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Abstract

We propose a new discriminative framework, namely
Hidden Dynamic Conditional Random Fields (HD-
CRFs), for building probabilistic models which can cap-
ture both internal and external class dynamics to label
sequence data. We introduce a small number of hidden
state variables to model the sub-structure of a obser-
vation sequence and learn dynamics between different
class labels. An HDCRF offers several advantages over
previous discriminative models and is attractive both,
conceptually and computationally. We performed ex-
periments on three well-established sequence labeling
tasks in natural language, including part-of-speech tag-
ging, noun phrase chunking, and named entity recogni-
tion. The results demonstrate the validity and compet-
itiveness of our model. In addition, our model com-
pares favorably with current state-of-the-art sequence
labeling approach, Conditional Random Fields (CRFs),
which can only model the external dynamics.

Introduction
The problem of annotating or labeling observation se-
quences arises in many applications across a variety of sci-
entific disciplines, most prominently in natural language
processing, speech recognition, information extraction, and
bioinformatics. Recently, the predominant formalism for
modeling and predicting label sequences has been based on
discriminative models and variants. Conditional Random
Fields (CRFs) (Lafferty, McCallum, & Pereira 2001) are
perhaps the most commonly used technique for probabilistic
sequence modeling.

More specifically, CRFs have been shown to achieve
state-of-the-art performance in a variety of domains (Sut-
ton & McCallum 2006). CRFs are undirected graphical
models trained to maximize the conditional probability of
the desired outputs given the corresponding inputs. The
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primary advantage of CRFs is their conditional nature, re-
sulting in the relaxation of strong independence assump-
tions required by Hidden Markov Models (HMMs) in or-
der to ensure tractable inference. Additionally, CRFs avoid
the label bias problem of Maximum Entropy Markov Mod-
els (MEMMs) (McCallum, Freitag, & Pereira 2000) and
other discriminative directed graphical based Markov mod-
els. And they have the great flexibility to encode a wide va-
riety of arbitrary, non-independent features and to straight-
forwardly combine rich domain knowledge.

However, structured data are widely prevalent in the real
world. Observation sequences tend to have distinct internal
sub-structure and indicate predictable relationships between
individual class labels, especially for natural language. For
example, in the task of noun phrase chunking, a noun phrase
begins with a noun or a pronoun, optionally accompanied
by a set of modifiers. A noun phrase may contain one or
more base noun phrases. In the named entity recognition
task, many named entities have particular characteristics in
their composition. A location name can optionally end with
a location salient word, but cannot end with any organiza-
tion salient word. A complex, nested organization name
may be composed of a person name, a location name, or
even another organization name. These complex and ex-
pressive structures can largely influence predictions. The
efficiency of the CRF approach heavily depends on its first
order Markov property - given the observation, the label of a
token is assumed to depend only on the labels of its adjacent
tokens. The CRF approach models the transitions between
class labels to enjoy advantages of both generative and dis-
criminative methods, thus capturing external dynamics, but
unfortunately it lacks the ability to represent internal sub-
structure.

A feasible solution to this problem is to directly model
the internal sub-structure in sequence data. We incorpo-
rate a set of observed variables with additional latent, or
hidden state variables to model relevant sub-structure in a
given sequence, thus resulting a new discriminative frame-
work, Hidden Dynamic Conditional Random Fields (HD-
CRFs), by modeling both external dependencies between
different class labels and internal sub-structure in given se-
quences. Our proposed model learns the external dependen-
cies by modeling a continuous stream of class labels, and
it learns internal sub-structure by utilizing intermediate hid-
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den states. HDCRFs define a conditional distribution over
the class labels and hidden state labels conditioned on the
observations, with dependencies between the hidden vari-
ables expressed by an undirected graph. Similar to CRFs,
this modeling is also able to deal with features that can be
arbitrary functions of the observations. Efficient parameter
estimation and inference can be carried out using standard
graphical model algorithms such as belief propagation. In
this paper, we first describe the HDCRF model, including
the training and inference algorithms. We then describe ex-
periments that demonstrate the effectiveness of HDCRFs to
outperform the best previous discriminative fully-observable
CRF model on three well-known natural language process-
ing tasks.

