for the
consensus answer is to seek a clustering that shares the most
information with the original clusterings.

More precisely, based on the measure of agreement (i.e.
shared information) between partitions, we can now define a
measure between a set of r partitions Λ and a single partition
λ as the average shared information:

S(λ,Λ) =
1
r

r∑
q=1

S(λ, λq). (9)

Hence, the problem of clustering ensemble is just to find a
consensus partition λ∗ of the data set X that maximizes the
objective function S(λ,Λ) from the gathered partitions Λ:

λ∗ = arg max
λ

1
r

r∑
q=1

S(λ, λq). (10)

The desired number of clusters k∗ in the consensus clus-
tering λ∗ deserves a separate discussion that is beyond the
scope of this paper. Here, we simply assume that the target
number of clusters is predetermined for the consensus clus-
tering. More details about this model selection problem can
be found in (Figueiredo and Jain 2002).

To update the objective function of clustering ensemble
incrementally, we have to consider those measures which
take the form of (1). Though many measures for comparing
clusterings can be represented as (1), we will focus on one
special type of measures based on the relationship (joined
or separated) of pairs of objects in the following. Actually,
only three measures, i.e. the Rand index, Jaccard index, and
Wallace index, are used as the objection functions of clus-
tering ensemble. Moreover, to resolve the local convergence
problem of the greedy optimization strategy, we further take
into account the simulated annealing scheme.

Note that our clustering ensemble algorithms developed
in the following can be modified slightly when other types
of measures specified as (1) are used as objective functions.
Hence, we have actually presented a simulated annealing
framework for combining multiple clusterings.

Clustering Ensemble via Simulated Annealing
Given a set of r partitions Λ = {λq|q = 1, ..., r}, the ob-
jective function of clustering ensemble can just be set as the
measure between a single partition λ and Λ in (9). The mea-
sure S(λ, λq) between λ and λq can be Rand index, Jaccard
index, or Wallace index. According to (5)–(7), we can set
S(λ, λq) as any of the following three measures:

S(λ, λq) =
hq

0 − h1h
q
2/

(
n
2

)
1
2 (h1 + hq

2) − h1h
q
2/

(
n
2

) , (11)

S(λ, λq) = hq
0/(h1 + hq

2 − hq
0), (12)

S(λ, λq) = hq
0/

√
h1h

q
2, (13)

where hq
0 =

∑
i,j

(nq
ij

2

)
, h1 =

∑
i

(
ni

2

)
, and hq

2 =
∑
j

(nq
j

2

)
.

Here, the frequency counts are denoted a little differently
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from (1): ni is the number of objects in cluster Ci according
to λ, nq

j is the number of objects in cluster Cj according to
λq, and nq

ij is the number of objects that are in cluster Ci

according to λ and in cluster Cj according to λq. Note that
the corresponding algorithms based on these three measures
which follow the simulated annealing optimization scheme
are denoted as SA-RI, SA-JI, and SA-WI, respectively.

To find the consensus partition from the multiple cluster-
ings Λ, we can maximize the objective function S(λ,Λ) by
single label change. That is, we randomly select an object
xt from the data set X = {xt}n

t=1, and then change the la-
bel of it λ(xt) = i to another randomly selected label i′ �= i
according to λ, i.e., move it from the current cluster Ci to
another cluster Ci′ . Such single label change only leads to
the following updates:

n̂i = ni − 1, n̂i′ = ni′ + 1, (14)

n̂q
ij = nq

ij − 1, n̂q
i′j = nq

i′j + 1, (15)

where j = λq(xt) (q = 1, ..., r). For each λq ∈ Λ, to update
S(λ, λq), we can first calculate h1 and hq

0 incrementally:

ĥ1 = h1 + ni′ − ni + 1, (16)

ĥq
0 = hq

0 + nq
i′j − nq

ij + 1. (17)

Note that hq
2 keeps fixed for each label change. Hence,

we can obtain the new Ŝ(λ, λq) according to (11)–(13),
and the new objective function Ŝ(λ,Λ) is just the mean of
{Ŝ(λ, λq)}r

q=1. Here, it is worth pointing out that the up-
date of the objective function has only linear time complex-
ity O(r) for single label change, which makes sure that the
simulated annealing scheme is computationally feasible for
the maximum of S(λ,Λ).

We further take into account a simplified simulated an-
nealing scheme to determine whether to select the single la-
bel change λ(xt) : i → i′. At a temperature T , the proba-
bility of selecting the single label change λ(xt) : i → i′ can
be calculated as follows:

P (λ(xt) : i → i′) =

{
1 if ΔS > 0
e

ΔS
T otherwise

, (18)

where ΔS = Ŝ(λ,Λ) − S(λ,Λ). We actually select the
single label change if P (λ(xt) : i → i′) is higher than a
threshold P0 (0 < P0 < 1); otherwise, we will discard it
and begin to try the next single label change.

