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Abstract

Transfer learning addresses the problem of how to uti-
lize plenty of labeled data in a source domain to solve
related but different problems in a target domain, even
when the training and testing problems have different
distributions or features. In this paper, we consider
transfer learning via dimensionality reduction. To solve
this problem, we learn a low-dimensional latent feature
space where the distributions between the source do-
main data and the target domain data are the same or
close to each other. Onto this latent feature space, we
project the data in related domains where we can ap-
ply standard learning algorithms to train classification
or regression models. Thus, the latent feature space
can be treated as a bridge of transferring knowledge
from the source domain to the target domain. The main
contribution of our work is that we propose a new di-
mensionality reduction method to find a latent space,
which minimizes thelistancebetween distributions of
the data in different domains in a latent space. The ef-
fectiveness of our approach to transfer learning is veri-

developed for transfer learning, includingulti-task learn-

ing (Ando and Zhang 2005; Argyriou, Evgeniou, and Pon-
til 2007), multi-domain learning(Blitzer, McDonald, and
Pereira 2006) andelf-taught learningRaina et al. 2007).
However, few previous feature-based methods have consid-
ered how to exploit a latent space as a bridge to facilitate
knowledge transfer. As a result many of them may only have
limited ability to transferring knowledge. In this paper, we
focus on transfer learning in a latent feature space, so that
even when the target domain have no labeled data, we can
still learn a high performance classifier by making use of the
training data from a source domain.

Our approach is intuitively appealing: if we can find a
latent space where the marginal distributions of the data be-
tween different domains are close to each other, then this
space can act as a bridge to propagate a classification model.
More specifically, if two domains are related to each other,
then there may exist several commiatent variablesthat
dominate the observed data. Some of them may cause the
distributions of the observations to be different, while oth-
ers may not. We can uncover these latent factors that do not

cause change across domains, on which the source and target
data distributions are found to be close to each other. Then,
this is the lower-dimensional space we are looking for.

fied by experiments in two real world applications: in-
door WiFi localization and binary text classification.

We illustrate our idea using a learning-based indoor local-
ization problem as an example, where a client moving in a
Transfer learningaims to solve the problem when the train-  WiFi environment wishes to use the received signal strength
ing data from a source domain and the test data from a tar- (RSS) values to locate itself. In an indoor building, RSS
get domain follow different distributions or are represented values are affected by many hidden factors, such as tem-
in different feature spaces (Caruana 1997). There are two perature, human movement, building structure, properties of
main approaches to transfer learning in the past. The first access points (APs), etc. Among these hidden factors, the
approach can be referred to as instance-based approach (Daiemperature and the human movement may vary in time, re-
et al. 2007; Huang et al. 2007; Sugiyama et al. 2008), sulting in changes in RSS values. However, the building
where different weights are learned to rank training ex- structure and properties of APs are relatively stable. Thus,
amples in a source domain for better learning in a target if we use the latter two factors to represent the RSS data,
domain. Another approach can be referred to as feature- the distributions of the data collected in different time pe-
based approach (Ando and Zhang 2005; Argyriou, Evge- riods may be close to each other. Thus, this is the latent
niou, and Pontil 2007; Blitzer, McDonald, and Pereira 2006; space where we can ensure a transferring of a learned lo-
Raina et al. 2007), which tries to learn a common feature calization model from one time period to another, or from
structure from different domains that can bridge the two do- one spatial area to another. Another example is learn to do
mains for knowledge transfer. Several techniques have beentext classification across domains. If two text-classification
domains have different distributions, but are related to each
other (e.g., news articles and blogs), there may be dame
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tent topicsshared by these domains. Some of them may be (APs). Some previous works have discovered that the distri-
relatively stable while others may not. If we use the stable bution of RSS value®(x), wherex represents RSS values,
latent topics to represent documents, the distance betweenmay be non-Gaussian and can vary greatly due to dynamic
the distributions of documents in related domains may be environmental factors (Pan et al. 2007). Furthermore, the
small. Then, in the latent space spanned by latent topics, we probability of locations given RSS valué¥y|x) estimated

can transfer the text-classification knowledge. from one time period is not reliable for location estimation
in another time period, whengrepresents a location label.

In this paper, we relax this assumption and only assume that
there exists a latent spadeé where P(Y,..|F (X)) and
P(Yigr|F (Xtar)) are similar.

