
Using Answer Set Programming and Lambda Calculus to Characterize Natural
LanguageSentences with Normatives and Exceptions∗

Chi ta Baral andJuraj Dzifcak
School of Computing and Informatics

Arizona State University
Tempe, AZ 85287-8809

Tran Cao Son
Computer Science Department
New Mexico State University

Las Cruces, NM 88003

Abstract

One way to solve the knowledge acquisition bottle-
neck is to have ways to translate natural language sen-
tences and discourses to a formal knowledge represen-
tation language, especially ones that are appropriate to
express domain knowledge in sciences, such as Biol-
ogy. While there have been several proposals, includ-
ing by Montague (1970), to give model theoretic se-
mantics for natural language and to translate natural
language sentences and discourses to classical logic,
none of these approaches use knowledge representation
languages that can express domain knowledge involv-
ing normative statements and exceptions. In this pa-
per we take a first step to illustrate how one can au-
tomatically translate natural language sentences about
normative statements and exceptions to representations
in the knowledge representation language Answer Set
Programming (ASP). To do this, we useλ-calculus rep-
resentation of words and their composition as dictated
by a CCG grammar.

Introduction
Having a knowledge base and being able to reason with it is
an essential component in many intelligent systems. How-
ever, developing knowledge bases or acquiring the knowl-
edge to put in the knowledge base is time consuming and is
a bottleneck. For example, one of the challenges identified
by phase 1 of Project Halo1 was: “Knowledge and ques-
tion formulation requires highly specialized and expensive
personnel (knowledge engineers), which pushes the devel-
opment cost to about $10,000 per page.” As a result one
of the main focuses in its phase 2 was developing tools for
acquisition of knowledge.

We echo that knowledge acquisition is a bottleneck to de-
veloping intelligent knowledge based systems. We think
one way to tackle this bottleneck is to develop ways so that
knowledge expressed in natural language, say in a book, can
be automatically translated to sentences in an appropriate
knowledge representation language.

∗Partially supported by ONR grant N00014-07-1-1049 and
NSF grants 0420407 and 0220590.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1
http://www.projecthalo.com/halotempl.asp?cid=20

Existing and ongoing research in natural language seman-
tics have explored automatic translation of natural language
sentences to sentences in first-order logic. Some of these
translations (Moldovanet al. 2002; Bos & Markert 2005)
have been used in question answering systems that have par-
ticipated in the TREC QA competitions (Voorhees 2006).
The first one did very well in these competitions.

However, as was recognized by AI researchers very early
in the AI history, first-order logic is not appropriate for ex-
pressing various kinds of knowledge. In particular, knowl-
edge used by intelligent systems and their reasoning in-
volves representation of and reasoning with default state-
ments (e.g., ‘most birds fly’), normative statements (e.g.,
‘normally birds fly’), exceptions (e.g., ‘penguins are birds
that do not fly’), etc. and these can not be adequately ex-
pressed in first-order logic. This has led to the develop-
ment of several non-monotonic logics. Among them, an-
swer set programming (ASP) or logic programming un-
der the answer set semantics (Marek & Truszczyński 1999;
Niemel̈a 1999) has been known to be a good candidate
for knowledge representation and common sense reasoning
(Baral 2003). More importantly, there exists a number of
good (and free) ASP reasoning systems2.

Since representation of knowledge in many domains re-
quires the ability to express defaults, normative statements,
and exceptions, our goal in this paper is to take a first step to-
wards automatically translating natural language statements
to theories in ASP.

To achieve our goal, we take the following approach.
We start with a small set of sentences which we would
like to be automatically translated. We give a CCG gram-
mar (Steedman 2001; Gamut 1991) for those and other
similar sentences and present an equivalent BNF grammar.
We introduce the notion ofλ-ASP-expressions that com-
bines ASP rules withλ-expressions and then presentλ-
ASP-expressions for the various categories in our grammar.
We then show how sentences built using our grammar can
be systematically translated to an ASP theory by applying
theλ-ASP-expressions of the various words (and their cat-
egories) in the order dictated by the CCG grammar. To
make this paper understandable we give a brief background

2E.g., smodels (http://www.tcs.hut.fi/Software/smodels/) and
dlv (http://www.dbai.tuwien.ac.at/proj/dlv/).

