
CRF-OPT: An Efficient High-Quality Conditional Random Field S olver∗

Minmin Chen, Yixin Chen, and Michael R. Brent
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130, USA

{mc15,chen,brent}@cse.wustl.edu

Abstract

Conditional random field (CRF) is a popular
graphical model for sequence labeling. The flexi-
bility of CRF poses significant computational chal-
lenges for training. Using existing optimization
packages often leads to long training time and un-
satisfactory results. In this paper, we develop CRF-
OPT, a general CRF training package, to improve
the efficiency and quality for training CRFs.
We propose two improved versions of the forward-
backward algorithm that exploit redundancy and
reduce the time by several orders of magnitudes.
Further, we propose an exponential transforma-
tion that enforces sufficient step sizes for quasi-
Newton methods. The technique improves the
convergence quality, leading to better training re-
sults. We evaluate CRF-OPT on a gene prediction
task on pathogenic DNA sequences, and show that
it is faster and achieves better prediction accuracy
than both the HMM models and the original CRF
model without exponential transformation.

Introduction
Conditional random field (CRF) (Lafferty, McCallum,
& Pereira 2001) is a major model for sequential data
labeling. It significantly relaxes the independence as-
sumptions of the hidden Markov model (HMM). How-
ever, the added flexibility of CRF greatly increases the
optimization difficulties. In most applications, an op-
timization package is called to learn the CRF weights.
We find that for large-scale problems this approach can
be slow and result in unsatisfactory solution quality.

In this paper, we propose to enhance generic opti-
mization solvers by a number of techniques that are de-
signed specifically for improving the speed and quality
of CRF training. First, we observe that, in gradient-
based optimization, most of the time is spent on the
evaluations of objective and gradients. For example,
TAO (Bensonet al. 2005), a state-of-the-art quasi-
Newton solver, requires up to two days on a PC in a

∗This work was supported by Microsoft New Faculty Fel-
lowship and an ECPI grant from the Department of Energy.
Copyright c© 2008, Association for the Advancement of Arti-
ficial Intelligence (www.aaai.org). All rights reserved.

gene prediction task with only 1615 bases. The real
problem may have more than 100K bases. We find
that, there are much computational redundancy in the
standard implementation of the forward-backward al-
gorithm. We propose two techniques that can improve
the speed by eliminating the redundancy.

CRF training is a convex continuous optimization
problem for which gradient-based search algorithms
have solid theoretical convergence guarantees. How-
ever, we observe that, gradient-based search algorithms
on CRF models usually terminate prematurely without
reaching the actual optimal point. Moreover, different
starting points usually lead to various different solutions
other than the unique global optimum. We propose an
exponential transformation technique that can force suf-
ficient reduction in each step and achieve much better
convergence quality.

Parameter Estimation for CRF
As shown in Figure 1(a), a CRF is a graphical
model based on a graphG = (V, E), whereY =
(Yv)v∈V is the set of hidden variables, andX is the
set of observation variables. The random variablesYv

obey the Markov property:p(Yv|X, Yu, · · · , Yw) =
p(Yv|X, Yw, w ∼ v), wherew ∼ v indicates thatw
andv are neighbors inG. Each clique in G defines a
featurefor the CRF.

In this paper, we focus on linear-chain CRF in
which each feature only involves two consecutive hid-
den states as shown in Figure 1(b). A linear-chain CRF
defines the conditional distribution of a label sequence
y, given the observation sequencex, as

p(y|x) =
1

Z(x)
exp

{

T
∑

t=1

F
∑

k=1

λkfk(yt, yt−1, xt)

}

, (1)

where Λ = {λk} ∈ RF is the weight vector, and
{fk(yt, yt−1, xt)}

F
k=1 is a set of feature functions, and

Z(x) is a normalization function

Z(x) =
∑

y’

exp

{

T
∑

t=1

F
∑

k=1

λkfk(y′
t, y

′
t−1, xt)

}

. (2)

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

1018

Figure 1: (a) A general CRF model. (b) A linear-chain
CRF model.

