Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

PBA*: Using Proactive Search to Make A* Robust to Unplanned Deviations

Paul Breimyer
pwbreimy @ncsu.edu
North Carolina State University
Raleigh, NC 27695

Abstract

Many path planning algorithms leverage A* to determine op-
timal paths. However, when an actor deviates from the opti-
mal path, a typical application of A* executes a new search
from the deviation point to the goal. This approach redun-
dantly calculates paths that may have been examined during
the initial search, rather than leveraging previous information.
We introduce Plan-B A* (PBA*), which uses A* for the ini-
tial search, and substantially reduces the number of searched
states during all subsequent searches, while incurring mini-
mal space overhead. PBA* not only remembers certain states
it has examined, it proactively creates solution paths for the
most likely deviations. In our experiments, PBA* searches
only 10% of the A* search space when recovering from exe-
cution errors by storing a limited amount of search history.

Introduction

A* (Nilsson 1971) is a powerful, informed search algorithm
that uses heuristics to guide the search along paths that are
most likely to lead to the goal. Applications of A* are found
in countless areas, including the computer gaming industry,
robot path planning, GPS navigation devices, and a wide va-
riety of other optimization applications. In some of those
environments, the execution of the plan is either left to a hu-
man user, who may make an error (e.g., missing a turn while
following GPS directions), or can be impacted by the actions
of other actors in the environment (e.g., player actions can
affect non-player characters in computer games). These en-
vironments may also have the property that there is adequate
planning time at the beginning, or as a background process
during execution, but if a deviation occurs while executing
the plan the system needs to recover quickly.

If we were to apply A* in a naive way in these environ-
ments, we would simply search again from the point of the
deviation, thereby recalculating many paths that we looked
at the first time. Depending on the complexity of the envi-
ronment, this may not satisfy the need to recover quickly.
When humans make plans, we will often proactively make
a backup plan—a plan “B”—to follow if an undesirable but
not unlikely event occurs that foils the execution of our pre-
ferred plan. These B-plans are the inspiration for Plan-B

Copyright (© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

880

Peter R. Wurman
wurman @ncsu.edu
North Carolina State University
Raleigh, NC 27695

A* (PBA¥*). During the initial planning phase, PBA* inten-
tionally searches the most likely deviations from the optimal
path and caches the best paths. If a deviation occurs, we are
more likely to have the new answer already computed. If
the deviation was not along one of the plan-B paths, then
we search from the point of the deviation, but leverage what
we learned in previous searches to more quickly identify the
optimal recovery path.

Alternative Approaches

There are several other approaches that leverage A* for var-
ious types of problem spaces. For example, after a devi-
ation local-repair strategies search for a route that returns
to the original path, however, they do not support proactive
paths, nor do they preserve path optimality. Dynamic A*
(D*) (Stentz 1995; Likhachev et al. 2005) and LifeLong
Planning A* (LPA*) (Koenig, Likhachev, and Furcy 2001;
Likhachev and Koenig 2005) are designed for environments
in which the world changes. If the number of edge cost up-
dates is small, the time performance of these algorithms is
generally quite good, but many changes to the world state
will dramatically increase both the storage and time penal-
ties.

In contrast, PBA* is designed for environments in which
the world is static, but the execution of the path may fail.
For example, D* recalculates f and g values for states on
OPEN and re-sorts them as the ‘robot’ traverses the expected
path. However, if the robot deviates, OPEN is invalidated
and recalculating state values is insufficient to resolve dis-
crepancies. Instead, D* would have to re-start, and since
D* introduces storage and time overhead during the initial
search, this overhead is compounded by new searches after
deviations. Therefore, PBA* may be preferable in storage
and time restricted static domains.

Markov decision processes (MDPs) represent another
class of problems in which the optimal path is defined as the
one that minimizes the expected overall cost. However, the
minimal expected-cost path often differs from the best non-
stochastic path. In a military setting, missions often have
a primary target and a secondary target. If circumstances
prevent the soldiers from achieving the primary objective,
they quickly move on to the next-best target. When a foot-
ball quarterback runs a passing play, he generally tries to
throw to a primary receiver. If that man is covered by a de-

Figure 1: An example grid traversal problem. The circle
represents a 50% chance of deviating at the intersection. The
bold line path is optimal with cost 4 and expected utility 8.5.
The actual and expected utility cost for the dashed line is 6.