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

818

t

of ASP, CCG andλ-expressions. Finally we conclude and
discuss how to go beyond the first step in this paper.

Background
Answer Set Programming
We use a broader meaning of the termanswer set program-
ming (ASP) than originally used in (Marek & Truszczyński
1999; Niemel̈a 1999). By ASP we mean logic programming
under the answer set semantics. We consider ASP as one of
the most developed knowledge representation language for
the following reasons. ASP is non-monotonic and is expres-
sive enough to represent several classes of problems in the
complexity hierarchy. Furthermore, it has solid theoretical
foundations with a large body of building block results (e.g.,
equivalence between programs, systematic program devel-
opment, relationships to other non-monotonic formalisms)
(Baral 2003); it also has a large number of efficient com-
putational tools. Default statements and various forms of
exceptions can be naturally represented in ASP (Gelfond &
Leone 2002). We now review the basic notions in ASP.

We assume a first order languageL. Literals are con-
structed from atoms inL. A positive(or negative) literal
is of the formA (resp.¬A) whereA is an atom inL.

An ASP program(or program) is a set of rules (ASP rules)
of the following form:

a← a1, . . . , am, not b1, . . . , not bn (1)

wherem,n ≥ 0 and eacha, aj , andbt is a literal inL; and
not represents negation as failure (or default negation). For
a ruler of the form (1),head(r) denotesa; pos(r) (positive
body) denotes the set{a1, . . . , am}; andneg(r) (negative
body) denotes{b1, . . . , bn}. Intuitively, a ruler of the form
(1) states that if all the literals inpos(r) are believed to be
true and none of the literals inneg(r) is believed to be true
then the literalhead(r) must be true.

The notion of answer set semantics for ASP programs is
defined in (Gelfond & Lifschitz 1988). LetP be a ground
program3.

Let S be a set of ground literals in the language ofP . S
satisfies the body of a ruler if pos(r) ⊆ S andneg(r)∩S =
∅. S satisfies a ruler if either head(r) ∈ S or S does not
satisfy the body ofr. S satisfies a programP if it satisfies
every rule inP . S is ananswer setof P if it is a minimal set
of literals satisfying all the rules inPS wherePS is obtained
from P by

(i) Deleting all rules fromP that contain somenot l in their
body andl ∈ S.

(ii) All occurrences ofnot l from the remaining rules.

A programP is consistentif it has at least one answer set.
Given a programP and a literall, we say thatP entails l,
denoted byP |= l, if l belongs to every answer set ofP .

ASP and Knowledge Representation
For our purpose of this paper, we will focus on default state-
ments with strong exceptions. We illustrate the use of ASP
in knowledge representation on some simple examples.

3Rules with variables are replaced by the set of its ground in-
stantiations.

Consider a knowledge base consisting of information
about birds, penguins, and some individuals:

• Most birds fly.

• Penguins do not fly.

• Penguins are birds.

• Tim is a bird.

• Tweety is a penguin.

This information can be represented by the following pro-
gramP1:

fly(X) ← bird(X), not ¬fly(X) (2)

¬fly(X) ← penguin(X) (3)

bird(X) ← penguin(X) (4)

bird(tim) ← (5)

penguin(tweety) ← (6)

It is easy to check thatP1 has a unique answer set:
{bird(tim), fly(tim), penguin(tweety), bird(tweety),
¬fly(tweety)}. This implies that fly(tim) and
¬fly(tweety) are entailed byP1.

Assuming that the knowledge base is extended with the
information about penguins being able to swim and that
most birds do not swim. This information can be represented
by the two rules:

¬swim(X) ← bird(X), not swim(X) (7)

swim(X) ← penguin(X) (8)

Let P2 be the programP1 with the above two rules.P2

entailsswim(tweety) and¬swim(tim).
In general, a default statement of the form “Most members

of a classc have propertyp” can be represented by the rule

p(X)← c(X), not ¬p(X)

which states that for every memberm of the classc, unless
there is contrary information aboutm not having propertyp,
thenm has the propertyp.