The predefinedfeaturefk(yc, xc) typically returns a
binary value. For example, a feature can be defined as:

fk(yc, xc) = 1{yt−1=NC}1{yt=C}1{xt···t+2=′ATG′}

It is 1 when the hidden stateyt−1 is NC,yt is C, and the
observations at timet to t + 2 are ’ATG’.

Given training dataD =
{

(x(i), y(i))
}N

i=1
, to esti-

mate the weights{λk}, we typically maximize a penal-
ized conditional log likelihood:

maximizeΛ O(Λ) =

N
∑

i=1

log p(y(i)|x(i)) −

F
∑

k=1

λ2
k

2δ2
. (3)

The second term is a zero-mean,δ2-variance gaussian
prior to penalize large weight norm (McCallum 2003).

It is a convex optimization problem with only one
global optimum. Generally, the objective function can-
not be maximized in closed form and numerical opti-
mization is used.

Efficient Function Evaluations
We have developed CRF-OPT, a package for general
CRF training, on top of the Limited Memory Variable
Metric (LMVM) solver in the Toolkit for Advanced
Optimization (TAO) (Bensonet al. 2005). LMVM
is a quasi-Newton method that requires only function
and gradient information, which are evaluated by the
forward-backward algorithm.
The forward-backward algorithm
We briefly review the standard forward-backward algo-
rithm which is a core routine for CRF training. With-
out loss of generality, we assume that there is only one
(N = 1) training sequence.

We discuss the forward process as the backward pro-
cess is symmetric. LetS be the set of all possible states,
andstart be an arbitrary fixed starting state. For each
index t ∈ 1, 2, · · · , T , and labels ∈ S, the forward
variablesαt(s) can be defined recursively as:

αt(s) =
∑

s′∈S

αt−1(s
′) exp(Φt(s

′, s, xt)), (4)

where Φt(s
′, s, xt) =

∑

k∈Kt(s′,s) λk, α0 is 1
for start and 0 for other states, andKt(s

′, s) =
{k | fk(s′, s, xt) = 1, k = 1 · · ·F} is the set of active
features for a given transition at timet.

operation exp + * / FE
time (sec) 8.093 0.203 0.203 0.203 0.448

Table 1:Timing results for108 runs of some operations and
a 7-th order feature evaluation (FE) on a PC with Xeon 2.4
GHz CPU and 2GB memory running Linux.

In practice, to make the code numerically stable, the
forward variablesαt are processed in logarithmic forms
by taking logarithms for both sides of equation (4) :

log(αt(s)) = log(αt−1(s0)) + Φt(s0, s, xt)

+ log

„

1 +
X

s′ 6=s0

exp

„

log(αt−1(s
′)) + Φt(s

′
, s, xt)

− log(αt−1(s0)) − Φt(s0, s, xt)

««

(5)

wheres0 ∈ S can be any state. We sets0 to be the
state with the maximumlog(αt−1(s)) to further im-
prove the numerical stability when calculating the ex-
ponential part.

We analyze the complexity of various operations
used by forward-backward. LetT be the length of the
training sequence,F the total number of features,M
the number of possible states (M = |S|), and I be
the number of iterations taken by the optimization al-
gorithm to converge.

Most existing CRF packages, such as MALLET (Mc-
Callum 2002), MinorThird (Cohen 2004), Sarawagi’s
package (Sarawagiet al. 2004), and Murphy’s pack-
age (Murphy & Schmidt 2006), iterate through all
features to find the set of indices of active fea-
tures Kt(s

′, s) for each stept, and each transition
(s′, s). Therefore, a full forward computation requires
Θ(TFM2) feature evaluations. Each iteration of a
gradient-based optimization algorithm requires an ob-
jective and gradient evaluation, resulting in a total of
Θ(TFM2I) feature evaluations. Each time we com-
pute log(αt(s)) using (5), we need to performΘ(M)
exponentiations. Therefore, the optimization requires
in totalΘ(TM2I) exponentiations.