Related Work
There is an extensive literature dedicated to sequence model-
ing. Graphical models are a natural formalism for modeling
sequences. Traditionally, graphical models (e.g., HMMs and
stochastic grammars) were generative, and they have been
used to represent the joint probability to paired observation
and label sequences. But modeling the joint distribution can
lead to difficulties when using the rich local features that
can occur in relational data, which can include complex de-
pendencies. Modeling these dependencies among inputs can
lead to intractable models, but ignoring them can lead to re-
duced performance.

A significant amount of recent work has shown the power
of discriminative models for sequence labeling tasks. In the
speech and natural language processing communities, one
of the first large-scale applications of CRFs was by Sha &
Pereira (2003), who matched state-of-the-art performance
on segmenting noun phrases in text. Since then, CRF models
have been successfully used for tasks such as word recog-
nition, part-of-speech tagging, text classification and infor-
mation extraction. For example, Pinto et al. (2003) ap-
plied CRFs to extract tables from documents and showed
improvements over an HMM approach. Peng & McCallum
(2004) used a CRF model to extract information (e.g., titles,
authors, and affiliations) from research papers with high per-
formance.

More recently, several variations of CRF model have been
investigated. Kristjansson et al. (2004) proposed a con-
strained CRF framework for interactive information extrac-
tion. A constrained Viterbi decoding was designed to find
the optimal field assignments consistent with the fields ex-
plicitly specified or corrected by the user, and a mecha-
nism was proposed for estimating the confidence of each
extracted field to filter out low-confidence extractions. How-
ever, this framework needs manual assistance via a user
interface, which is hardly available for sequence labeling.
Zhu et al. proposed a two-dimensional Conditional Ran-
dom Fields (2D CRFs) to better incorporate the neighbor-
hood interactions for Web information extraction, based on
the observation that the information on a Web page is two-
dimensionally laid out. This is also different from our pro-
posed model which handles one-dimensional sequence data
that have internal sub-structure. Sutton, Rohanimanesh,

& McCallum (2004) presented Dynamic Conditional Ran-
dom Fields (DCRFs). As a particular case, a factorial
CRF (FCRF) was used to jointly solve two sequence la-
beling tasks (noun phrase chunking and part-of-speech tag-
ging) on the same observation sequence. Improved accuracy
was achieved by modeling the interactions between the two
tasks. Unfortunately, training a DCRF model with unob-
served nodes (hidden variables) makes their approach dif-
ficult to optimize. Our HDCRF incorporates hidden state
variables with an explicit partition, and inference can be effi-
ciently computed using belief propagation during both train-
ing and testing.

When observation data have distinct sub-structure, mod-
els that exploit hidden state are advantageous. A related
model is presented by Gunawardana et al. (2005), who build
a hidden-state CRF (HCRF) which can estimate a class label
given a segmented sequence in a phone classification task.
Since they are trained on sets of pre-segmented sequences,
HCRF models do not capture the dynamics between class la-
bels, only the internal structure. Gunawardana et al. (2005)
applied HCRFs to segmented sequences, leaving segmenta-
tion as a pre-processing step. A similar model for natural
language parsing is shown by Koo & Collins (2005).

Other related models are Hidden Markov Random Fields
(HMRFs) (Kunsch, Geman, & Kehagias 1995) and Dynamic
Bayesian Networks (DBNs) (Dean & Kanazawa 1989; Mur-
phy 2002). HMRFs, DBNs and HDCRFs employ a layer
of latent variables with an undirected graph specifying de-
pendencies between those variables. However, there is an
important difference that HMRFs and DBNs model a joint
distribution over latent variables and observations, whereas
HDCRFs are a discriminative model.

It is known that models which include latent or hidden-
state structure may be more expressive than fully observ-
able models, and can often find relevant sub-structure in a
given domain. To the best of our knowledge, this is the
first attempt at incorporating hidden-state structure into dis-
criminative models, yielding a new framework that models
both dependencies between external class labels and internal
sub-structure in observation sequences. Experimental study
shows that our model can be run directly on unsegmented
sequence data, with improved recognition performance over
conventional discriminative sequence methods.

