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Abstract

Reconstructing gene networks from micro-array data can pro-
vide information on the mechanisms that govern cellular pro-
cesses. Numerous studies have been devoted to addressing
this problem. A popular method is to view the gene net-
work as a Bayesian inference network, and to apply struc-
ture learning methods to determine the topology of the gene
network. There are, however, several shortcomings with the
Bayesian structure learning approach for reconstructing gene
networks. They include high computational cost associated
with analyzing a large number of genes and inefficiency in
exploiting prior knowledge of co-regulation that could be de-
rived from Gene Ontology (GO) information. In this paper,
we present a knowledge driven matrix factorization (KMF)
framework for reconstructing modular gene networks that ad-
dresses these shortcomings. In KMF, gene expression data is
initially used to estimate the correlation matrix. The gene
modules and the interactions among the modules are derived
by factorizing the correlation matrix. The prior knowledge
in GO is integrated into matrix factorization to help identify
the gene modules. An alternating optimization algorithm is
presented to efficiently find the solution. Experiments show
that our algorithm performs significantly better in identifying
gene modules than several state-of-the-art algorithms, and the
interactions among the modules uncovered by our algorithm
are proved to be biologically meaningful.

Introduction

Reconstructing gene regulatory network from the micro-
array data is important for understanding the underlying
mechanism behind cellular processes. A number of com-
putational methods have been developed or applied to auto-
matically reconstruct gene networks from gene expression
data. Clustering methods, such as hierarchical clustering,
K-means and self-organizing map (Eisen ef al. 1998), are
commonly used to identify gene modules. The main dis-
advantage of clustering methods is that they are unable to
uncover the interaction among different modules, which is
crucial to the understanding of disease mechanisms. To
overcome this problem, several studies have proposed to
integrate clustering methods with structure learning algo-
rithms. In (Toh & Horimoto 2002), the authors combined
a clustering method with the Graphical Gaussian Model
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(GGM) for module network reconstruction. In (Segal et
al. 2003), a Bayesian framework is presented to integrate
a clustering method with Bayesian network learning. A dis-
advantage with these approaches is that they rely solely on
gene expression data, which are noisy, in the analysis. Fur-
thermore, as revealed by several studies (Husmeier 2003;
Yu et al. 2004), structure learning methods tend to perform
poorly when the number of experimental conditions is sig-
nificantly smaller than the number of genes.

In the past, a large number of studies have been devoted
to exploiting prior knowledge for gene network reconstruc-
tion to alleviate the problem that expression data are of-
ten sparse and noisy (Bar-Joseph ef al. 2003; Berman et
al. 2002; Hartemink et al. 2002; Ideker et al. 2001;
Thmels er al. 2002; Pilpel, Sudarsanam, & Church 2001;
Li & Yang 2004). A typical approach is to construct a
Bayesian prior for the directed arcs in the Bayesian net-
work using the prior knowledge of regulator-regulatee re-
lationships that are derived from other data such as loca-
tion analysis data and protein interaction data. A problem
with this type of approach is that it is often difficult to
extend them to incorporate the co-regulation relationships
that can be easily derived from the GO database. This is a
shortcoming with Bayesian network analysis especially for
mammalian systems, where interaction data is not as read-
ily available, whereas GO information is. Therefore, devel-
oping a framework of knowledge driven analysis with high-
throughput data that effectively exploits the prior knowledge
of co-regulation relationships from GO could enhance the
robustness of the network reconstruction from gene expres-
sion data.

The key challenge with using GO for network reconstruc-
tion is that the co-regulation relationships derived from GO
may be noisy and inaccurate. In this paper, we propose a
framework for gene modular network reconstruction based
on the Knowledge driven Matrix Factorization (KMF)
that is able to effectively exploit the prior knowledge derived
from GO. The key features of the proposed framework are
(1) it derives both the gene modules and their interactions
from a combination of expression data and the GO database,
(2) it incorporates the prior knowledge of co-regulation rela-
tionships into network reconstruction via matrix regulariza-
tion, and (3) it presents an efficient learning algorithm that
combines the techniques of non-negative matrix factoriza-



tion and semi-definite programming.

It is important to note that although our framework is
closely related to other algorithms for matrix factorization
(e.g., non-negative matrix factorization), they differ signifi-
cantly in both their computational methods and goals. First,
unlike the existing algorithms for matrix factorization that
are designed either for clustering or for dimensionality re-
duction, our framework aims to learn a module network
structure from gene expression data. Second, unlike other
matrix factorization algorithms that solely depend on iter-
ative algorithms for optimization, the proposed framework
exploits both convex and non-convex optimization strategies
for finding the optimal network structure.