The complete description of our simulated annealing
framework for clustering ensemble is finally summarized in
Table 1. The time complexity is O(nk∗r).

Experimental Results

The experiments are conducted with artificial and real-life
data sets, where true natural clusters are known, to validate
both accuracy and robustness of consensus via our simulated
annealing framework. We also explore the data sets using
seven different consensus functions.

Table 1: Clustering Ensemble via Simulated Annealing

Input:

1. A set of r partitions Λ = {λq|q = 1, ..., r}
2. The desired number of clusters k∗

3. The threshold for selecting label change P0

4. The cooling ratio c (0 < c < 1)
Output:

The consensus clustering λ∗

Process:

1. Select a candidate clustering λ by some combina-
tion methods, and set the temperature T = T0.

2. Start a loop with all objects set unvisited (v(t) =
0, t = 1, ..., n). Randomly select an unvisited ob-
ject xt from X , and change the label λ(xt) to the
other k∗ − 1 labels. If a label change is selected
according to (18), we immediately set v(t) = 1
and try a new unvisited object. If there is no label
change for xt, we also set v(t) = 1 and go to a
new object. The loop is stopped until all objects
are visited.

3. Set T = c · T , and go to step 2. If there is no
label change during two successive loops, stop the
algorithm and output λ∗ = λ.

Data Sets
The details of the four data sets used in the experiments are
summarized in Table 2. Two artificial data sets, 2-spirals
and half-rings, are shown in Figure 1, which are difficult for
any centroid based clustering algorithms. We also use two
real-life data sets, iris and wine data, from UCI benchmark
repository. Since the last feature of wine data is far larger
than the others, we first regularize them into an interval of
[0, 10]. Note that the other three data sets keep unchanged.

Table 2: Details of the four data sets. The average clustering
error is obtained by the k-means algorithm.

Data sets #features k∗ n Avg. error (%)
2-spirals 2 2 190 41.5
half-rings 2 2 500 26.4

iris 4 3 150 21.7
wine 13 3 178 8.4

The average clustering errors by the k-means algorithm
for 20 independent runs on the four data sets are listed in Ta-
ble 2, which are considered as baselines for those consensus
functions. As for the regularization of wine data, the aver-
age error by the k-means algorithm can be decreased from
36.3% to 8.4% for 20 independent runs.

Here, we evaluate the performance of a clustering algo-
rithm by matching the detected and the known partitions of
the data sets just as (Topchy, Jain, and Punch 2005). The best
possible matching of clusters provides a measure of perfor-
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Figure 1: Two artificial data sets difficult for any centroid
based clustering algorithms: (a) 2-spirals; (b) half-rings.

mance expressed as the misassignment rate. To determine
the clustering error, one needs to solve the correspondence
problem between the labels of known and derived clusters.
The optimal correspondence can be obtained using the Hun-
garian method for minimal weight bipartite matching prob-
lem with O(k3) complexity for k clusters.

Selection of Parameters and Algorithms
To implement our simulated annealing framework for clus-
tering ensemble, we have to select two important parame-
ters, i.e., the threshold P0 for selecting label change and the
cooling ratio c (0 < c < 1). When the cooling ratio c takes
a larger value, we may obtain a better solution but the algo-
rithm may converge slower. Meanwhile, when the threshold
P0 is larger, the algorithm may converge faster but the local
optima may be avoided at a lower probability. To achieve
a tradeoff between the clustering accuracy and speed, we
simply set P0 = 0.85 and c = 0.99 in all the experiments.
Moreover, the temperature T is initialized by T = 0.1S0

where S0 is the initial value of objective function.
Our three simulated annealing methods (i.e. SA-RI, SA-

JI, and SA-WI) for clustering combination are also com-
pared to four other consensus functions:

1. k-modes algorithm for consensus clustering in this pa-
per, which is originally developed to make categorical
clustering (Huang 1998).

2. EM algorithm for consensus clustering via the mixture
model (Topchy, Jain, and Punch 2005).

3. QMI approach described in (Topchy, Jain, and Punch
2003), which is actually implemented by the k-means al-
gorithm in the space of specially transformed cluster la-
bels of the given ensemble.

4. MCLA1 which is a hypergraph method introduced in
(Strehl and Ghosh 2002).

Note that our methods are initialized by k-modes just be-
cause this algorithm runs very fast, and other consensus
functions can be used as initializations similarly. Since the
co-association methods have O(n2) complexity and may
lead to severe computational limitations, our methods are
not compared to these algorithms. The performance of
the co-association methods has been already analyzed in
(Topchy, Jain, and Punch 2003).

