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Abstract

A seed-based framework for textual information extraction
allows for weakly supervised acquisition of open-domain
class attributes over conceptual hierarchies, from a combi-
nation of Web documents and query logs. Automatically-
extracted labeled classes, consisting of a label (e.g.,
painkillers) and an associated set of instances (e.g., vicodin,
oxycontin), are linked under existing conceptual hierarchies
(e.g., brain disorders and skin diseases are linked under the
concepts BrainDisorder and SkinDisease respectively). At-
tributes extracted for the labeled classes are propagated up-
wards in the hierarchy, to determine the attributes of hierar-
chy concepts (e.g., Disease) from the attributes of their sub-
concepts (e.g., BrainDisorder and SkinDisease).

Introduction
Background
Taking advantage of increasing amounts of publicly avail-
able text, Web-based information extraction generally fo-
cuses on the acquisition of instances and/or facts of pre-
defined types. Since it is unfeasible to manually enumer-
ate the instances and types of facts that may be relevant for
all knowledge domains, current research efforts aim at col-
lecting instances and relations of many different types and
with minimal supervision (Banko et al. 2007). The inher-
ent challenges of the task are illustrated by the difficulty
of accurately pinpointing instances of complex types (e.g.,
book names, sayings etc.) within text documents (Downey,
Broadhead, and Etzioni 2007); and the need to identify the
most relevant relations of each instance out of many candi-
dates (Davidov, Rappoport, and Koppel 2007).

Contributions
This paper introduces a weakly-supervised method for ac-
quiring hierarchical open-domain class attributes from un-
structured text. Initially, the attributes capture relevant
properties (e.g., side effects and maximum dose) of a la-
beled class. A labeled class consists of a class label (e.g.,
painkillers) and a set of class instances (e.g., vicodin, oxy-
contin). Both the labeled classes and their attributes are ex-
tracted from a combination of Web documents and query
logs. The extraction relies on a very small amount of su-
pervision, in the form of a couple of Is-A extraction pat-
terns widely used in information extraction literature (Hearst
1992) and as few as 5 seed attributes provided for only one
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class. The flat set of labeled classes is linked into exist-
ing conceptual hierarchies (e.g., brain disorders and skin
diseases are linked under the concepts BrainDisorder and
SkinDisease respectively). Thus, the attributes extracted for
the labeled classes are propagated upwards in the hierar-
chy, for instance to determine the attributes of the hierarchy
concept Disease from the attributes of its subconcepts (e.g.,
BrainDisorder and SkinDisease).

Our extraction method makes several contributions. First,
it produces a flat set of more than 9,000 open-domain
classes containing a total of around 200,000 instances. Al-
though this is an intermediate result rather than final goal of
the paper, it is significant since large sets of classes con-
stitute useful resources for an array of applications (Pan-
tel and Ravichandran 2004), including seed-based informa-
tion extraction techniques. Second, the method extracts
attributes for thousands of open-domain, automatically-
acquired classes. The amount of supervision is limited to
five seed attributes provided for only one reference class. In
comparison, the largest previous study in attribute extraction
reports results on a set of 40 manually-assembled classes,
and requires five seed attributes to be provided as input for
each class (Paşca 2007). Third, the method is the first to
pursue the extraction of class attributes over conceptual hi-
erarchies, rather than over a flat set of classes. A simple
algorithm for propagating attributes along conceptual hier-
archies is instrumental in generating attributes at precision
levels of 0.64 at rank 10, 0.57 at rank 20, and 0.46 at rank 50,
for open-domain concepts available within a widely-used
language processing resource, namely WordNet (Fellbaum
1998). Fourth, the extraction method operates on a combi-
nation of both Web documents and search query logs, to ac-
quire knowledge that is expected to be meaningful and suit-
able for later use. In contrast, the textual data sources used in
previous studies in large-scale information extraction are ei-
ther Web documents (Banko et al. 2007) or, recently, query
logs (Paşca 2007), but not both.