λ-calculus
λ-calculus was invented by Church to investigate functions,
function application and recursion (Church 1936). We as-
sume an infinite but fixed setV of identifiers. Aλ-expression
is either avariablev in V; or anabstraction(λv.e) wherev
is a variable ande is aλ-expression; or anapplicatione1e2

wheree1 ande2 are twoλ-expressions. For example,

λx.plane(x) λx.x λu y

areλ-expressions4.
Variables in aλ-expression can be bound or free. In the

above expressions, onlyy is free. Others are bound. Various
operations can be done onλ-expressions. Aα-conversion

4It is well known that predicates and functions can be easily
expressed byλ-expressions. For brevity, we will often use the con-
ventional representation of predicates and functions instead of their
λ-expression.

819

allows bounded variables to changed their name. A sub-
stitution replaces a free variable withλ-expression. Aβ-
reduction could be viewed as a function application, which
will be denoted by the symbol@. For example,

λx.plane(x) @ boeing767

results in
plane(boeing767)

λ-calculus has been used as a way to formally and system-
atically translate English sentences to first order logic for-
mulas. This process can be seen in the following example,
taken from (Balduccini, Baral, & Lierler 2008), a translation
of the sentence “John takes a plane” to the logical represen-
tation

∃y.[plane(y) ∧ takes(john, y)]

Theλ-expression for each constituent of the sentence are
as follows:

• “John”: λx.(x@john).

• “a”: λw.λz.∃y.(w@y ∧ z@y)

• “plane”: λx.plane(x)

• “takes”: λw.λu.(w@λx.takes(u, x))

We can combine the aboveλ-expressions to create the for-
mula for the sentence.

• “a plane”:
λw.λz.∃y.(w@y ∧ z@y)@λx.plane(x) =
λz.∃y.(λx.plane(x)@y ∧ z@y) =
λz.∃y.(plane(y) ∧ z@y)

• “takes a plane”:
λw.λu.(w@λx.takes(u, x))@

λz.∃y.(plane(y) ∧ z@y) =
λu.(λz.∃y.(plane(y) ∧ z@y)@λx.takes(u, x))
λu.(∃y.(plane(y) ∧ λx.takes(u, x)@y))
λu.(∃y.(plane(y) ∧ takes(u, y)))

• “John takes a plane”:
λx.(x@john)@λu.[∃y.(plane(y) ∧ takes(u, y))]
λu.(∃y.[plane(y) ∧ takes(u, y)])@john
∃y.[plane(y) ∧ takes(john, y)]

Combinatorial Categorial Grammar
Although various kinds of grammars have been proposed
and used in defining syntax of natural language, combinato-
rial categorial grammars (CCGs) are considered the most ap-
propriate from the semantic point of view (Steedman 2001).
In building the λ-expressions above, CCG parser output
would be able to correctly dictate whichλ-expression should
be applied to which word.

Following (Gamut 1991), acombinatorial categorical
grammar(CCG) can be characterized by

• a set ofbasic categories,

• a set ofderived categories, each constructed from the ba-
sic categories, and

• some syntactical rules describing the concatenation and
determining the category of the result of the concatena-
tion.

Moreover, every lexical element is assigned to at least one
category. The following is an example of a very simple cat-
egorical grammar, calledCCG1:
• CCG1 has two basic categories:N andS.

• The derived categories ofCCG1 are:

– A basic category is a derived category;
– If A andB are categories then the expressions(A\B)

and(A/B) are categories;

Thus, (N\S), (S\N), (N\(N\S)), (N/S), (N/S)\N
are derived categories ofCCG1.

• The syntactic rule forCCG1:

– If α is an expression of categoryB andβ is an expres-
sion of category(A\B) then the concatenationαβ is of
categoryA.

– If α is an expression of categoryB andβ is an expres-
sion of category(A/B) then the concatenationβα is of
categoryA.