Hidden Dynamic Conditional Random Fields
Suppose X is a random variable over data sequences to be
labeled, and Y is a random variable over corresponding la-
bel sequences. Our task is to learn a mapping between an
observation sequence X = (x1, x2, . . . , xT ) and the corre-
sponding label sequence Y = (y1, y2, . . . , yT ). Each Y is
a number of a set Y of possible class labels. For each se-
quence, we also assume a vector of sub-structure variables
S = (s1, s2, . . . , sT ), which are not observed in training ex-
amples, and will therefore form a set of hidden variables.
Each sj is a member of a finite set Syj

of possible hidden
states for the class label yj . Suppose S is the set of all pos-
sible hidden states of all Sy sets. Intuitively, each sj corre-
sponds to a labeling of xj with some member of S, which
may correspond to the sub-structure.
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Figure 1: Graphical representation and comparison of our HDCRFs with three previously published models. (a) linear-chain
CRFs. {xt−1, xt, xt+1} is observation sequence and {yt−1, yt, yt+1} is label sequence. (b) Dynamic CRFs (DCRFs), where
{yt−1, yt, yt+1} and {wt−1, wt, wt+1} are two different label sequences. DCRFs include links between different labels.
(c) Hidden-state CRFs (HCRFs), where {st−1, st, st+1} is a set of hidden variables assigned to observation sequence and
only one class label y for an observation sequence. (d) our proposed Hidden Dynamic CRFs (HDCRFs). Hidden variables
{st−1, st, st+1} are used to model the internal sub-structure in observation sequence. Note that only the link with the current
observation xt is shown, but for all four models, long range dependencies are also possible.

Given the above definitions, we define a hidden dynamic
probabilistic model as follows:

p(Y |X) =
∑
S

p(Y |S,X) · p(S|X). (1)

By definition, sequences which have any sj 6∈ Syj will
obviously have p(Y |S,X) = 0, so we can rewrite our above
model as:

p(Y |X) =
∑

S:∀sj∈Syj

p(S|X). (2)

Similar to CRFs, the conditional probability distributions,
p(S|X), take the form

p(S|X) =
1

Z(X)
exp
(∑

k

λk ·
T∑
j=1

fk
(
sj−1, sj , X, j

))
,

(3)
where Z(X) is an instance-specific normalization function

Z(X) =
∑
S

exp
(∑

k

λk ·
T∑
j=1

fk
(
sj−1, sj , X, j

))
, (4)

and fk(sj−1, sj , X, j)Kk=1 is a set of real-valued feature
functions. Λ = {λk} ∈ <K is a parameter vector, reflecting
the confidence of feature functions. Each feature function is
either a transition function tk(sj−1, sj , X, j) over the entire
observation sequence and the hidden variables at positions i
and i−1, or a state function sk(sj , X, j) depends on a single
hidden variable at position i.

Note that our proposed model is different from HCRFs,
which model the conditional probability of one class label y
given the observation sequence X through

p(y|X) =
1

Z ′(X)

∑
S∈y

exp
(
λ · f

(
y, S,X

))
(5)

where the partition function Z ′(X) is given by

Z ′(X) =
∑
y,S∈y

exp
(
λ · f

(
y, S,X

))
. (6)

HCRFs do capture the internal sub-structure in the obser-
vation sequence by definition. However, they output only
one class label y for an entire sequence X and they lack
the ability to model the dependencies between class labels,
which have been shown to be essentially important for la-
beling sequence data. Due to this disadvantage, HCRFs can
only be used to label the segmented sequences. And without
considering dependencies between class labels may lead to
reduced performance. On the other hand, CRFs can model
dependencies between class labels. But unfortunately they
cannot represent internal sub-structure in sequence data. As
we show, Our HDCRFs combine the strengths of CRFs and
HCRFs by modeling both external dependencies between
class labels and internal sub-structure. Yet, this modeling
still allows practically efficient solutions to large-scale real
world sequence labeling tasks.

An illustrative representation of HDCRFs and comparison
with other three models is shown in Figure 1. In the graphi-
cal structureG = (V,E), each transition function defines an
edge feature, while each state function defines a node fea-
ture. All the features respect the structure of graph G, in
that no feature depends on more than two hidden variables
(si, sj), and if a feature does depend on variables si and sj ,
there must be an edge (i, j) in the graph G. The graph G
can be encoded arbitrarily and it captures domain specific
knowledge such as the internal sub-structure.

It is worth noticing that the weights λk associated with the
transition function tk(sj−1, sj , X, j) model both the internal
sub-structure and external dependencies between different
class labels. Weights associated with a transition function
for hidden states that are in the same subset Syj

will model
the sub-structure patterns, while weights associated with the
transition functions for hidden states from different subsets
will model the external dependencies between labels.