In this paper, we propose a new dimensionality reduc-
tion algorithm designed to ensure effective transfer learning.
This algorithm is driven by the objective to minimize the
distancebetween distributions of the data in different do-
mains in a low-dimensional latent space. In other words, we
try to discover a latent space described by a feature trans-
formation functionF' such that the marginal distributions  pimensionality reduction has been studied widely in ma-
of F(X,rc) and F(X;,,) are close to each other, where  chine learning community. (van der Maaten, Postma, and
F(Xg.) and F(Xy,,) are new representations of patterns yan den Herik 2007) gives a recent survey on various di-
Xsrc and Xy, in the latent space. If the conditional proba-  mensionality reduction methods. Traditional dimensionality

Dimensionality Reduction

bilities P(Ysrc|F(Xsrc)) andP (Yo, | F(Xqr)) are similar, reduction methods try to project the original data to a low-
we can learn a mod¢fl with F'(X,,.) andY,. and applyf dimensional latent space while preserving some properties
to predict labels of (X, ) directly. of the original data. Since they cannot guarantee that the dis-

In summary, our main contribution is a novel dimension- tributions between different domain (_Jlata are similar in the
ality reduction-based algorithm that aims to minimize the réduced latent space, they cannot directly be used to solve
distance between distributions of different data sets in a la- transfer learning problems. Thus we need to develop a new
tent space to enable effective transfer learning. We apply dimensionality reduction algorithm for transfer learning.
our new approach to two real world applicationsina transfer A more recent dimensionality reduction technique is max-
learning setting to demonstrate its outstanding performance. jmuym variance unfolding (MVU) (Weinberger, Sha, and

Saul 2004), which is motivated by designing kernels for ker-

Related Works and Preliminaries nel principal component analysis (KPCA) from the data it-
. self. MVU extracts a low-dimensional representation of the
Transfer Learning data by maximizing the variance of the embedding while

Feature-based methods have been widely used in many areaPreserving the local distances between neighboring obser-
related to transfer learning. In multi-task learning, domain- Vvations. MVU can be formulated insemidefinite program-
specific information in related tasks is used to jointly train  Ming (SDP) (Lanckriet et al. 2004) optimization problem
multiple classifiers in a way that they can benefit each other. and solved by many optimization solvers. After estimating
A shared representation is exploited while the extra tasks the kernel matrixi, MVU applies PCA toK to choose a

can be used as an inductive bias during learning (Ando few eigenvectors as base_s and_prolects the 0r|g|.nal data onto
and Zhang 2005; Argyriou, Evgeniou, and Pontil 2007). these bases to get low-dimensional representations.

In multi-domain learning, (Blitzer, McDonald, and Pereira . .

2006) described a heuristic method to construct new repre- Maximum Mean Discrepancy

sentations of the data for domain adaptation. In self-taught
learning, (Raina et al. 2007) first learned high-level set of
bases from a lot of unlabeled data for which may have dif-
ferent labels from the labeled data, and then projected the
labeled data to these bases to get new representations fo
further classification problems.

There are many criteria to estimate the distance between dif-
ferent distributions. A well-known example kullback-
Leibler (K-L) divergence Many criteria are parametric
jpecause they need an intermediate density estimate. To
solve our problem, we wish to find a nonparametric esti-
mate criterion of distance between distributions of data sets.
The instance-based approach to transfer learning is an an-Maximum Mean Discrepanc§MMD) is a relevant crite-
other way for solving the transfer learning problems (Dai et rion for comparing distributions based on reproducing Ker-
al. 2007; Huang et al. 2007; Sugiyama et al. 2008). Many nel Hilbert Space (RKHS) (Borgwardt et al. 2006). Let
instance-based methods make a common assumption thatX = {z1,...,z,, } andY = {y1, ..., yn, } be random vari-
although the marginal probabilitieB(X,..) and P(X:q4,) able sets with distributior® andQ. The empirical estimate
are different, the conditional probabiliti#yYs, .| X s.) and of distance betweeR andQ defined by MMD is as follows
P(Yiar| Xiar) are the same, whet¥,,.. and X,,, are pat- N N
terns in a source domain and in a targetdomain, respectively. — pjs(X,Y) = sup (L i fla) — L+ i Flw)
HereY,,.. andY;,, are the corresponding labels. In reality, Iflln<t "t i=1 "0
however, this assumption may not hold. For example, in an (1)
indoor WiFi localization problem, we try to determine lo- where H is a universal RKHS (Steinwart 2001).
cations of a mobile device given its received signal strength Dist(X,Y") is non-negative, which vanishes if and only if
(RSS) values sent from multiple transmitters or access points P = Q, whenni,ny — oo. By the fact that in a RKHS,
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function evaluation can be written g§z) = (¢(x), f),
whereg(z) : X — H, the empirical estimate of MMD can
be rewritten as follows:

Dist(X,Y) = || L isb(xi) -1 @

In summary, based on the MMD theory (Borgwardt et al.
2006), the distance between distributions of two samples is
equivalentto the distance between the means of the two sam-
ples mapped into a RKHS.

f:lgb(yi)nﬁ

7=

Dimensionality Reduction for Transfer
Learning

Problem Statement and Overall Approach

In a transfer learning setting, some labeled data. are
available in a source domain, while only unlabeled datg

are available in the target domain. We denote the source do-
main data aDsrc = {(Tsreys Ysrer)s - - -5 (Tsren, s Ysren, )
wherez,,., € R™ is the input andys,., the correspond-
ing label. Similarly, we denote the target domain data as
Diar = {xmr],...,xmrnyz}, where, for simplicity, the in-
put x:4,, is also assumed to be R™. Let P(X,,.) and
Q(Xiar) (or P and Q in short) be the marginal distribu-
tions of X,.. and X,,,., respectively. In general, they can
be different. Our task is then to predict the labgls.,’s
corresponding to the inputs,,,’s in the target domain.

The proposed transfer learning approach is based on di-
mensionality reduction, and consists of two steps. First,
we propose a hew dimensionality reduction method (which
will be called Maximum Mean Discrepancy Embedding
(MMDE) in the sequel) to learn a low-dimensional latent
spacel’ common to both domains. Let the projection map
be. We try to ensure that the distributions of the projected
data,)(Xs..) andy(Xy.r), are close to each other. In the
second step, we apply a traditional machine learning algo-
rithm to train a model fromy(x.c,) in the latent space
t0 ysrc;- The trained model can then be used for predict-
ing the label ofz,,, in the target domain. In the sequel,
we denotey)(X,.) andy(Xiqr) by X, = {,.,} and
Xiar = {244, }, respectively.

tar

Stepl: Maximum Mean Discrepancy Embedding

In this section, we address the problem of learning a com-
mon low-dimensional latent spaéésuch that the distribu-
tions of the source and target datd/(_ and X7,,) can be

tar

close to each other. On using (2), this is equivalent to mini-
mizing

I
Xtar

dist(X”

sreo ) -

)

H

1 & , 1 & ,
— ,TSTC, - xar.
m;b( ) m;wt )

for somegp € H. Thus,
dISt(X;T(,‘? XI{G,T)

dist(y)(Xsre), ¥ (Xiar))

1 & 1 &
71_1 ;¢O¢(5€srq) - n_2 ;¢0¢($mm)

3)

H
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Given thaty € H, itis easy to show the following:

Lemmal Let ¢ be the feature map of an universal kernel.
Theng o 1) is also the feature map of an universal kernel for
any arbitrary mapp.

Therefore, our goal becomes finding the feature map)

of some universal kernel such that (3) is minimized. Denote
the corresponding universal kernel by Equation (3) can
be written in terms of the kernel matrices definedhs:

dist(X’, ., X;,.) = tracd K L), 4)
KSTC src KSTC ar n n n n
whereK = | .7 Km::ar € R(ni+n2)x(ni+n2)

tar,src

is a composite kernel matrix witK ;... and K,,,- being the
kernel matrices defined by on the data in the source and
target domains, respectively, afid= [L;;] = 0 with

1
E Ti, Ty € Xsrca
1
Lij = n_% T, Tj S Xtara
- otherwise
ning

In the transductive setting, we can learn this kernel ma-
trix K instead of learning the universal kerriel However,
we need to ensure that the learned kernel matrix does corre-
spond to an universal kernel. To do this, we first recall the
following property of universal kernels (Song 2007):

Theorem 1 A kernel is universal if for arbitrary sets of dis-
tinct points it induces strictly positive definite kernel matri-
ces.

While universal kernels induce strictly positive definite ker-
nel matrices, the following proposition shows that certain
strictly positive definite kernel matrices can also induce uni-
versal kernels.

Proposition 1 If a kernel matrixK can be written as

K:I~(+€I, %)

wheree > 0, K = 0 and[ is the identity matrix, then the
kernel function corresponding t& is universal.

Hence, as long as the learned kernel matrix is of the form
in (5), we can be assured that the corresponding kernel is
universal.

Besides minimizing the trace @€ L in (4), we also have
the following constraints / objectives which are motivated
from MVU:

1. The distance is preserved, i.&;; + K;; — 2K;; = d3;
for all 4, j such tha(i, j) € N %;
. The embedded data are centered;

. The trace ofK is maximized.