• CCG1 contains the following objects:Tim whose cate-
gory isNP andswimswhose category is (S\NP).
Intuitively, the category of ‘swims’ isS\NP means that if

an NP (a noun phrase) is concatenated to the left of ‘swims’
then we obtain a string of categoryS, i.e., a sentence. In-
deed, ‘Tim’ being an NP, when we concatenate it to the left
of ‘swims’ we obtain ‘Tim swims’, which is a sentence.

A Simple Language and its Automatic
λ-Calculus Based Translation to ASP

In this section, we present all the ingredients and illustrate
how those ingredients can be used to translate a class of nat-
ural languages sentences into ASP rules.

Example Sentences
We start with a set of sentences containing the normative
‘most’ and other constructs of interest to us. These are the
sentences we used in the previous section.
1. Most birds fly.

2. Penguins are birds.

3. Penguins do swim.

4. Penguins do not fly.

5. Tweety is a penguin.

6. Tim is a bird.
In the above sentences, the first sentence is a default (or nor-
mative) statement expressing the fact that birds fly by de-
fault. The second sentence represents a subclass relation-
ship. The third and fifth sentences are statement about differ-
ent properties of a class (penguins). The last two sentences
are statement about individuals. It should be noted that even
though several approaches have been developed to automati-
cally translate natural language sentences to first order logic,
none of them translate default statements to an implemented
logic (Hella, Vään̈anen, & Westerståhl 1997). For conve-
nience, we will refer to the above collection of sentences as
Lbird. We will show how those sentences can be automati-
cally translated to ASP rules. We start with a CCG grammar
for Lbird.

820

CCG for Lbird

The CCG for the languageLbird consists of the three basic
categories:

• N – stands for ‘noun’

• NP – stands for ‘noun phrase’ (representing a class)

• S – stands for ‘sentence’

• NP (obj) – stands for ‘noun phrase’ (representing an ob-
ject)

We will make use of bidirectional CCG, i.e., given two
categoriesA andB, bothA/B andA\B are derived cate-
gories. The syntactic rules for determining the category of
αβ are as follows:

• (right concatenation:) if α is of categoryB andβ is of
categoryA/B thenβα is of categoryA, and

• (left concatenation:) if α is of categoryB andβ is of
categoryA\B thenαβ is of categoryA.

Observe also that a word can be assigned to multiple cate-
gories.

The categories for each of the word in the languageLbird

is given in the following table (words of similar categories
are grouped together for simplicity of the reading; the refer-
ence column is for later use):

Word Categories Reference
fly S\(S/(S\NP)) F1

S\NP F2
flies S\NP (obj) F3
swim S\(S/(S\NP)) S1

S\NP S2
swims S\NP (obj) S3
most (S/(S\NP))/NP M
do (S/(S\NP))\NP D1
do not (S/(S\NP))\NP D2
is (S/NP)\NP I1

(S/N)\NP (obj) I2
are (S/NP)\NP A1
are not (S/NP)\NP A2
birds N , NP B1, B2
penguins N , NP P1, P2
a penguin N , NP (obj) AP1, AP2
bats N , NP BA1, BA2
tweety, tim NP (obj) T
fictional NP/N F
a fictional NP/N FA

Figure 1: Words inLbird and their categories

The language generated by the CCG is the set of sentences
whose category isS. Using the above mentioned combinato-
rial rules, sentences inLbird can be shown to be of category
S (see, e.g., (Steedman 2001)). For example, the derivation
of the sentence “Most birds fly” is done as follows.

• Most birdsis of categoryS/(S\NP) (applying the right
concatenation rule ofB2 to M);

• Most birds flyis of categoryS (applying the left concate-
nation rule ofS/(S\NP) to F1).

Graphically, this derivation is represented as follows:

Most birds fly

(S/(S\NP))/NP NP

S\(S/(S\NP))S/(S\NP)

S

Figure 2: Derivation of the category ofMost birds fly

A Context Free Grammar for the CCG of Lbird

Each CCG, whose only syntactical rules are the left- and
right-concatenation rules, is equivalent to a context-free
grammar (CFG) (see, e.g., (Gamut 1991)) which can be used
in syntactical checking. As parsing a sentence using a CFG
is often more efficient, and for many, more intuitive than
using a CCG, we include a CFG equivalent to the CCG of
Lbird in Figure 3. It should be noted, however, that the
CFG lacks the directionality information that CCG has. For
example, the CFG in Figure 3 will not tell us how to ob-
tain the semantics (i.e.,λ-expression) of ‘most birds’ from
the semantics of ‘most’ and ‘birds’. I.e., whether to apply
theλ-expression of ‘most’ to theλ-expression of ‘birds’ or
vice-versa. The CCG grammar gives us that information.