We examine the complexity of each basic operation.
The results are shown in Table 1. We see that in our
platform, exp is 40 times more expensive than simple
operations. This motivates us to reduce the number of
exponentiations in the following two implementations
of forward-backward.
Feature-vector fast forward (FVFF)
We propose a feature-vector fast forward (FVFF)
method shown in Algorithm 1. It implements the
forward process to computeαt(s). In this method,
Kt(s, s

′) is the set ofactive features: Kt(s, s
′) =

{k|fk(s′, s, xt) = 1, k = 1, · · · , F}. Φt(s
′, s, xt) is

the sum of weights of allactive featuresat stept, with
transition(s′, s): Φt(s

′, s, xt) =
∑

k∈Kt(s′,s) λk.

Since the active feature setKt(s, s
′) remains identi-

cal in each iteration of the optimizer, a preprocessing
phase (Line 2) is used in Algorithm 1 to construct and
storeKt(s, s

′) for all thet, s′ ands.

1019

preprocessing preprocessing running feature number of
time space space evaluations exponentiations

standard Θ(1) Θ(1) Θ(TM) Θ(TFM2I) Θ(TM2I)
FVFF Θ(TFM2) Θ(TV M2) Θ(TV M2 + F) Θ(1) Θ(FaI)
OSFF Θ(TG + JFM2) Θ(TP + JV M2) Θ(TM + JV M2) Θ(1) Θ(JM2I)

Table 2:Comparison of the standard implementation of forward-backward and the two proposed schemes, assuming each feature
evaluation takesΘ(1) time.

The forward computation is performed once in each
iteration of the optimizer. For those features included
in at least one of the active feature sets, the exponential
weightEk is precomputed and stored to avoid future ex-
ponential operations (Line 4). As in Line 6,C(t, s′, s)
is computed using the production ofEk. The loga-
rithm of each forward variablelog(αt(s)) is stored in
A(t, s), ∀t = 1, . . . , T, s ∈ S.
Proposition 1. The FVFF algorithm correctly com-
putes the forward variables and we have

A(t, s) = log(αt(s)), ∀t = 1, · · · , T, s ∈ S.

We omit the full proof but give some key equa-
tions here. The key for reducing exponential operations
is to computeC(t, s′, s), which is the exponential of
Φt(s

′, s, xt), using precomputedEk:

C(t, s′, s) = exp

(

Φt(s
′, s, xt)

)

=
∏

k∈Kt(s′,s)

Ek

B(t, s) corresponds to the first part of (5):

B(t, s) = log(αt−1(s0)) + Φt(s0, s, xt)

L(t, s) stores the term within the second log of (5):

L(t, s) =
∑

s′ 6=s0

exp

(

log(αt−1(s
′)) + Φt(s

′, s, xt)

− log(αt−1(s0)) − Φt(s0, s, xt)

)

+ 1

Let V be the maximum number of active features for
any given transition(s′, s) andt. Typically V is very
small comparing toF or T . The complexity of FVFF
is shown in the second line of Table 2. Comparing
to the cost of the standard implementation of forward-
backward algorithm, we see several differences. First,
in the preprocessing phase, FVFF takesΘ(TFM2)
time andΘ(TV M2) space to figure out and store the
Kt(s

′, s) sets. Second, in FVFF, theexp operation only
takes place in the calculation of theEk values for those
features appear in one of theKt(s

′, s) sets, in each iter-
ation of the optimizer. LetFa be the total number of ac-
tive features. There are at mostΘ(FaI) exp operations
in contrast toΘ(TM2I) for standard implementation.
In most applications, we haveFa ≪ F ≪ TM2.

Observation-substring fast forward (OSFF)
Through experimentation, we have found that a great
number ofKt(s

′, s) sets remain the same for different

time stepst. Certain observation patterns repeatedly oc-
cur in the observation sequence, which motivate a new
observation-substring fast forward (OSFF) algorithm.

For each featurefk(s′, s, xt), we first find out the ob-
servation patternp. For example, the observation pat-
ternp1 for featuref1(s

′, s, xt−1 = a, xt = b, xt+1 = c)
is (ab, c), where the comma here indicates the posi-
tion of t. The pattern forf3(s

′, s, xt−2 = a, xt−1 =
a, xt+1 = c) is (aa∗, c), where∗ means this position is
not defined. LetP be the set of all observation patterns.