Figure 2: The three classes of paths in PBA*. The top line
from S to G is the initial goal path, I. During the proactive
phase, PBA* finds a plan-B path, B. When executing the
path, the actor deviates at cell x and finds himself off the
known path and in state S’. S’ becomes the new start node
for a search that discovers path R, which connects back to a
cell y on path B. At that point, the optimal reactive path is
known.

fender, he quickly targets the secondary receiver, and maybe
a tertiary receiver if necessary. Figure 1 illustrates the dif-
ference between the two approaches in a simple grid envi-
ronment. The objective is to travel from S to G. The circle
on the middle-left of the grid represents a stochastic event;
all other transitions are deterministic. When attempting to
travel through the circle, there is a 50% chance of being di-
rected down the wrong path. Algorithms that minimize ex-
pected utility will return the dashed line path with expected
cost 6. PBA* will return the bold line with ideal cost 4 but
expected cost of 8.5. PBA* would also store a plan-B path
through the middle of the grid should the stochastic event
not go in favor of the traveler.

PBA* Algorithm

There are three phases to the algorithm: the planning phase
that finds the initial goal path from the start node to the goal;
the proactive phase, which finds plan-B backup paths from
deviation-prone cells to the goal; and the reactive phase,
which determines a reactive goal path following a user de-
viation. These phases produce three classes of paths: initial
goal paths I, backup paths that are proactively discovered,
B, and reactive goal paths found following a deviation, R.
Figure 2 illustrates the three classes of paths.

For the purposes of this explanation, and the experimental
results that follow, we present the algorithm in the context of
searching large square grids with varying edge weights and
error probabilities on the nodes.

881

Planning Phase

In the planning phase, the initial search uses A* to find an
optimal path from the start node to the goal node; this path is
designated 1. Once a goal path is determined, the algorithm
traverses the path, updates each node’s i value with the ac-
tual distance to the goal, and stores each node and its goal
path in a hash table called KNOWN.

In the context of a square grid, the length of the goal
path is sublinearly proportional to the number of cells in the
grid, and therefore KNOWN requires a relatively small stor-
age overhead when compared to the size of OPEN.

Proactive Phase

In the proactive phase, the algorithm investigates the goal
path for potential deviations. It begins at the start node and
checks the probability of transitioning to each of its children
given the intention to follow the goal path. If the probability
of making that particular mistake is greater than a probabil-
ity threshold, «, the child is added to a priority queue of po-
tential deviation cells called BACKUP. BACKUP is ordered
by the probability of reaching each deviation cell, which en-
sures that the highest risk cells are processed first.

If the cell in question is separated from I by two devia-
tions, the probability of reaching it is the product of the two
errors that were required to reach the branch: the first error
to deviate from path 7, followed by a second error to deviate
off a proactive path B. For example, if a cell is a grandchild
of the start node, and the two nodes traveled to reach the de-
viant grandchild each have a mistake probability of 0.3, then
the probability of reaching the grandchild is 0.3*0.3=0.09.
If the algorithm encounters a cell more than once, the high-
est probability occurrence persists and is used to calculate
the deviation probability for all descendants. In the exam-
ple grid world, this occurs frequently; every turn in a path
has at least two cells on the goal path that share a neighbor.
Clearly, with error probabilities compounding in this way,
the likelihood of looking at paths that require more than a
few deviations drops off dramatically.

After evaluating a path and storing the potential devia-
tions, the proactive phase finds plan-B goal paths for each
deviation cell in BACKUP. These paths are added to the set
B, and the cells are added to KNOWN. Once the process is
complete, there is a known goal path for all the cells on each
B path, which PBA* can leverage if the user deviates into
any of these cells.

Also note that this approach allows PBA* to run in the
background, which lets the user start their route as soon as
the initial / path is found. The proactive phase of PBA* can
run with a fixed time limit or fixed memory limit. Further-
more, it can run continuously, looking ahead at the next steps
in the action plan and computing deviation paths for the next
actions. In our simulations, we chose to let the proactive
phase complete without an imposed time limit.