Hierarchical Class Attribute Extraction
Extraction of Labeled Class Instances
Overview: Figure 1 shows how Web textual data is used
to acquire hierarchical open-domain class attributes through
the sequential extraction of: 1) open-domain, labeled classes
of instances, by applying a few extraction patterns to un-
structured text within documents, while guiding the extrac-
tion based on the contents of query logs (bottom-left in Fig-
ure 1); 2) class attributes that capture quantifiable properties
of those classes, by mining query logs while guiding the ex-
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Open−domain labeled classes of instances
marine animals={whales, stingrays, seals, dolphins, turtles, sea lions,...}
sea creatures={stingrays, octopuses, hermit crabs, star fish, giant sea turtle,...}
ground−nesting birds={quail, pheasants, meadowlarks, turkeys, grouse, lapwings,...}

broadleaf weeds={cocklebur, pigweed, henbit, crabgrass, canada thistle, kochia,...}

exotic flowers={alstroemeria, bird of paradise, bells of ireland, orchids,...}
white flowers={lilies, monte casino, alstroemeria, stargazer lilies, snapdragons,...}

painters={diego velasquez, simon vouet, daubigny, philippe de champaigne,...}
photographers={ansel adams, berenice abbott, dorothea lange, richard avedon,...}
physicists={bohr, werner heisenberg, richard feynman, dirac, steven hawking,...}
psychologists={abraham maslow, carl jung, carl rogers, jean piaget, bf skinner,...}

marine animals: [circulatory system, digestive system, respiratory system,...]
sea creatures: [habitat, history, reproduction, scientific name, food chain,...]

white flowers: [color meaning, scientific name, significance, varieties,...]
broadleaf weeds: [taxonomy, flower, classification, image, propagation,...]

psychologists: [biography, personality theory, picture, critics, childhood,...]

photographers: [biography, work, life, techniques, photographs, style,...]
physicists: [biography, iq, atomic theory, inventions, accomplishments,...]

painters: [biography, self portrait, famous paintings, artwork, bibliography,...]

ground−nesting birds: [types, behavior, anatomy, habitats, life cycle, diseases,...]
exotic flowers: [color meaning, scientific name, micropropagation, pests,...]

(1)
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Organism: [reproduction, taxonomy, life cycle, cell structure, scientific name,...]
Animal: [life cycle, reproduction, evolution, mating, skeleton, habitat,...]
Plants: [scientific name, flowers, diseases, pests, propagation, varieties, uses,...]
Person: [history, biography, information, family, life, jobs, timeline, bio, death,...]
Artist: [biography, bio, autobiography, timeline, childhood, family, life story,...]
Scientist: [childhood, biography, family, achievements, inventions, personality,...]

Conceptual hierarchies

Hierarchical class attributes

Web documents Web query logs

Class attributes

Figure 1: Overview of weakly-supervised extraction of hierarchical open-domain class attributes

traction based on a few attributes provided as seed examples
(top-left in the figure); and 3) hierarchical class attributes,
by propagating the attributes over existing conceptual hier-
archies, after automatically linking labeled class instances
under hierarchy concepts (top-right in the figure).

The extraction of labeled classes of instances introduces
three innovations over previous work on extracting concep-
tual hierarchies from text (Hearst 1992; Snow, Jurafsky, and
Ng 2006), with respect to: the number of extraction patterns;
the use of query logs to uniformly handle the extraction of
simple and complex instances; and the introduction of inex-
pensive heuristics for producing cleaner labeled classes.
Pattern-Based Extraction: For simplicity, the number of
Is-A patterns is aggressively reduced to only two patterns,
which can be summarized as:
〈[..] C [such as|including] I [and|,|.]〉,

where I is a potential instance (e.g., Venezuelan equine en-
cephalitis) and C is a potential class label for the instance
(e.g., zoonotic diseases), for example in the sentence: “The
expansion of the farms increased the spread of zoonotic dis-
eases such as Venezuelan equine encephalitis [..]”.
Instance Filtering: Once a pattern match is found, the ex-
act boundaries of the class label C and the instance I must
be precisely identified within the document sentence. The
class label is simply approximated from the part-of-speech
tags of the sentence words, as a base (i.e., non-recursive)
noun phrase whose last component is a plural-form noun. In
the example sentence from above, the class label is zoonotic
diseases, which consists of a plural-form noun and a pre-
ceding modifier. If no such phrase is found, the pattern
match is discarded. In comparison, boundary detection
for potential instances is more challenging, especially for
phrases on which common-sense heuristics (e.g., English in-
stances are short sequences of capitalized words) fail due
to phrase length (e.g., for book and movie titles) or use of
general-vocabulary, non-capitalized words (e.g., for sayings,
proverbs and names of marine mammals). Intuitively, if an
entity is prominent, Web search users will (eventually) ask
about it. Thus, we hypothesize that relevant instances of
any kind must occur as search queries containing an instance
and nothing else. In practice, the right boundaries of the in-