Algorithm 1: featurevector fast forward (FVFF)
1 A. preprocessing phase(executed once)
2 computeKt(s

′, s),∀ t = 1..T , s, s′ ∈ S;
3 B. forward computation (for each iteration)
4 computeEk = exp(λk) if k ∈ anyKt(s

′, s);
5 foreach states ∈ S do
6 setA(1, s) = Φ1(start, s, x1), L(1, s) = 1,

C(1, start, s) =
Q

k∈K1(start,s) Ek;
7 end do;
8 sets′0 = start;
9 for t = 2 to T do
10 finds0 ∈ S that maximizesA(t − 1, s0);
11 foreach states ∈ S do
12 setC(t, s0, s) =

Q

k∈Kt(s0,s) Ek;
13 end do;
14 foreach states ∈ S do
15 /* using precomputedKt(s

′, s) */
setB(t, s) = A(t − 1, s0) + Φt(s0, s, xt);

16 setL(t, s) = 1;
17 foreach states′ ∈ S, s′ 6= s0 do
18 setC(t, s′, s) =

Q

k∈Kt(s′,s)
Ek ;

19 setL(t, s) = L(t, s)+
L(t−1,s′)C(t−1,s′0,s′)C(t,s′,s)

L(t−1,s0)C(t−1,s′
0
,s0)C(t,s0,s)

;
20 end do;
21 setA(t, s) = B(t, s) + log(L(t, s));
22 end do;
23 sets′0 = s0;
24 end do;

If a patternp2 must be satisfied when patternp1 is
satisfied, we say thatp1 impliesp2. For example,(a, bc)
implies(a, b). We construct apattern implication forest
Fp as shown in Figure 4. Each node inFp represents
a pattern inP , and is distributed in different layers of
Fp according to the number of defined positions in the
pattern. There is an edgep1 → p2 if p1 impliesp2.

We then collect the active pattern setΩ, a subset of
P , by mapping each stept of the training sequence
into patterns. For eacht ∈ 1, 2, · · · , T , we searchFp

in a top-down fashion to find those highest-level pat-
terns matching the observations att. For example, if

1020

Figure 2: A pattern implication forest illustrating the
implication relations between observation patterns.

the observations att is (AT,G), then (AT,G) is selected
but (AT,) is not. The patterns are added toΩ, and the
mapping of stept is saved inπ(t), the set of indices of
matched patterns inΩ. Let J = |Ω|.

For each of the patternωj , we define thepattern im-
plication setKω

j , j = 1..J as:

Kω
j = {m|pm ∈ P, pm is implied byωj}

The set can be easily constructed by collecting all the
descendants of patternωj in Fp.

Further, we define thepattern-transition set
Kω

j (s′, s), ∀s′, s ∈ S, j = 1..J as:

Kω
j (s′, s) = {k|fk(s′, s, pm) is a feature, m ∈ Kω

j)}

wherepm is a pattern in the pattern implication forest.
Normally, there are lots of implication relationships

between the observation patterns appeared in the fea-
tures and we haveJ ≪ F .

The OSFF algorithm is shown in Algorithm 2. In
the preprocessing phase, it creates theΩ andKω

j (s′, s)
sets. The forward computation differs from FVFF in
that, instead of computingC(t, s′, s) for eacht, OSFF
computes and storesCω(j, s′, s), the exponential of the
total weight for eachKω

j (s′, s) set.
Proposition 2. The OSFF correctly computes the for-
ward variables and we haveA(t, s) = log(αt(s)), ∀
t = 1, · · · , T, s ∈ S.

The correctness of OSFF can be shown in a simi-
lar way as FVFF. The main difference is that, instead
of precomputingC(t, s′, s) at the beginning of each it-
eration, OSFF precomputesCω(j, s′, s) (Line 6) and
comes up withC(t, s′, s) from Cω(j, s′, s) using the
mappingπ(t) (Line 14).