Reactive Phase

When a user deviates from the goal path, the algorithm re-
acts by finding an optimal detour path; these paths are the
set R. This search behaves exactly the same as A*, and the

PBA¥* initial search, except it checks every cell to determine
if it is on KNOWN before it is added to OPEN. If it is, the
cell is added to OPEN using its actual 4 value, instead of the
heuristic estimate of h. This is one of the central features
in the algorithm: when a cell y is examined that is on both
OPEN and KNOWN, the search immediately halts and deter-
mines the optimal path from the start cell to y, and concate-
nates the known path from y to the goal. This path is guar-
anteed to be optimal because y’s & value is actual and not a
heuristic value. Therefore, all other nodes that could have
resulted in shorter goal paths have already been explored.

Pseudocode

The pseudocode for PBA* is shown below.

START(Start_Node, Goal_Node)
1: Initialize graph v, KNOWN
2: path = SEARCH (Start_Node, Goal_Node)
3: return path

SEARCH(Start_Node, Goal_Node)
1: path = GETPATH (Start_Node, Goal _Node)
2: TRAVERSEPATH(path)
3: PROACTIVE(Start_Node, Goal_Node)
4: return path

TRAVERSEPATH(Path)

1: for every node n in Path do

2: if KNOWN does not contain n then

3: Store n and its goal path in KNOWN
4: endif

5: end for

PROACTIVE(Start_Node, Goal_Node)

1: Initialize Backup
2: Backup.Push(Start_Node)
3: while Backup is not empty do

4: Current_Node = Backup.Pop
5: if Current_Node.ProbReached > « then
6: for every child m of Current_Node do
7: m.ProbReached = Current_Node.ProbReached *
m.ProbDeviation
8: Backup.Push(m)
9: end for
10: SEARCH (Current_Node, Goal_Node)
11: endif

12: end while

GETPATH(Start_Node, Goal _Node)
. Initialize Open, Closed
Open.Push(Start_Node)
if Open is empty then
return failure
end if
n = Open.Pop()
Closed.Push(n)
if n is Goal_Node then

AN A o ey

882

9: return the goal path obtained by following parent

pointers from n to Start_Node in y

10: end if

11: if n is on KNOWN then

12: return the goal path obtained by following parent
pointers from 7 to Start_Node in 7y concatenated with
the known path from n to Goal_Node

13: end if

14: Expand node n and generate the set M of its successors

15: for every node m of M do

16: if m on KNOWN then

17: overwrite m’s heuristic h value with its actual G

distance

18: endif

19: end for

20: for every node m of M not on Open or Closed do

21: Open.Push(m)

22: end for

23: for every node m of M on Open and not in KNOWN do

24: if the new m’s h value is cheaper than m’s h value on
Open then

25: update m’s h value on Open

26: end if

27: if the new estimated path is cheaper than the previous
path then

28: update the path value on Closed and go to step 20

with each of m’s successors
29: endif
30: end for

31: Reorder Open in order of increasing f values
32: Goto Step 3

There may be a significant time overhead during the
proactive phase depending on the specific problem space,
however this was usually less than 20% of the correspond-
ing A* search space in our simulations using the cost and
deviation probability allocation techniques discussed.

Experimental Setup

Our environment is static, and therefore it is unnecessary
to employ a storage intensive algorithm or to store the en-
tire search space to support edge cost updates. PBA* only
stores the grid cells along known goal paths, thus limiting
the amount of space required.

We tested PBA* in a 4-connected square grid world that
supports movements up, down, right, and left, and does not
allow diagonal transitions, although the algorithm has no
dependencies on a square grid, nor these directional spec-
ifications. The start and goal nodes are defined within the
grid world. Additionally, the environment maintains edge
costs and the probability of deviating when traveling be-
tween any two cells. The edge deviation probability signifies
the chance that a user deviates when traveling over the edge,
and is used to determine which edge is traversed after a devi-
ation. For example, if an edge has deviation probability 0.25,
than there’s a 25% chance that the user would go the wrong
way, and a 75% chance of the user traversing the edge suc-
cessfully. If the user deviates, PBA* evaluates the potential
next cells using the weighted inverse of the error probability

[\S)
0

w2
€01

10 ‘T

~
€0°1
- el
EN

4,05

3 G

10°¢

Figure 3: PBA* in a Grid World. The solid line is the op-
timal goal path from start node S to goal node G, and the
dotted line at D2 represents the new path after deviating to
node C2. The dotted line rejoins the original path at C5
because PBA* found an optimal path through C5, and the
search halted. The tuples represent Edge Cost, Edge Devia-
tion Probability. In reality, all edges have a tuple, but only
the tuples along the discussed paths are shown.

of each deviant cell. For example, if there are three possible
deviant children with deviation probabilities {0.2, 0.1, 0.3}
then their weighted probabilities are {1/3, 1/6, 1/2}.