Parameter Estimation
Given some training data consist of n labeled sequences
D = (X1, Y1), (X2, Y2), . . . , (Xn, Yn), the parameters Λ =
{λk} are set to maximize the conditional log-likelihood.
Following previous work on CRFs, we use the following ob-
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jective function to estimate the parameters:

L(Λ) =
n∑
i=1

logPΛ(Yi|Xi). (7)

To avoid over-fitting, log-likelihood is usually penal-
ized by some prior distribution over parameters that pro-
vides smoothing to help copy with sparsity in the train-
ing data. A commonly used prior is zero-mean (with vari-
ance σ2) Gaussian (Lafferty, McCallum, & Pereira 2001;
Peng & McCallum 2004). With a Gaussian prior, log-
likelihood is penalized as follows:

L(Λ) =
n∑
i=1

logPΛ(Yi|Xi)−
K∑
k=1

λ2
k

2σ2
. (8)

We encode structural constraints with an undirected graph
structure, where the hidden variables {s1, s2, . . . , sT } cor-
respond to some vertices in the graph. To keep training and
inference tractable, we restrict our model to have disjoint
sets of hidden states associated with each class label. We
use a quasi-Newton gradient ascent method to search for the
optimal parameter values, Λ∗ = arg maxΛ L(Λ), under this
criterion.

∀Y ∈ Y, j ∈ 1 . . . T, a ∈ S,

P (sj = a|Y,X) =
∑

S:sj=a

P (S|Y,X) (9)

∀Y ∈ Y, j, k ∈ 1 . . . T, a, b ∈ S,

P (sj = a, sk = b|Y,X) =
∑

S:sj=a,sk=b

P (S|Y,X)

(10)

where P (sj = a|Y,X) and P (sj = a, sk = b|Y,X) are
marginal distributions over individual variables sj or pairs of
variables {sj , sk} corresponding to edges in the graph. The
gradient of L(Λ) can be defined in terms of these marginals
and can therefore be calculated efficiently.

We first consider derivatives with respect to the parame-
ters λk associated with a state function sk. Taking deriva-
tives gives

∂L(Λ)
∂λk

=
∑
S

P (S|Y,X)
T∑
j=1

sk(sj , X, j)

−
∑
Y ′,S

P (Y ′, S|X)
T∑
j=1

sk(sj , X, j)

=
∑
j,a

P (sj = a|Y,X)sk(j, a,X)

−
∑
Y ′,j,a

P (sj = a, Y ′|X)sk(j, a,X) (11)

It shows that ∂L(Λ)
∂λk

can be expressed in terms of compo-
nents P (sj = a|X) and P (Y |X), which can be computable
using belief propagation (Pearl 1988).

For derivatives with respect to the parameters λl corre-
sponding to a transition function tl, a similar calculation
gives

∂L(Λ)
∂λl

=
∑
j,k,a,b

P (sj = a, sk = b|Y,X)tl(j, k, a, b,X)

−
∑

Y ′,j,k,a,b

P (sj = a, sk = b, Y ′|X)tl(j, k, a, b,X),

(12)

hence ∂L(Λ)
∂λl

can also be expressed in terms of expres-
sions (e.g., the marginal probabilities P (sj = a, sk =
b|Y,X)) that can be computed efficiently using belief prop-
agation. We perform gradient ascent with the limited-
memory quasi-Newton BFGS optimization technique (Liu
& Nocedal 1989).

Inference
Given a new test sequence X , we would like to estimate
the most probable labeling sequence Y ∗ that maximizes our
conditional model:

Y ∗ = arg max
Y

P (Y |X,Λ∗) (13)

where the parameters Λ∗ are learned via training process.
Assuming each class label is associated with a disjoint set of
hidden states, Equation 13 can be rewritten as:

Y ∗ = arg max
Y

∑
S:∀sj∈Syj

P (Y |X,Λ∗) (14)

The marginal probabilities P (sj = a|X,Λ∗) are com-
puted for all possible hidden states a ∈ S to estimate the
label y∗j . Then these marginal probabilities are summed ac-
cording to the disjoint sets of hidden states Syj

and the label
associated with the optimal set is chosen. As discussed in the
previous subsection, these marginal probabilities can also be
computed efficiently using belief propagation. In our exper-
iments we use the above maximal marginal probabilities ap-
proach to estimate the sequence of labels since it minimizes
the error.