A Framework for Knowledge Driven Matrix
Factorization (KMF)

The following terminology and notations will be used
throughout the rest of this paper. Let m be the number of ex-
perimental conditions, and x; = (x;1, Ti2, ..., Tim) € R™
be the expression levels of the ith gene measured under
m conditions. Let n be the number of genes, and X =
(x1,Xa2,...,Xy,) include the expression levels of all n genes.
Given the expression data, we can estimate the pairwise cor-
relation between any two genes. A number of statistical cor-
relation metrics can be used for this purpose, such as Pear-
son correlation, mutual information, and chi-square statis-
tics (Yang & Pedersen 1997). The computation results in a
symmetric matrix W = [w;;]nxn Where w;; measures the
correlation between gene x; and x;.

The main idea behind the knowledge driven matrix fac-
torization framework is to compute the network structure
by factorizing the correlation matrix W into the matrices
for gene modules (i.e., the module matrix) and the module
network structure (i.e., the network matrix). We denote by
M the module matrix, of which element M;; represents the
confidence of assigning the ith gene to the jth module. We
denote by C' the network matrix, of which element C}; rep-
resents the interaction strength between module ¢ and mod-
ule j. Note that the computational problem addressed here
is fundamentally different from the problems addressed by
the previous studies of matrix factorization (Lee & Seung
2000) that mainly focused on dimensionality reduction and
data clustering.

To determine the gene modules (i.e., M) and their net-
work structure (i.e., C), we consider the following three cri-
teria when formulating the framework of knowledge driven
matrix factorization for module network reconstruction:

1. The module matrix M and the network structure matrix
C should be combined to accurately reproduce the cor-
relation matrix W. This is based on the assumption that
gene correlation information can essentially be explained
by the gene modules and their interactions.

2. The module matrix M is expected to be consistent with
the prior knowledge collected from Gene Ontology. In
particular, two genes that bear a large similarity in gene
functions as described in GO are likely to be assigned into
the same module.
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3. The network structure matrix C' is expected to be consis-
tent with the hierarchical scale-free structure of gene net-
works. As suggested in (Barabasi & Albert 1999), a net-
work with hierarchical scale-free structure tends to have a
small number of linkages in total. We thus expect matrix
C to be a sparse matrix with most of its elements being
small and close to zero.

In the following subsections, we will first discuss how to
capture the above three criteria in formulating the objective
function, followed by the description of the full framework.

Matrix Reconstruction Error

Before discussing the reconstruction error, we need to first
describe how to approximate the gene correlation matrix W
by the gene modules and the module network. We assume
that the correlation between two genes x; and x; arises be-
cause of the interaction between the two modules that are
associated with the two genes. Hence, variable W;; can
be approximated by Za’b Mo M;,Cop where M;, and M,
represent the association of genes to gene modules and Cl;,
represent the interaction between modules a and b. In the
form of matrices, the above idea is summarized as to ap-
proximate TV by the product M x C' x M. We denote by
14(W, M, C) the matrix reconstruction error between W and
MxCxMT.

A number of measurements have been proposed to cal-
culate the matrix reconstruction error. One general ap-
proach is to measure the norm of the difference between W
and the reproduced matrix MCM T, i.e., lo(W, M,C) =
|[W — MCMT||. Two types of matrix norms used in mea-
suring the reconstruction errors are the entry-wise norms
(e.g, Frobenius norm) and the induced norms (e.g., spec-
tral norm). The key difference between these two types of
norms is that the entry-wise norms measure the error by the
entry-wise mismatch, while the induced norm measures the
mismatch between two matrices by the difference in their
eigenspetra. Here we adopt the Frobinius norm,

L(W,MCM") = |W-MCM'|%
n
= > (Wi — [MCM"];)?

ij=1

Consistency with the Prior Knowledge from GO

Second, we exploit the prior knowledge from GO to regular-
ize the solution of M. We encode the information within
GO by a similarity matrix S, where S;; > 0 represents
the similarity between two genes in their biological func-
tions (Jin ef al. 2006). Furthermore we create a normal-
ized combinatorial graph Laplacian L from the similarity
matrix S. Then the disagreement between gene modules
and collected gene information from GO is measured by
lm(M,L) = trf(MLMT). To better understand this quan-
tity, we expand [, (M, L) as follows:

N
tr(MLMT) = Z Sij <Z(Mzz - sz)2>

ij=1 z



Note that term S;; measures the similarity between gene
1 and j in gene functions described in GO, and term
>, (M;, — M;.)? measures the difference in module mem-
berships between two genes. Hence, the product of the two
terms essentially indicates the disagreement between M and
the gene information from GO. By minimizing this disagree-
ment, we ensure that the gene modules are consistent with
the prior information of genes.