S → X5 X3 | X6 NP | X11 N | X5 X7 |
NP (obj) X8 | NP X3

X6 → NP X1

X11 → NP (obj) X10

X5 → NP X2 | X4 NP
NP → X9 N
X4 → most
NP → birds | bats | penguins
NP (obj) → tweety | a penguin
N → birds | bats | penguins | a penguin
X3 → fly | swim
X2 → do | do not
X1 → are | are not | is
X7 → fly | swim
X8 → flies | swims
X9 → fictional | a fictional
X10 → is

Figure 3: CFG for the CCG ofLbird

λ-ASP-Expression for Categories inLbird

As discussed earlier,λ-expressions can be used to translate
natural language sentences into first order logic representa-
tion. As our goal is to obtain an ASP representation, we
expand the notion ofλ-expressions toλ-ASP-Expression
which allows constructs of ASP rules. We then carry over
all operations onλ-expressions toλ-ASP-expressions.

In light of the above discussion, the translation of nat-
ural language sentence begins with the development ofλ-
ASP-expressions for words and categories in the language

821

of interest. For the languageLbird, we present theλ-ASP-
expressions of various categories (a dash ’–’ represents all
categories associated to the word) in Figure 4.

Word Cat. λ-ASP-expression
fly F1 λx.fly(x)

F2 λx.fly(X)← x@X
flies F3 λx.fly(x)
swim S1 λx.swim(x)

S2 λx.swim(X)← x@X
swims S3 λx.swim(x)
most M λuλv.(v@X←u@X, not ¬v@X)
do D1 λuλv.v@X ← u@X
do not D2 λuλv.¬v@X ← u@X
is – λv.λu.u@v
are A1 λuλv.v@X ← u@X
are not A2 λuλv.¬v@X ← u@X
birds – λx.bird(x)
penguins – λx.penguin(x)
a penguin – λx.penguin(x)
bats – λx.bat(x)
tweety/tim T λx.x@tweety/tim
fictional F λvλu.fictional(u) ∧ v@u
a fictional FA λvλu.fictional(u) ∧ v@u

Figure 4:λ-ASP-expressions forLbird

λ-Calculus + CCG ⇒ ASP Rules — An
Illustration
We will now illustrate the techniques for automatic transla-
tion of several sentences inLbird to ASP rules.

• Let us start with the sentence “Most birds fly”. The CCG
derivation (Fig. 2) tells us how this sentence is con-
structed. Namely, ‘birds’ is concatenated to the right of
‘most’ to create ‘most birds’; this will be concatenated to
the left of ‘fly’ to create a sentence whose category isS
(i.e., a syntactically correct sentence). During this deriva-
tion, the category M, B2, and F1 are used for ‘most’,
‘birds’, and ‘fly’, respectively. From Fig. 4, we know
that theλ-ASP-expression for the category M, B2, and F1
are:

M : λuλv.(v@X ← u@X, not ¬v@X)
B2 : λx.bird(x)
F1 : λy.fly(y)

Concatenating ‘birds’ to ‘most’ implies that theλ-ASP-
expression for ‘most birds’ is obtained by applying M to
B2, i.e., it is the result of

(λuλv.(v@X ← u@X, not ¬v@X))@(λx.bird(x))

or

λv.(v@X ← λx.bird(x)@X, not ¬v@X)

which reduces to

λv.(v@X ← bird(X), not ¬v@X).

The λ-ASP-expression for ‘most birds fly’, obtained by
applying the above expression to F1, is:

(λv.(v@X ← bird(X), not ¬v@X))@(λy.fly(y))
It simplifies to:

λy.fly(y)@X ← bird(X), not ¬λy.fly(y)@X
which yields

fly(X)← bird(X), not ¬fly(X).