1The code is available at http://www.strehl.com

Table 3: Average error rate (%) on the 2-spirals data set. The
k-means algorithm randomly selects k ∈ [4, 7] to generate r
partitions for different combination methods.

r SA-RI SA-JI SA-WI k-modes EM QMI MCLA
10 37.5 39.6 38.7 45.2 45.2 46.8 39.3
20 35.9 37.8 37.3 43.8 44.4 47.8 37.6
30 36.0 37.0 39.3 41.2 43.6 47.3 40.1
40 37.6 39.7 37.6 40.8 42.2 46.9 38.4
50 36.2 39.1 36.1 42.8 43.9 44.4 36.4

Table 4: Average error rate (%) on the half-rings data set.
The k-means algorithm randomly selects k ∈ [3, 5] to gen-
erate r partitions for different combination methods.

r SA-RI SA-JI SA-WI k-modes EM QMI MCLA
10 20.4 21.4 20.3 26.9 26.4 25.7 24.6
20 18.5 22.5 23.5 27.7 24.4 25.3 19.9
30 18.2 20.4 19.0 25.1 26.9 24.6 24.9
40 17.6 17.7 19.1 28.5 27.5 25.9 23.5
50 18.3 19.4 20.0 29.3 28.5 26.6 21.7

The k-means algorithm is used as a method of generating
the partitions for the combination. Diversity of the partitions
is ensured by: (1) initializing the algorithm randomly; (2)
selecting the number of clusters k randomly. In the experi-
ments, we actually give k a random value around the number
of true natural clusters k∗ (k ≥ k∗). We have found that this
method of generating partitions leads to better results than
that only by random initialization. Moreover, we vary the
number of combined clusterings r in the range [10, 50].

Comparison with Other Consensus Functions
Only main results for each of the four data sets are presented
in Tables 3–6 due to space limitations. Actually, we have ini-
tialized our simulated annealing methods by other consensus
functions besides k-modes, and some similar results can be
obtained. Here, the tables report the average error rate (%)
of clustering combination from 20 independent runs.

First observation is that our simulated annealing methods
(especially SA-RI) perform generally better than other con-
sensus functions. Since our methods only lead to slightly
higher clustering errors in a few cases as compared with
MCLA, we can think our methods preferred by overall eval-

Table 5: Average error rate (%) on the iris data set. The k-
means algorithm randomly selects k ∈ [3, 5] to generate r
partitions for different combination methods.

r SA-RI SA-JI SA-WI k-modes EM QMI MCLA
10 10.7 10.7 10.6 23.4 12.3 14.3 10.4
20 10.6 10.9 10.8 22.9 17.5 14.8 10.6
30 10.7 10.7 10.9 23.2 18.1 12.3 10.5
40 10.7 11.8 10.7 22.6 16.6 13.9 10.7
50 10.7 10.7 10.7 19.9 26.9 12.6 10.7
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Table 6: Average error rate (%) on the wine data set. The
k-means algorithm randomly selects k ∈ [4, 6] to generate r
partitions for different combination methods.

r SA-RI SA-JI SA-WI k-modes EM QMI MCLA
10 6.5 6.7 6.5 12.3 17.1 8.8 7.6
20 6.5 6.5 6.3 11.4 17.9 10.4 8.5
30 6.4 6.3 6.3 12.4 13.1 7.5 7.4
40 6.3 6.3 6.2 10.2 17.2 7.4 7.5
50 6.3 6.2 6.2 8.1 21.1 7.3 7.8
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Figure 2: The ascent of corrected Rand index on two real-
life data sets (only SA-RI considered): (a) iris; (b) wine.

uation. Among our three methods, SA-RI performs the best
generally. All co-association methods are usually unreli-
able with r < 50 and this is where our methods are posi-
tioned. The k-modes, EM, and QMI consensus functions
all have the local convergence problem. Since our methods
are just initialized by k-modes, we can find that local op-
tima are successfully avoided due to the simulated annealing
optimization scheme. Figure 2 further shows the ascent of
corrected Rand index on two real-life data sets (only SA-RI
with r = 30 considered) during optimization.

Moreover, it is also interesting to note that, as expected,
the average error of consensus clustering by our simulated
annealing methods is lower than average error of the k-
means clusterings in the ensemble (Table 2) when k is cho-
sen to be equal to the true number of clusters k∗.

Finally, the average time taken by our three methods
(Matlab code) is less than 30 seconds per run on a 1 GHz
PC in all cases. As reported in (Strehl and Ghosh 2002), ex-
periments with n = 400, k = 10, r = 8 average one hour
using the greedy algorithm based on normalized MI (similar
to our methods). However, our methods only take about 10
seconds in this case, i.e., our methods are computationally
feasible in spite of the costly annealing procedure.

Conclusions
We have proposed a fast simulated annealing framework
for combining multiple clusterings based on some measures
for comparing clusterings. When the objective functions of
clustering ensemble are specified as those measures based
on the relationship of pairs of objects in the data set, we can
then update them incrementally for each single label change,
which makes sure that the proposed simulated annealing op-
timization scheme is computationally feasible. The simula-

tion and real-life experiments then demonstrate that the pro-
posed framework can achieve superior results. Since cluster-
ing ensemble is actually equivalent to categorical clustering,
our methods will further be evaluated in this application in
the future work.
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