Forall4, 7, if z; andz; are k-nearest neighbors, we denote this
by using(i, j) € N.



Thus, the embedding problem can be formulated as the fol-
lowing optimization problem:

min  tracd KL) — Mracd K) (6)
K=K+el
S.t. K+ Kj; —2K;; = d?j, V(i,j) eN,

K1=0, K =0,

wheree > 0 and1 andO are the vectors of ones and ze-
ros, respectivelys is a small positive constant. The relative
weightings of the two terms in the objective is controlled by
the parametek > 0 2. This coefficient can be determined
empirically.

We can further rewrite the above optimization problem as
a semidefinite program (SDP):

min trac§ K L) — MracgK) (7)

K=0

s.t. f?ii—F[?jj —2kij+2€:d?j, Y(i,7) eN,
K1=—¢l

This can be solved by standard SDP solvers. After obtain-

ing K, we can then apply PCA and select the leading eigen-
vectors to construct low-dimensional representatidfis,.

and X/,.. In the sequel, we will call this approaditax-
imum Mean Discrepancy EmbeddifigMDE). Note that,

the optimization problem (7) is similar to a new supervised
dimensionality reduction methodoplored MVU(Song et al.
2008). However, there are two major differences between
MMDE and colored MVU. First, the. matrix in colored
MVU is a kernel matrix that encodes label information of
the data, while the. in MMDE can be treated as a kernel
matrix that encode distribution information of different data
sets. Second, besides minimize the trace of KL, MMDE
also aims to unfold the high dimensional data by maximize
the trace of K.

Step2: Training Modelsin the Latent Space

Using supervised or semi-supervised learning, we can train
a modelf for the mapping between the estimat&d.. and

the class label¥},... This can then be used to obtain the pre-
dicted labelf (x},,.) of ;... Although we do not learn a
function to explicitly project the original dat&,,,,. to X/,

we can still use the method of harmonic functions (Zhu,
Ghahramani, and Lafferty 2003) to estimate the labels of
new data in the target domain. The complete algorithm is

shown in Algorithm 1.
Experiments

In this section, firstly, we use a synthetic data set to show
explicitly why our method for transfer learning works. After
that, we use two real world data sets to verify our method in
a classification task and a regression task, respectively. In all
experiments, to avoid over-fitting, we randomly selée¥;
examples fronDy,.. as the training data and randomly select

2n particular,\ contains a normalization term of tradé) and
a tradeoff coefficient.
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60% examples fronD,,,. as the test data, repeat thismes.
The results published in all experiments are average results
of these five individual results.

Algorithm 1 Transfer Learning via Maximum Mean Dis-
crepancy Embedding

Input: A labeled source domain data Ss&,..
{(®sre;, Ysre;)}» @ unlabeled target domain data set
Diar = {Ztar; } @nd a positive\.

Output: LabelsY;,,. of the unlabeled data’,, in the tar-
get domain.

1: Solve the SDP problem in (7) to obtain a kernel matrix
K.

2: Apply PCA to the learned to get new representations
{z,.,} and{z},, } of the original data{z,.,} and
{Ztar,; }, respectively.

3: Learn a classifier or regresspr. x’sm — Ysre;

4: Use the learned classifier or regressor to predict the la-
bels ofDiqr, 8S:ytar, = f(T,,)-

5: When new dat&D}5" arrive in the target domain, use

harmonic functions with{z:,.,, f(z},,,)} to predict
their labels.

Synthetic Data Set

For the synthetic data, we generated two data sets: one rep-
resents the source domain (stars) and the other represents
the target domain (circles), with different Gaussian distri-
butions in a two-dimensional space (see Figure 1(a)). In

Original, 2D

X,

4 -2 0 2 4 6 8 10

(a) Two data sets with different dis-
tributions

MVU, 1D MMDE, 1D

Probability

Probability

1D latent space

g SRR 0 1 2 3
X X,

(b) 1D projection by MVU.  (c) 1D projection by MMDE.