Let G be the total number of nodes in the forest, and
P is the maximum number of active pattern for each
positiont. Typically, G andP are much smaller than
F . The last line of Table 2 shows the time complexity
of OSFF. For the preprocessing time, OSFF is more effi-
cient than FVFF whenJ ≪ T . In terms of the exponen-
tiations, the OSFF is more efficient whenJM2 ≤ F .
Discussions and validation
As listed in Table 2, both FVFF and OSFF are much
faster than the original algorithm. Although the prob-

lem parameters vary by applications, there are some
typical observations. First,T , the sequence length, is
always orders of magnitude larger thanF andM .

For example, in a gene prediction CRF,T can be
as large as300K to millions. Second,F tends to be
smaller thanT but greater thanM . For example, in
gene prediction, there are typicallyM=7 to 50 states.
We haveF = M × 4n+1 +M2, wheren is the order of
features whose typical value ranges from 1 to 7.

For a given problem with fixedT , F , M and other
parameters, we can also estimate which of FVFF and
OSFF has a lower complexity. As a general guideline,
FVFF is better than OSFF whenF is smaller thanJM2,
while OSFF is more favorable whenJM2 is smaller
thanF or whenJ is much smaller thanT .

Algorithm 2: observationsubstringfast forward
1 A. preprocessing phase(executed once)
2 create theΩ set and the mappingπ(t);
3 compute the setKω

j (s′, s),∀ j = 1..J , s, s′ ∈ S;
4 B. forward computation (for each iteration)
5 for j = 1 to J,∀s′, s ∈ S do
6 setCω(j, s′, s) = exp(

P

k∈Kω
j

(s′,s) λk);

7 end do;
8 foreachstates ∈ S do
9 setA(1, s) = Φ1(start, s, x1), L(1, s) = 1,

C(1, start, s) =
Q

j∈π(1) Cω(j, start, s);
10 end do;
11 sets′0 = start;
12 for t = 2 to T do
13 finds0 ∈ S that maximizesA(t − 1, s0) ;
14 C(t − 1, s′0, s0) =

Q

j∈π(t−1) Cω(j, s′0, s0)
15 foreach states ∈ S do
16 B(t, s) = A(t − 1, s0) + Φt(s0, s, xt);
17 setC(t, s0, s) =

Q

j∈π(t) Cω(j, s0, s);
18 setL(t, s) = 1;
19 foreach states′ ∈ S, s′ 6= s0 do
20 C(t − 1, s′0, s

′) =
Q

j∈π(t−1) Cω(j, s′0, s
′);

21 C(t, s′, s) =
Q

j∈π(t) Cω(j, s′, s);
22 L(t, s) = L(t, s)+

L(t−1,s′)C(t−1,s′0,s′)C(t,s′,s)

L(t−1,s0)C(t−1,s′
0
,s0)C(t,s0,s)

;
23 end do;
24 setA(t, s) = B(t, s) + log(L(t, s));
25 end do;
26 sets′0 = s0;
27 end do;

Table 3 validates the complexity saving. As shown in
Table 3, for a problem with a large number of features,
even for a short sequence with only 1615 symbols, the
time for solving it using the standard forward-backward
algorithm is prohibitive.

Both FVFF and OSFF useA(t, s) = B(t) +
log(L(t, s)) to compute the logarithmic form ofαt(s).
By leavingB(t) = A(t − 1, s0) + Φt(s0, s, xt) out of
the log, the algorithms are as numerically stable as the
standard implementation.

1021

M = 7, F = 28721, J = 4096
T = 1615 T = 266225

standard ≈ 48hours -
FVFF 84 seconds ≈ 4hours
OSFF 282 seconds ≈ 2.5hours

Table 3: The training time of different algorithms on a
PC with 2.4GHz CPU.

Exponential Transformation
We address another issue regarding the optimization
quality. We have found that the quasi-Newton method
often terminates prematurely when optimizing a CRF.
We illustrate the observation by an example. The model
we use is a toy casino gambling model, where there is a
fair die with even probability (1/6) for rolling each num-
ber, and a loaded die with a higher probability (1/2) for
rolling a six. There are two possible underlying states,
fair or loaded, with different emission probabilities. Us-
ing a total of 16 features, the task is to infer which die
is used given a sequence of numbers.