Experiments
We carried out three sets of experiments on part-of-speech
(POS) tagging, noun phrase (NP) chunking, and named en-
tity recognition (NER) to explore the performance of our
HDCRF model against the CRF model, using three standard
natural language datasets. We also investigated the number
of hidden states per class labels and its impact on recogni-
tion performance and training time. To make fair and accu-
rate comparison, we used the same set of features on each
set of experiment for both HDCRFs and CRFs. All experi-
ments were performed on the Linux platform, with a 3.2GHz
Pentium 4 CPU and 4 GB of memory.

We trained our HDCRF model using the objective func-
tion specified by Equation 8. For training and validation, we
varied the number of hidden states per class label from 1 to
3 and the regularization term with values 10k, k ∈ [−2, 2]
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Figure 2: Performance comparison of HDCRFs and CRFs on POS tagging. n is the number of hidden states per class labels,
n ∈ [1, 3].
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Figure 3: Performance comparison of HDCRFs and CRFs on NP chunking. n is the number of hidden states per class labels,
n ∈ [1, 3].

to choose the optimal validation parameters. For testing,
marginal probabilities were computed for each class label
and each token of the sequence using belief propagation.
The class label with the highest likelihood is assigned to the
token in the sequence.

We also trained a CRF model as a baseline. The objective
function of this model contains a regularization term similar
to the regularization term shown in Equation 8 for our HD-
CRF model. For training and validation, this regularization
term was also validated with values 10k, k ∈ [−2, 2]. For
testing, marginal probabilities were computed for each class
label and each token of the sequence using the Viterbi algo-
rithm. The optimal class label for a specific token is selected
to be the label with the highest marginal probability.

We then describe the above three well-established natural
language processing tasks and corresponding datasets used
in our experiments, and the well-engineered feature set used
for each task in the following three subsections.

Part-of-Speech Tagging
As a well-established task in natural language processing,
POS tagging is the process of marking up the tokens (words)
in a sequence (sentence) as corresponding to a particular
class label (part-of-speech such as noun, verb, adjective, ad-
verb, etc), based on both its definition, as well as its con-
text. We used Penn Treebank POS tagging dataset for our
experiment. This dataset consists of sentences from the Wall
Street Journal, and each word in a given input sentence must
be labeled with one of 45 syntactic tags. We randomly se-
lected 15,000 sentences from this dataset, and conducted the

experiment with a rich feature set using a 80%-20% train-
test split. Besides contextual features (e.g., several words
before and after the current word), we used a set of mor-
phological features: whether the word begins with a capital-
ized letter or all letters are capitalized, whether it contains
a hyphen or digits, and whether it ends in one of the fol-
lowing suffixes: -ance, -ence, -eer, -ist, -ician,
-ion, -ity, -ies, -ify, -ize, -yse, -able, -ible,
-ical, -ish, -ous.

Noun Phrase Chunking
NP chunking can be viewed as a sequence labeling task
by assigning each word as either BEGIN-PHRASE, INSIDE-
PHRASE, or OTHER. Our data comes from the CoNLL 2000
shared task (Sang & Buchholz 2000). We consider each sen-
tence to be a training instance, with single words as tokens.
The data are divided into a standard training set of 8,936
sentences and a test set of 2,012 sentences. We used the
POS features provided in the official CoNLL 2000 dataset.
The POS features were generated by the Brill tagger (Brill
1995), which was trained on over 40,000 sentences of Wall
Street Journal. The labeling accuracy of this tagger is around
95-97%. In addition, we also used some contextual and mor-
phological features, similar to the features used for our POS
tagging experiment.

Named Entity Recognition
NER is the task of identifying and classifying phrases that
denote certain types of named entities (NEs), such as person
names (PERS), locations (LOCS) and organizations (ORGS)
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Figure 4: Performance comparison of HDCRFs and CRFs on NER. n is the number of hidden states per class labels, n ∈ [1, 3].

in text documents. We used People’s Daily corpus (January-
Jun, 1998) in our experiments, which contains approxi-
mately 357K sentences, with tagged entities of 156K PERS,
219K LOCS and 87K ORGS, respectively. To reduce the
training time, we selected 10% of the data from People’s
Daily to create a smaller training dataset containing 15,000
sentences and a testing dataset containing 3,000 sentences.
We used features that have been shown to be very effective
for NER, namely the current character and its POS tag, sev-
eral characters surrounding the current character and their
POS tags, current word and several words surrounding the
current word, and some clue word features which can cap-
ture non-local dependencies. This gives us a rich feature set
using both local and non-local information.