Figure 1: An Example of 2D Synthetic Data

Figures 1(b) and 1(c), the original 2D data are projected to a
1D latent space by applying MVU and MMDE, respectively.
Gaussian distribution functions are used to fit the two data
sets in the 1D latent space. We can see that, in the 1D latent
space learned by MVU, which is a special case of KPCA,



the distributions of the two data sets are still very différen  models trained in different latent space with different num-
However, in the latent space learned by MMDE, the distri- bers of dimensions. From this figure, we can see that regres-
butions of the two data sets are close to each other. That is sion models built in the latent space either by MVU or by
why MMDE can help transfer learning more effectively. MMDE can improve the performance. However, the regres-

Experimental Results on the WiFi Data Set sion models based on MMDE achieve much higher perfor-

mance. This is because that MMDE not only removes the
Our experimental data are collected in a WiFi area. To col- noise from the original data but also reducesdrstanceof
lect the WiFi experiment data, we carried EBM© T60

distributions between different data sets.
laptop and walked in the floor of an office building, whose :
sige ig about2 x 37.5 m2. The laptop is equippedgwith an Experimental Results on Text Data Sets
Inte®© Pro/3945ABG internal wireless card and installed a Intext classification experiments, we used preprocessed data
software to record WiFi signal strength evely seconds. sets of Reuters-21578, which is in a transfer learning set-
For obtaining the ground truth, we separated the environ- ting, to evaluate our proposed method. The basic idea is to
ment into135 small grids, each of which is abouts x 1.5 utilize the hierarchy of the data sets. The binary classifica-
m?. We stopped at each grid for one or two seconds to col- tion task is defined as classifying top categories. Each top
lect the WiFi data500 examples were collected in the mid-  category is split into two disjoint parts with different sub-
night on one day as a source domain datalset and500 categories, one for training and the other for test. In this
examples were collected in the afternoon two days later as a case, distributions between the training and test data may
target domain data sé,,. be very different. Therefore, we have three data eefs
. . N . vs people, orgs vs places and people vs places in trans-

“Inacomplexindoor environment, the distribution of WiFi o, learning setting. In this experiment, we use Support
signal strength at a certain location can change a lot due yjcor Machines (SVMs) and Transductive Support Vector
to dynamic environmental factors. Thus transfer leaming yjachines (TSVMs) with linear kernel to verify the transfer-
becomes a necessary step to address indoor WiFi localiza- 5pijity of the MMDE algorithm. In Table 1, we can see that
tion problems. To show that our proposed dimensionality gy/Ms and TSVMs trained in the latent space that is learned
reduction method for transfer learning works well for solv- 1, MMDE get much higher accuracy than those trained in
ing the WiFi localization problems, we compare the per- q griginal space. From the table, we can find that the per-

formance of various regressors trained in different feature o rmance of traditional classifiers trained in the latent space
space. Regression models used in our experiments are ReégUiaarned by MMDE can be used in a transfer learning set-
larized Least Square Regressor (RLSR), Support Vector Re- ying - |n summary, MMDE based dimensionality reduction

gressor (SVR) and Laplacian Regularized Least Square Re-
gressor (LapRLSR) (Belkin, Niyogi, and Sindhwani 2006),
respectively. Our goal is to verify that traditional regres-
sion models with help of MMDE can be applied to solve
transfer learning problems. Thus, we use the default param-

eters of these regression models and do not change them in

all experiments. Figure 2 shows the culmulative probabil-
ities of these three regressors that are trained in the latent
space learned by MMDE and in the original feature space,
where culmulative probability means the estimation accu-
racy at different acceptable error distances. From this fig-
ure, we can see that regression models trained in the latent
space, which are denoted by MMDE+RLSR, MMDE+SVR
and MMDE+LapRLSR, get much higher performance than
the ones trained in the original feature space.

1

—<— LapRLSR

—&— MMDE+LapRLSR

—%—RLSR
MMDE+RLSR
SVR

—s— MMDE+SVR

Regression Models
Trained in the Latent
Space

0.9

o
®

o °
> <

Culmulative Probability
°
&

o
=

Regression Maodels Trained
in the Original Space

2 225 25
Error Distance (unit: m)

Figure 2: Comparison of Accuracy (The number of dimen-
sions of the latent space is set to 10)

175 275 3

In Figure 3, we compare the performance of regression
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method can support various regression models and classifi-
cation models for transfer learning.

Conclusion and Future Work

In this paper, we have developed a novel transfer learning
technique for learning in a latent space. We proposed a novel
MMDE algorithm for transfer learning across two domains.
Our experiments on two different applications demonstrated
that our proposed solution can effectively improve the per-
formance of many traditional machine learning algorithms
for transfer learning. In the future, we plan to extend MMDE
to nonnegative feature extraction, such that it can help trans-
fer learning with other traditional classifiers, such as the
Naive Bayes Classifier. Furthermore, we wish to find an effi-
cient method to extend MMDE to handle large-scale transfer
learning problems.
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