In our experiment, we found that, different starting
points lead to different, non-optimal solutions. To visu-
alize the search, in Figure 3, we plot two variables, with
each axis corresponding to one variable. For these two
variables, the optimal values are located at[0, 0]. We
can see that, when the optimization terminates, the so-
lutions from different starting points, marked by black
circles in Figure 3a, are very different and far from the
optimal point. We find that, the search often terminates
when the difference of the objective between two con-
secutive iterations is smaller than a threshold 1.0e-04.
Experimental results show that reducing the threshold
will only cause negligibly small numerical differences.

To address this issue, we add a second round of opti-
mization after LMVM terminates. In this round, we ap-
ply an exponential transformation to the original objec-
tive function formulation and optimize the transformed
objective. LetΛ0 be the solution of LMVM and let its
function value beO0 = O(Λ0), where the CRF objec-
tive functionO(Λ) is defined in (3). In the transforma-
tion, we use the following new objective:

χ(Λ) = exp (O(Λ) − O0) (6)

It is obvious that the optimalΛ maximizing O(Λ)
also maximizesχ(Λ), thus guaranteeing the correctness
of our approach. The complexity for computingχ(Λ)
is low since in each search iteration, it only requires one
more exponentiation afterO(Λ) is obtained. The gradi-
ent ofχ(Λ) is, ∀k = 1, · · · , F ,

∂χ(Λ)

∂λk

= exp (O(Λ) − O0)
∂O(Λ)

∂λk

. (7)

Therefore, there is little additional overhead for com-
puting the gradients.

We can see from (7) that, for any new point with a
higher objective value than that ofΛ0, we have∂χ(Λ)

∂λk
>

∂O(Λ)
∂λk

. Thus, the exponential transformation magnifies

a) Original LMVM from various starting points.

b) LMVM with exponential transformation.
Figure 3: Search trajectories before and after using the
exponential transformation.

the improvements along the search trajectory and allows
the optimizer to converge closely to an optimal point
without early termination. This effect is illustrated in
Figure 3b, where the termination points after using the
exponential transformation are marked by triangles. We
can clearly see that the exponential transformation can
enforce the search to converge very closely to the same
optimal solution, regardless of the starting point.

Experimental Results
We have developed a software package, named CRF-
OPT, that integrates the fast forward algorithms and ex-
ponential transformation into the TAO package.

We present results on a gene prediction task.
Given a DNA observation sequence, consisting of
’A’,’T’,’G’,’C’ bases, the aim of gene prediction is to
find out the protein coding regions, known as genes,
and their associated components, including coding ex-
ons, start/stop exons, promoters, and poly-adenylation
sites (Burge. 1997).

Figure 4 shows a finite state machine representation
of the structure of genomic sequences in our implemen-
tation. In this model, each circle represents a hidden
state, such as exon (C), intron (I), and intergenic re-

1022

Table 4:The performance of HMM and CRF on the gene prediction data sets.

Measure Set 1 Set 2 Set 3 Set 4
HMM CRF eCRF HMM CRF eCRF HMM CRF eCRF HMM CRF eCRF

Gene Sensitivity(%) 2.50 7.50 7.50 0 2.50 5.00 2.17 4.35 4.35 4.08 2.04 4.08
Gene Specificity(%) 1.89 6.82 7.14 0 2.13 5.88 2.00 4.35 4.44 4.00 1.79 4.00

Transcript Sensitivity(%) 2.50 7.50 7.50 0 2.50 5.00 2.17 4.35 4.35 4.08 2.04 4.08
Transcript Specificity(%) 1.89 6.82 7.14 0 2.13 5.88 2.00 4.35 4.44 4.00 1.79 4.00

Exon Sensitivity(%) 15.42 37.00 35.68 35.44 25.32 34.18 36.63 34.43 34.43 31.72 28.62 32.41
Exon Specificity(%) 16.43 43.30 41.33 32.56 30.00 40.30 34.36 39.66 39.83 32.39 33.88 37.01

Nucleotide Sensitivity(%) 81.70 90.35 89.96 78.26 84.21 90.13 86.06 90.62 90.79 82.66 92.84 93.45
Nucleotide Specificity(%) 89.33 88.54 87.89 92.33 89.64 90.91 92.02 89.54 90.45 94.19 90.67 92.38

Figure 4: A finite state machine for gene prediction

gion (NC). In our model, the introns and exons are
further divided into three phases according to the read-
ing frame. Each edge represents a possible hidden state
transition with required base observation.