Results
We plot ROC curves to present the performance of our HD-
CRF model. For all the ROC curves, the true positive rate
is computed by dividing the number of recognized labels by
the total number of truth labels. Similarly, the false positive
rate is computed by dividing the number of falsely recog-
nized labels by the total number of class labels.

Figure 2, Figure 3 and Figure 4 compare the performance
of HDCRFs and CRFs on POS tagging, NP chunking and
NER, respectively. As shown in these figures, our HDCRF
model significantly outperforms the baseline CRF methods.
The difference is statistically significant (p < 0.05 with a
95% confidence interval) according to McNemar’s paired
tests on all the experiments.

Effect of Number of Hidden States on Performance:
It is particularly interesting to know that the performance
boosted on all the experiments when increasing the number
of hidden states per class labels n from 1 to 3. For POS tag-
ging and NP chunking, HDCRFs perform almost the same as
CRFs when n is set to 1. For NER, HDCRFs significantly
outperform CRFs when n = 1. This can be explained by
the fact that there are much more sub-structures existing in
named entities than in part-of-speech or noun phrases. These
results also show that HDCRFs can model the internal sub-
structure well with a small number (1 ∼ 3) of hidden states.
Our HDCRFs perform the best on NP chunking and worst
on NER, illustrated by the AUC (Area Under the Curve) in
the figures. This finding shows the truth that in the three
tasks, NER is the most difficult, NP chunking is the easiest,
and POS tagging is the one in between.
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Figure 5: Effect of training set size on performance

Effect of Training Set Size on Performance: Figure 5
compares the F1

1 performance of both HDCRFs and CRFs
on the NER task 2 with the increase of training set size.
We increased the training set size from 2,000 sentences to
20,000 sentences, with an incremental step of 3,000. We
found that increasing the training set size improves the per-
formance for both HDCRFs and CRFs. As illustrated by
the curves, HDCRFs consistently outperform CRFs. More-
over, with the same training set size, larger n leads to better
performance for HDCRF models. When the training size
only contains 2,000 sentences, for example, the F-measure
for CRF model is 83.09%, and the F-measures for HDCRF
models (n from 1 to 3) are 83.60%, 83.65%, and 83.81%
respectively. This effect is prominent for larger training
datasets. Using 20,000 sentences for training, HDCRFs ob-
tain a maximum F-measure of 89.98% when n is set to 3,
resulting in a 16.57% relative error reduction (RER) com-
pared to the CRF model.

Effect of Number of Hidden States on Training Time:
In Figure 6 we show the impact of increasing the number of

1F-measure is the harmonic mean of Precision (P) and Recall
(R). There exists a deep relationship between ROC and PR spaces
and Davis & Goadrich (2006) proved that a curve dominates in
ROC space if and only if it dominates in PR space.

2For POS tagging and NP chunking, the curves are very similar,
we omitted for space.
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Figure 6: Effect of number of hidden states on training time

hidden states n (also from 1 to 3) on the training time for
the NER task. Increasing n leads to an increase in the com-
putational complexity of training procedure in such models.
When n = 1, the training time of HDCRFs is almost the
same as that of CRFs. Often when the training size is small,
n does not effect the training time much, but when the train-
ing size increases, the gap between the curves broadens.

Conclusion
We have presented a discriminative framework which can
model both the internal sub-structure and the external depen-
dencies between different class labels for labeling sequence
data. We incorporated a small number of hidden state vari-
ables to model the internal sub-structure for observation se-
quences. We found that only a small number of hidden vari-
ables are needed to efficiently model and capture the sub-
structure in the observation sequence. We also found that
assuming each class label is associated with a disjoint set of
hidden states largely simplifies the model, thus leading to
efficient training and inference. Our experiments on three
important sequence labeling problems: part-of-speech tag-
ging, noun phrase chunking, and named entity recognition
showed that HDCRF model outperforms the state-of-the-art
discriminative CRF model, demonstrating the effectiveness
of our model.
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