Figure 3 depicts a simple 5x5 environment. Every edge
has a bidirectional tuple Transition Cost, Probability of De-
viating that is available at runtime. For simplicity, the fig-
ure only shows edge tuples for the two paths discussed in
the diagram. We did not incorporate obstacles, although the
environment can easily support known obstacles by setting
edge costs to infinity.

To test the algorithm in our environment, we ran numer-
ous simulations while varying «, the grid size, and the prob-
ability distribution used to assign edge deviation probabil-
ities. We used the Manhattan distance heuristic for 4. A
single run creates a new, random grid world, with random
start and goal nodes. Edge costs are real numbers uniformly
distributed in [1-200] inclusive and are known at runtime.

For modeling purposes, we used several different distri-
butions to set the deviation probabilities in the experiments.
Results are shown for uniform, normal and exponential dis-
tributions. The distributions are meant to represent realistic
variations, and a real domain would have its own, natural
distribution. The mean for both the uniform and normal dis-
tributions is 0.5, and the standard deviation for the normal
distribution is 0.15. If any of the randomly generated values
are below 0O or above 1, they are set to O or 1, respectively.
Additionally, a controlled test case was used that creates two
unavoidable sets of edges between the start and goal nodes
that allows us to analyze results with at least two deviations.
All edges in the unavoidable sets have deviation probabil-
ity one, and all other edges have probabilities equal to zero.
Therefore, the search will only deviate at the edges that have
probability one, unless there is not enough space to create
the unavoidable edges because the distance between start
and goal nodes is less than three moves. We will call this
test case unavoidable deviation and Figure 4 demonstrates
the unavoidable sets of edges in a sample grid world.

883

[}

wn

G

Figure 4: The unavoidable deviation test case: the bold lines
represent edges with mistake probability one; all other edges
have probability zero. Therefore, there will be at least two
deviations when traveling from the start, S, to the goal node,
G, given that the distance from S to G is at least three.

For the exponential distribution, the lambda parameter
was determined using a range of correctness probabilities
between 0.80 and 0.95, in increments of 0.05, such that the
probability of correctly traversing any given edge is equal to
the current correctness value. For example, if the correct-
ness value is 0.80, then the simulation sets lambda such that
80% of all moves are expected to be correct, and 20% will
result in a deviation.

The distinct traits exhibited by these distributions deter-
mine how different factors affect PBA* and in which envi-
ronments it should be used; we will use the GPS motivat-
ing example to demonstrate different distribution uses. The
PBA* reactive phase yields very few R class paths using the
exponential distribution because the deviation probabilities
are generally low, but still allows for some high probability
transitions. This distribution may be used to simulate partic-
ularly bad intersections, or perhaps country roads that are of-
ten easy to navigate, until the user reaches a town. Similarly,
using the normal distribution yields many more R class paths
and can represent city environments where deviations, both
intentional and accidental, are more likely. The uniform dis-
tribution may represent an unknown environment and pro-
vides a control to which we compare the other distributions.
Finally, the unavoidable deviation test case guarantees de-
viations in most runs, which could simulate closed roads or
obstacles that are not known until the user encounters them.

The simulations generate results through numerous rep-
etitions to calculate reliable and comparable performance
metrics. The algorithm finds an optimal path, traverses it
from the start node, and then identifies all possible devia-
tions along every search branch until the deviation probabil-
ity is less than . When the traversal is complete, the sim-
ulation walks the goal path looking for deviations. It uses a
random number generator and the edge probabilities to de-
termine when the user deviates, at which point it searches for
an R path. If the user deviates, it randomly selects the next
cell based on the weighted inverse of each child’s deviation
probability, as previously explained. This process continues
until the traversal reaches the goal node.

The above process occurs for each grid dimension be-

100.00%

I B T B B B
< 99.80%
g
2 £99.60%
» o
£ £ 99.40%
o C
© o
5 99.20%
o
99.00% : : :
0 100 200 300 400

Grid Dimension

Figure 5: The probability PBA* finds a path on KNOWN.

tween 10 and 310 units, in increments of 50, and the results
are averaged and returned to the running simulation. Grid
dimension refers to the length of one side of the square grid
world: a 10x10 grid has grid size 100 and grid dimension
10. We tested the algorithm using « values between 0.01
and 0.40. We did not test o values greater than 0.40 because
generally cells with deviation probabilities greater than 40%
are not common, few B paths would be found because most
deviations would not meet the « threshold, and planning has
limited benefits in such deviation-prone environments.