The features used in our model are the state transition
and base observation requirement as represented by the
edges in Figure 4 and a 5th order bases emission infor-
mation. In total we have around7 · 46 features.

We test our algorithm on a DNA sequence with 570K
bases. The performance is evaluated at four differ-
ent levels (Burge. 1997). A higher level accuracy is
typically more difficult to achieve as it requires more
consecutive correct predictions at the nucleotide level.
For each level, we use the standard sensitivity (Sn) and
specificity (Sp) measures defined asSn = TP

TP+FN
and

Sp = TP
TP+FP

, where TP, FN, FP denote the numbers
of true positive, false negative, and false positive labels,
respectively (Burge. 1997).

We compare the performance of the CRF model be-
fore and after using the exponential transformation.
Also, since our CRF model uses 5th order features, we
compare the results to the corresponding 5th order Hid-
den Markov Model (HMM) implementation with the
same state transition model and splice sites information.

We estimate the accuracy of our predictor using
Holdout Validation and show the results in Table 4.
There are 170 genes in the data set. We use all these
genes to construct four different data sets. We ran-
domly split the data into 75% training data and 25%
testing data. For each test set, we show the per-
formance of HMM and CRF. For each set, CRF de-
notes the original CRF without exponential transfor-
mation and eCRF denotes the CRF using exponential
transformation. Both use the OSFF implementation
of the forward-backward algorithm. We do not show

the results of the standard implementation of forward-
backward because it will take more than a month to fin-
ish on our workstation with Intel Xeon 2.4 GHz CPU
and 2GB memory running Linux.

The gene prediction model used in our experiment is
still a much simplified one. Yet, the results show the
effectiveness of the proposed work. As shown in the
result, CRF-OPT gives better performance than HMM
using the same feature set. Moreover, our proposed
exponential transformation further improves the pre-
diction accuracy, especially for the higher-level gene,
transcript, and exon level measures. The improvement
shows that it is beneficial to achieve high-precision con-
vergence to the global optimal solution using exponen-
tial transformation.

References
Benson, S. J.; McInnes, L. C.; Moré, J.; and Sarich, J.
2005. TAO user manual (revision 1.8). Technical Report
ANL/MCS-TM-242, Mathematics and Computer Science
Division, Argonne National Laboratory.

Burge., C. 1997.Identification of genes in human genomic
DNA. Ph.D. Dissertation, Stanford Univerisity.

Cohen, W. W. 2004. Minorthird: Methods for
identifying names and ontological relations in text
using heuristics for inducing regularities from data.
http://minorthird.sourceforge.net.

Gross, S. S.; Do, C. B.; Sirota, M.; and Batzoglou, S. 2007.
Contrast: a disriminative, phylogeny-free approach to mul-
tiple informant de novo gene prediction.Genome Biology
8:R269.

Lafferty, J.; McCallum, A.; and Pereira, F. 2001. Conditional
random fields: Probabilistic models for segmenting and la-
beling sequence data.International Conference on Machine
Learning.

McCallum, A. K. 2002. Mallet: A machine learning for
language toolkit. http://mallet.cs.umass.edu.

McCallum, A. 2003. Efficiently inducing features of condi-
tional random fields.Conference on Uncertainty in Artificial
Intelligence.

Murphy, K., and Schmidt, M. 2006. Crf toolbox for matlab.
http://www.cs.ubc.ca/ murphyk/Software/CRF/crf.html.

Sarawagi, S.; Jaiswal, A.; Tawari, S.; Mansuri, I.; Mittal,
K.; and Tiwari, C. 2004. Sunita sarawagi’s crf package.
http://crf.sourceforge.net.

1023