Gene Module Network with Hierarchical
Scale-free Structure

As revealed by previous studies (Bhan, Galas, & Dewey
2002; Joeng et al. 2000), the structure of many gene net-
works appears to be hierarchical and scale-free. In particu-
lar, genes are first clustered into modules, and the gene mod-
ules are then connected by scale-free networks. The most
important feature of a scale-free network is that most nodes
in the network are connected to a few neighbors, and only a
small number of nodes, which are often called “hubs”, are
connected to a large number of nodes. Compared to other
network structures, a scale-free network has a very skewed
degree distribution, and therefore a relatively smaller num-
ber of edges (Barabasi & Albert 1999). This fact implies
that the network structure matrix C' should be a sparse ma-
trix of which most elements are small or close to zero. Thus,
to ensure a scale-free network structure, we regularize the
sparsity of matrix C by term [.(C) = ||C||%.

Matrix Factorization Framework for Hierarchical
Module Network Reconstruction

Combining the measurements for the above three criteria,
we have the final formulation for finding the optimal M and
C,ie.,

min - [g(W, M, C) + aly (M, L) + Ble(C)
S. t. CEO, Ciizl,i:172,...7n

Cij > 0, ’i,j = 1,2,...,7“
Mijzoa i7j:172>'~'7n (1)
where parameter o and 3 weight the contribution of terms
I, and [, respectively. The constraint C' >~ 0 ensures that
the interaction among modules complies with the triangu-
lar inequality, i.e., if module ¢ has strong interactions with
both module j and module £, then module j and £ are also
expected to have strong interactions. Unlike the Bayesian
network based structure learning that requires solving a dis-
crete optimization problem, (1) is an optimization problem
of continuous variables and therefore can usually be solved
more efficiently than Bayesian network.

Solving the Constrained Matrix Factorization

We solve the above optimization problem through alternat-
ing optimization. It alters the process of optimizing M with
fixed C and the process of optimizing C' with fixed M it-
eratively till the solution converges to a local optimum. We
describe these two processes as follows:
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Optimize M by fixing C: The related optimization prob-
lem is:

argmin  F,,(M) = ||[W — MCM "||% + atr(M " LM)

MeRnxr

s.t. M;>0,4,5=1,2,...,n

To find an optimal solution for M, we propose the following
bound optimization algorithm. Let M represent the solution
of the previous iteration, and our goal is to find a solution of
M for the current iteration. First, we consider bounding the
first term in £, (M) by the following expression:

2

- Z MipMjCr | — W7
k,l=1
1 ~ Mg 4 M
- [MCMT M;C . )4
<3 2 M. MjiChy <[Mik] HMﬂ])

-2 Z Wij M. M Cly
k=1

+ log =2

M My
log — +1
M M

We then upper bound the second term in F,, (M) such that:
Sij (M — M)
Sz’jMiQk + SiijQk
SiMj, + Si M

— 2SijMiijk

IN

~ - My, My,
—2SZM1 M 10 = ‘|‘10 ~J )
o ]k( gMik gMik
Taking the derivative of the upper bound of F,,, (M) with
respect to M;;, and set the derivative to be zero, we have the
optimal solution for M as:

My, = My, (

Qi — [MOMTMC’]M
bir = aMD;
cik = a[SM]y + [WMCy,

D; = i Sik
k=1

2Cik:

2
bik + /b3, + 4aik0ik>

2)

where

Optimize C by fixing M: This corresponds to the follow-
ing optimization problem:

argmin  F(C) = |[W — MCM |3 + B||C[%
cesr

S. t. CEO, Cii:].,i:].,Q,...,’l"

Cij ZO, i,j: 1,2,...,7"

We expand the objective function F,.(C) as follows:
F.(C)=te(WW") = 2e(WMCM ")

+te(MCMTMCM ") + pte(CCT)



We then introduce auxiliary variable B and slack variables
7, & and convert into the following optimization problem:
argmin 7 + B¢ — 2tr(M TWMC)
cesr
S. t. C=0, Cy=1,1i=12,...

CijZO, i,j:1,2,...,7"

, T

n> > BiBj, B=M"MC

ij=1

fzicfj

ij=1

3

This optimization problem can be solved effectively using
semi-definite programming technique.