• Penguins are birds.This sentence is obtained by concate-
nating ‘penguins’ (P2) to the left of ‘are’ (A1) and ‘bird’
(B2) to the right of ‘penguins are’. The ASP rule for this
sentence is obtained by applying theλ-ASP-expression
for A1 on P2 and then on B2. The first step gives us:

λuλv.(v@X ← u@X)@λx.penguin(x) =
λv.(v@X ← λx.penguin(x)@X) =

λv.(v@X ← penguin(X))

The second step starts with

(λv.(v@X ← penguin(X)))@(λy.bird(y))

and results in:

bird(X)← penguin(X)

• Penguins do not fly.The CCG derivation for this sentence
is similar to the previous sentence and the categories in-
volved in the derivation are also similar.

((λuλv.¬v@X ← u@X)@(λx.penguin(x)))
@(λx.fly(x)) =

¬fly(X)← penguin(X)

We can easily check that rules (2)-(8) are obtained from the
automatic translation of the corresponding sentences using
the techniques presented in this section.

Discussion
The grammar presented in this work is sufficient to represent
an interesting set of sentences, including default statements
and strong exceptions. It is, however, very simple and lacks
several constructs so as to be able to capture more complex
sentences. For example, it lacks conjunctions (e.g. and, or,
etc.), adverbs (e.g. quickly, slowly, etc.), and other auxiliary
verbs (e.g. can, might, etc.). To be able to handle most of
these constructs is one of our immediate goals.

The hardest problem in dealing with these constructs lies
in the requirement to properly specify the actual category
representing the word. I.e., making sure that our category
can only be used in grammatically correct sentences and in
all such sentences, as well as ensuring that the semantical
representation is what we want. We intend to address these
issues in our future work. Additionally, the construction of
λ-expressions presented in this work requires human engi-
neering. We are exploring ways to make the process of ac-
quiring these automatic.

We now give a glimpse of the representation of the con-
junction ‘and’. Assume thatLbird is extended with the sen-
tence ‘Parrots and Penguins are birds,’ with ‘Parrots’ of
categoryNP . Intuitively, this suggests that the category
NP/NP can be assigned to ‘and’. Theλ-ASP-expression
for ‘and’ could be

λuλv.u ∧ λuλv.v shortened asλuλv.u | v

822

Theλ-ASP-expressions for ‘Parrots and Penguins’ is

((λuλv.u | v)@(λx.parrot(x)))@λx.penguin(x) =
(λv.λx.parrot(x) | v)@λx.penguin(x) =

λx.parrot(x) | λx.penguin(x)

For ‘Parrots and penguins are’:
λv.v@X ← parrot(X) | penguin(X)

Adding ‘birds’: bird(X)← parrot(X) | penguin(X)
which stands for two rules:

bird(X)← penguin(X) and
bird(X)← parrot(X)

The above example shows that the translation of a more
complex sentence may result in a formula which does not
conform to the syntax of ASP rules in (1). In these cases, an
intermediate representation language or/and a post process-
ing step may be necessary.

Conclusion, Related Work and Future work
In this paper we have taken a first step to automatically trans-
late natural language sentences that include phrases such as
“normally” and “most.” Such sentences are common place
in many domains, such as in Biology. For example, the fol-
lowing is part of a sentence from (Turneret al. 2006): “Al-
though the levels of the P2X(7) receptor protein in mouse
kidney are normally very low ...”.

Earlier we mentioned recent works where automatic
translation of natural language sentences to first order logic
formulas have been used in building question answering sys-
tems. However, such question answering systems are un-
able to answer questions that involve reasoning where non-
monotonic reasoning is needed. This is discussed in (Bal-
duccini, Baral, & Lierler 2008; Baral, Dzifcak, & Tari 2007)
and an alternative is presented where facts are extracted from
the natural language text and non-monotonic rules in ASP
are added to do the reasoning. In this paper we go further
than that and discuss how to translate natural language text
to ASP theories. The work by (Kuhn 2007) is concerned
with a controlled natural language and this approach cannot
work on arbitrary natural language text, unlike ours. The
methodologies used in our work are also completely differ-
ent.