Results

When a path on KNOWN is not found, PBA* empirically
behaves the same as A*. As grid sizes increase, so does
the probability that PBA* will encounter a cell on KNOWN
while calculating a new reactive path. The more frequently
the algorithm encounters paths on KNOWN, the greater the
performance gain. To evaluate the algorithm, it is impor-
tant to determine how far along the discovery usually occurs.
The algorithm is more useful if it reconnects with paths on
KNOWN closer to the start node than if it reconnects near the
goal node. Figure 5 shows the probability of reconnecting
to a path on KNOWN using an exponential distribution. The
average length of the KNOWN path compared to the final
goal path was 97%, excluding grid dimension 10. There-
fore, PBA* only searched an average of 3% of the actual
goal path before reconnecting. Figure 6 shows the corre-
sponding percentages searched of the A* search space. We
compare against A* because it is leveraged by PBA*, it is
the standard search algorithm in the field, and to show that
PBA* improves performance over conventional A*.

PBA* requires a limited amount of memory overhead to
store KNOWN. Average performance results for all distribu-
tions are shown in Table 1, including the storage overhead
per distribution. These percentages represent averages over
all « and grid dimensions, except dimension 10 because it
skewed the values and PBA* is not suggested for such small
environments. Overheads are calculated by comparing the
PBA* values to A*. If A* requires 1000 nodes of storage
and PBA* has 0.50% storage overhead, then PBA* requires
1005 nodes.

884

35%
D 30%
S
= 25%
b E
D 20% H—7
[0)) * .
g
S 10% 4 i 3
BT T T G
&5/0

O% T T T

0 100 200 300 400

Grid Dimension

Figure 6: Percentage PBA* searched of the A* search space
as a function of grid size.

Proactive Reactive
Storage | Phase Time Phase
Distribution | Overhead Overhead % of A*
Uniform 0.44% 8.16% 9.51%
Normal 0.52% 13.21% 10.37%
Exponential 0.52% 10.34% 10.28%
Unavoidable 0.51% 1.55% 10.22%
Average 0.50% 8.32% 10.10%

Table 1: Average results using different deviation probabil-
ity assignments.

We varied o between 0.1 and 0.4, in increments of 0.1,
to gauge the impact of searching different size areas around
potential deviations; we also set @=0.01 in a separate exper-
iment, which is discussed below. The results do not show a
significant performance distinction within this range; for the
exponential distribution, there was about a 2.6% difference
in the A* search space explored during the reactive phase
between « equaling 0.1 and 0.4. This is likely caused by
the fact that multiplying successive edge deviation probabil-
ities quickly yields values below «, regardless of the actual
« value. Therefore, when « is set to 0.1, the algorithm does
not search significantly more cells than when « is set to 0.4.
On average, a=0.1 has a 14% proactive phase time overhead
and searches 10% of the A* search space during the reac-
tive phase. a=0.4 has a 10% proactive phase time overhead
and searches 12.6% of the search space during the reactive
phase. Therefore, PBA* can be used in environments with
low « values if the additional overhead is acceptable for the
domain.

The exponential distribution favors probabilities closer to
zero, which cause fewer overall deviations than the other
distributions. Therefore, the algorithm contributed fewer R
and P paths to KNOWN. This resulted in a mere 0.52% space
overhead, while searching 10.28% of the A* search space
during the reactive phase.

The results discussed so far involve a values between 0.1
and 0.4. To simulate more extreme scenarios, we set «=0.01,

which searches most possible deviations. We used a normal
distribution to assign edge deviation probabilities. On aver-
age, PBA* searched 9.20% of the A* search space, exclud-
ing grid dimension 10, with 1% additional space overhead
and 20% proactive phase time overhead. Therefore, less of
the A* search space was searched during the reactive phase,
at the cost of more time overhead during the proactive phase.