Determining Parameters « and 3

The regularizer parameter « and 3 significantly affect the
outcome of the proposed algorithm: « balances the informa-
tion from GO against the information from gene expression
data, and (3 controls the sparseness of the interaction matrix
C. Here we use the stability analysis to determine the value
of a and (3. The basic assumption of stability analysis is that
if the parameters are set properly, then then algorithm runs
with different random initialization should result in more or
less similar results (Tibshirani, Walther, & Hastie 2000). We
run our algorithm multiple times with a given setting of «
and (3, then evaluate each result to all other results using the
evaluation metric defined in the next section, then we calcu-
late the standard deviation of all these evaluation metrics. «
and [ are tuned to minimize this standard deviation.

Experimental Results and Discussion

Our experiments are designed to evaluate our proposed
knowledge driven matrix factorization framework in recon-
structing modular gene network, particularly in identifying
gene modules and uncovering the interactions among gene
modules.

Datasets
Two datasets are used in our experiments:

e Gene expression data of yeast cell cycle system: The
gene expression data for 104 genes involved in yeast cell
cycle were obtained from the Yeast Cell Cycle Analysis
Project (http://genome-www.stanford.edu/
cellcycle/data/rawdata/). These genes were
divided into six groups based on their peak expression in
the different phases of the cell cycle and the transcription
factors that regulate them (Spellman et al. 1998).

o Gene expression data of liver cell system: Gene ex-
pression data was obtained for HepG2 cells exposed to
free fatty acids (FFAs) and tumor necrosis factor (TNF-
) (Srivastava & Chan 2007). Gene expression data
were obtained for 15 different conditions. The original
data consisted of 19458 genes. The analysis of variance
(ANOVA) was applied to the entire list of genes with
P < 0.01 to compare the effect of treatment (e.g. FFA or
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TNF-«) and to determine whether a treatment had a sig-
nificant effect. The expression levels of 830 genes were
found to be significant due to either TNF-« or FFA (Li et
al. 2007a) and this subset of genes are further analyzed in
our experiment.

Evaluation of KMF based upon Yeast Cell Cycle
Data

In this study, we focus on evaluating the capability of KMF
in identifying gene modules because the interaction infor-
mation among gene modules is not available. We compared
the gene modules identified by KMF and three other base-
line algorithms to the ground truth which includes six groups
defined by (Spellman et al. 1998). The three algorithms
used as baseline algorithms in our study to identify the gene
modules in the yeast cell cycle genes include 1) Bayesian
Module Network in Genomica (Segal et al. 2003), 2) Proba-
bilistic Spectral Clustering (PSC) (Jin, Ding, & Kang 2006),
and 3) Sparse Matrix Factorization (SMF) (Badea & Tilivea
2005). Bayesian Module Network in Genomica was chosen
since it had used the yeast cell cycle genes to identify gene
modules. PSC was chosen since it had been proved to be
one of the state-of-the-art clustering algorithms. We evalu-
ated three settings when applying PSC to identify the gene
modules. In the first two settings, either the gene expres-
sion data or GO is used to construct the similarity matrix
before applying PSC. In the third setting, the two similar-
ity matrices based on gene expression and GO are combined
linearly. SMF was chosen since it had been shown to iden-
tify gene modules using a non-negative factorization algo-
rithm that combines gene expression data and transcription
factor binding data. To obtain the cluster membership of the
genes, we set a threshold on the membership matrix M. A
natural choice for the threshold is 1/r where r is the number
of clusters. The same method was applied to PSC and SMF
to determine the binary cluster memberships.

To quantitatively evaluate the performance of the algo-
rithms in our experiment, we use the Pairwise F-measure
(PWF1) metric (Liu & Jin 2007). Let U be the set of gene
pairs that share at least one cluster in the experiment, and
T be the set of gene pairs that actually share at least one
cluster, PWF1 is defined as

recision = v call = vnT
i E T
PWFL — 2 X preciston X recall

precision + recall

where | - | is the size operator on a set. The precision mea-
sures the accuracy in identifying co-regulated genes, and the
recall measures the percentage of co-regulated genes that are
correctly identified, where we assume that the genes within
an original group (Spellman et al. 1998) were co-regulated.
PWF1 combines these two factors by their harmonic mean.

Table 1 shows the PWF1 measure of different algorithms
on the Yeast cell cycle data. We observe that KMF outper-
formed the other algorithms significantly. Note that KMF
performed better than PSC using the combination of GO and



Algorithm PWF1(mean+std)
KMF 0.625+-0.007
Genomica 0.473

PSC (expression) 0.446+0.057
PSC (GO) 0.386+0.020
PSC (expression+GO) 0.571£0.013
SMF (expression+binding) 0.413+0.118

Table 1: PWF1 measure of the experimental results on the
Yeast cell cycle dataset. Each algorithm except Genomica
(which does not need initialization at the beginning of exe-
cution) was executed 10 times with different random initial-
izations, and the mean and standard deviation of PWF1 from
10 runs are calculated.

gene expression data. This suggests that KMF is more ef-
fective in exploiting prior knowledge than PSC. In addition,
KMF also showed a lower standard deviation on the PWF1
over multiple runs. This suggested that KMF performed ro-
bustly by utilizing the GO information to guide the modular
network reconstruction from gene expression data.