In the linguistics community, there have been many pa-
pers about representing “generics” and “generalized quanti-
fiers” beyond “forall” and “there exists” (e.g., (Pelletier &
Asher 1995)). However, these papers often propose or use
relatively undeveloped, unimplemented, and narrowly stud-
ied formalisms. We hope our first step in this paper will mo-
tivate them to use established and implemented Knowledge
Representation languages such as ASP. Among the closest to
our work, in (Pelletier & Asher 1995) normative statements
are referred to as generics and the paper discusses generics,
defaults and several non-monotonic logics. But it does not
give a way to automatically translate natural language sen-
tences with generics to theories in a non-monotonic logic.

One of our future goal is also to go beyond the small set
of sentences that we covered in this paper and consider addi-
tional natural language constructs. In particular, we are ex-
ploring natural language constructs involved in directing an

agent or a robot and developing ways to automatically trans-
late them to formulas in formal goal description languages
such as temporal logic.

References
Balduccini, M.; Baral, C.; and Lierler, Y. 2008. Knowl-
edge representation and Question Answering. In Vladimir
Lifschitz and Frank van Harmelen and Bruce Porter., ed.,
In Handbook of Knowledge Representation.
Baral, C.; Dzifcak, J.; and Tari, L. 2007. Towards over-
coming the knowledge acquisition bottleneck in answer set
prolog applications: Embracing natural language inputs. In
ICLP, vol 4670 ofLNCS, 1–21. Springer.
Baral, C. 2003.Knowledge Representation, reasoning, and
declarative problem solving with Answer sets. Cambridge
University Press, Cambridge, MA.
Bos, J., and Markert, K. 2005. Recognizing textual entail-
ment with logical inference. InProceedings of EMNLP.
Church, A. 1936. An unsolvable problem of elementary
number theory.Am. Jou. of Mathematics58:345–363.
Gamut, L.T.F. 1991.Logic, Language, and Meaning. The
University of Chicago Press.
Gelfond, M., and Leone, N. 2002. Logic programming
and knowledge representation – the A-Prolog perspective.
Artificial Intelligence138(1-2):3–38.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. InICLP, 1070–1080.
Kuhn, T. 2007. AceRules: Executing Rules in Controlled
Natural Language. InProc. 1st ICWRRS.
Hella, L., Vään̈anen, J., and Westerståhl, D. 1997. Defin-
ability of polyadic lifts of generalized quantifiers.Journal
of Logic, Language and Information6:305–335.
Marek, V., and Truszczýnski, M. 1999. Stable models and
an alternative logic programming paradigm. InThe Logic
Programming Paradigm: a 25-year Perspective, 375–398.
Moldovan, D. I.; Harabagiu, S. M.; Girju, R.; Morarescu,
P.; Lacatusu, V. F.; Novischi, A.; Badulescu, A.; and Bolo-
han, O. 2002. Lcc tools for question answering. InTREC.
Montague, R. 1970. English as a formal language. B.
Visentini, et al., edsLinguaggi nella societa e nella tecnica.
Niemel̈a, I. 1999. Logic programming with stable model
semantics as a constraint programming paradigm.Annals
of Mathematics and AI25(3,4):241–273.
Pelletier, F., and Asher, N. 1995. Generics and defaults.
In van Bentham, J., and ter Meulen, A., eds.,Handbook of
Logic and Language. Elsevier. 1125–1175.
Steedman, M. 2001.The syntactic process. MIT press.
Turner, C.; Tam, F. W. K.; Lai, P.-C.; Tarzi, R. M.;
Burnstock, G.; Pusey, C. D.; Cook, H. T.; and Unwin,
R. J. 2006. Increased expression of the pro-apoptotic
atp-sensitive p2x7 receptor in experimental and human
glomerulonephritis.Nep. Dial. Transplant.22(2):386–395.
Voorhees, E.M. 2006. Overview of the TREC 2006. In
Proceedings of the Fifteenth Text REtrieval Conference, 1.
http://trec.nist.gov/

823