Storing the I and R paths significantly improves perfor-
mance, often because the optimal path from a deviated cell
often leads immediately (U-turns), or quickly, back to the
original I or R path. In order to determine what effect the
B paths have on results, we ran several simulations that ex-
cluded the proactive phase of the algorithm. For each grid
dimension, we looked at the number of states explored dur-
ing the replan following a deviation, both with and without
the proactive phase. Table 2 shows the results using the nor-
mal distribution to assign deviation probabilities.

PBA* With PBA* Without
Grid | Proactive: # of | Proactive: # of | Percentage
Dim. | States Searched | States Searched | Searched
10 156 201 77.61%
60 11853 17199 68.92%
110 57112 85842 66.53%
160 148969 277650 53.65%
210 352339 591707 59.55%
260 745853 1046693 71.26%
310 976002 1834180 53.21%

Table 2: The table shows the cumulative number of states
explored during the reactive phase of 100 simulations, both
with and without the proactive phase, using the normal dis-
tribution to assign deviation probabilities. The last column
compares the search space explored by PBA* with the proac-
tive phase to without the proactive phase.

By predicting when and where users will deviate, PBA*
only searches about 10% of the A* search space follow-
ing an actual deviation in a normally distributed probabil-
ity space. The average space overhead associated with this
improved performance is less than 1%. It is evident from
Table 2 that B paths greatly contribute to the overall per-
formance improvements. On average, over 40% of all sub-
paths found during PBA* are B paths; 35% are R paths; and
the remaining 25% are [paths. Therefore, very small space
overhead can lead to large performance gains, with no asso-
ciated time penalty. Techniques exist that improve A* per-
formance, and any A* improvements are likely to improve
the performance of PBA*.

PBA* begins looking for potential deviations in the proac-
tive phase, and can run as a background process; even if a
deviation occurs during this overhead period, it is likely that
the algorithm has already found a goal path.

Conclusion

PBA¥* yields large performance gains over A* during sub-
sequent searches of static domains by proactively calculat-
ing plan-B paths and saving information about known goal

885

paths for use in the reactive phase. When environment de-
viation probabilities are available, proactively searching the
environment for likely deviations and storing optimal plan-
B goal paths can result in searching only about 10% of the
A* search space following a deviation, while preserving op-
timality. Our experiments suggest that it may be advanta-
geous to set o to a low value and let the PBA* proactive
phase run as a background process.

Other techniques exist for replanning, but PBA* provides
strong performance improvements and requires minimal ad-
ditional storage, usually less than 1%. PBA* is not designed
for partial information environments, and does not support
dynamically adding and removing obstacles. It is also not
designed for especially small domains; our results for grid
dimension 10 were worse than all larger dimensions.

To further evaluate and validate our results, we intend to
gather actual deviation probability data from live systems
and provide more accurate simulations to determine the ef-
fectiveness of PBA*.

Acknowledgments

The work of P. Breimyer was funded by the Scientific Data
Management Center under the Department of Energy’s Sci-
entific Discovery through Advanced Computing program.

References

Bonet, B., and Geffner, H. 2001. Planning as Heuristic
Search. Artificial Intelligence 129(1-2):5-33.

Ferguson, D.; Likhachev, M.; and Stentz, A. 2005. A
Guide to Heuristic-Based Path Planning. In Proceedings
of the Workshop on Planning under Uncertainty for Au-
tonomous Systems at The International Conference on Au-
tomated Planning and Scheduling (ICAPS).

Koenig, S.; Likhachev, M.; and Furcy, D. 2001. Lifelong
Planning A*. Artificial Intelligence Journal 155(1-2):93—
146.

Likhachev, M., and Koenig, S. 2005. A Generalized
Framework for Lifelong Planning A* Search. In Proceed-
ings of the International Conference on Automated Plan-
ning and Scheduling (ICAPS).

Likhachev, M.; Ferguson, D.; Gordon, G.; Stentz, A.; and
Thrun, S. 2005. Anytime Dynamic A*: An Anytime,
Replanning Algorithm. In Proceedings of the Interna-
tional Conference on Artificial Intelligence Planning and
Scheduling, 262-271.

Likhachev, M. 2005. Search-based Planning for Large Dy-
namic Environments. Ph.D. Dissertation, Carnegie Mellon
University.

Nilsson, N. 1971. Problem-Solving Methods in Artificial
Intelligence. McGraw-Hill.

Stentz, A. 1995. The Focused D* Algorithm for Real-
Time Replanning. In Proceedings of the International Joint
Conference on Artificial Intelligence, 1652—1659.