Application to Identify Gene Modules and
Modular Network in Liver Cells

We also applied KMF to gene expression data obtained from
liver cells where the main objective was to identify the inter-
actions between the modules.

In our experiment we manually set the number of clus-
ters to be 30 according to the suggestions of biologists. We
found that for most identified gene modules, genes with
similar functions were enriched in their own separate mod-
ules/gene groups. For example, 7 out of the 11 genes in a
module encode the 5 of the 6 enzymes involved in the TCA
cycle. Similarly, one module consisted primarily of NADH
dehydrogenases and one module consisted of the genes in-
volved in the metabolism of ATP. 7 out of the 18 genes in
a module encode different sub-complexes of cytochrome-c
oxidase (complex IV). In general, most of the gene-groups
could be assigned a particular function/process based upon
the list of genes enriched in them. Due to the space limita-
tion, we are unable to list all 30 modules and their enriched
functions, so we only give a few examples above to illustrate
the function enrichment of gene modules. We also note that
a common practice in evaluating function enrichment by GO
can not be applied here since we already utilize GO for the
identification of gene modules and their interactions.

Next, we examined if KMF is able to correctly uncover
the interactions among different modules by looking into
the C matrix whose coefficients indicate the strengths of in-
teractions, which is analogous to a correlation matrix. Af-
ter sorting out the significantly higher values in C' matrix,
we found that module complex III, complex 1V, complex I,
complex V and TCA and complex II are closely connected
as shown in Figure 1. From the aspect of molecular biol-
ogy, most of the proteins in these modules are located in the
mitochondria or on the mitochondria membrane, and these
modules are indeed biologically connected. The modules of
TCA cycle, electron transport chain (ETC) complex I, com-
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Complex III and Michochondria

0.657 0.752
TCA _0655 Complex IV 0653 Complex I
|0,747
ATP synthase

Figure 1: KMF uncovered the connections between energy
production modules of TCA, Complex I, III, IV and V. Num-
bers on the edges are the interaction strengths between the
modules from the interaction matrix (C' matrix).

plex III, complex IV, and ATP synthase are related to energy
production in the mitochondria, which are often referred
to as intracellular powerhouse because they produce most
of the energy used by the cell. The production of energy
in the mitochondria is accomplished by two closely linked
metabolic processes, the TCA cycle and oxidative phospho-
rylation. The TCA cycle converts carbohydrates, lipids, and
amino acids into ATP and energy rich molecules, such as
NADH. Oxidative phosphorylation generates ATP through
the ETC consisting of five protein complexes embedded in
the inner membrane of the mitochondria including com-
plex I (NADH dehydrogenase), complex II (succinate dehy-
drognease of the TCA cycle), complex III (cytochrome-c re-
ductase), complex IV (cytochrome-c oxidase), and complex
V (ATP synthase). Thus, Figure 1 show a biological network
involved in the production of energy in mitochondria recon-
structed by KMF. For many other modules, their interactions
are relatively weak according C' matrix, and therefore their
biological meaning is rather unclear from our study.

Therefore, KMF is able to identify highly enriched gene
modules with distinct cellular functions and the interactions
among the modules. In summary, KMF is an approach that
can be applied to uncover pathways specific to a phenotype
and potentially be used to elucidate mechanisms involved in
diseases by integrating gene expression and a priori knowl-
edge.

Readers are referred to our technical report (Li et
al. 2007b) for the complete analysis of the experimen-
tal results. The full list of gene modules is available
online at http://www.chems.msu.edu/groups/
chan/GO_KMF_genecluster.xls.

Conclusions

In this paper, we propose a novel framework to meet the
challenging problem of reconstructing gene networks from
multiple information sources. The advantage of our pro-
posed framework is that it derives both the gene modules
and their interactions in a unified framework of matrix fac-
torization, and it incorporates the prior knowledge of co-
regulation relationships from GO information into the net-
work reconstruction process. We also present an efficient
algorithm to solve the related optimization problem. Exper-
iments show that our proposed framework performs signifi-
cantly better in identifying gene modules than several state-
of-the-art algorithms, and the interactions among modules



uncovered by our algorithm are proved to be biologically
meaningful.
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