stances I in the extraction patterns are identified by simply
checking that the sequence of words within the pattern that
corresponds to the potential instance I can be found as an
entire query in query logs. During matching, all string com-
parisons are case-insensitive. If no such query is found, the
pattern match is discarded. Since most queries are typed
in lower case by their users, the collected data is uniformly
converted to lower case.
Class Label Filtering: Since the collected class labels are
base noun phrases, their head nouns can be approximated as
the last words within each class label. A heuristic identifies
which head noun occurs most frequently across the poten-
tial class labels C of an instance I, then discards the labels
whose head nouns are not the most frequent head noun. For
example, since the most frequent head of the labels associ-
ated with australia is countries, class labels such as com-
monwealth countries and asia pacific countries are retained,
whereas regional players, exporters or economic powers are
discarded. In the process, valid labels that are useful in
describing the class of an instance may be discarded (e.g.,
asia pacific nations for the instance australia), thus promot-
ing precision of the class labels at the expense of lower re-
call. Whereas reduced recall is an undesirable side effect, we
feel that it only slightly diminishes the usefulness of the ex-
tracted data. Indeed, although it is straightforward to obtain
lists of instances for the seven or so coarse-grained classes
(Person, Organization, Location etc.) that were the focus of
named entity extraction for decades, no such lists are readily
available for hundreds (Talukdar et al. 2006), let alone thou-
sands of diverse, fine-grained, open-domain classes covering
the many domains of potential interest to Web search users.

After filtering, the resulting pairs of an instance and a la-
bel are arranged into instance sets (e.g., {rabies, west nile
virus, leptospirosis,...}), each associated with a class label
(e.g., zoonotic diseases).

Linking Labeled Classes to Conceptual Hierarchies
Manually-constructed language resources such as WordNet
provide reliable, wide-coverage upper-level conceptual hier-
archies, by grouping together phrases with the same mean-
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ing (e.g., analgesic, painkiller and pain pill) into sets of
synonyms (synsets), and organizing the synsets into concep-
tual hierarchies (e.g., painkillers are a subconcept, or a hy-
ponym, of drugs) (Fellbaum 1998). Automatically-extracted
labeled classes of instances lend themselves as natural can-
didates for extending the conceptual hierarchies available
within WordNet and any other similar, hand-built resources,
for two reasons. First, due to the effort required to manu-
ally maintain and extend its conceptual hierarchies, Word-
Net cannot systematically cover fine-grained concepts of
specific domains. Some of the gaps under various concepts
(e.g., Protein, Disorder and Antibiotic) can be easily filled
with automatically-extracted class labels (e.g., cellular pro-
teins, behavioral disorders and oral antibiotics). Second,
WordNet is not meant to be an encyclopedic resource. Con-
sequently, the automatically-extracted instances can supple-
ment the instances encoded explicitly in WordNet, since the
latter are either (rarely) exhaustive (e.g., 127 instances ex-
ist in WordNet for the concept AfricanCountry), or (some-
times) merely representative (e.g., there are 3 instances for
SearchEngine), or (usually) completely missing (e.g., there
are no instances for CarMaker).

To determine the points of insertion of automatically-
extracted labeled classes under hand-built WordNet hierar-
chies, the class labels are looked up in WordNet using built-
in morphological normalization routines. When a class la-
bel (e.g., age-related diseases) is not found in WordNet,
it is looked up again after iteratively removing its leading
words (e.g., related diseases, and diseases) until a potential
point of insertion is found where one or more senses exist
in WordNet for the class label. Although the development
of an intricate method for choosing the correct sense is the-
oretically possible, we employ the more practical heuristic
of always selecting the first (that is, most frequent) sense
of the label in WordNet as point of insertion. Our choice
is motivated by three factors. First, WordNet senses are of-
ten too fine-grained, making the task of choosing the correct
sense difficult even for humans (Palmer, Dang, and Fell-
baum 2007). Second, choosing the first sense from Word-
Net is sometimes better than more intelligent disambigua-
tion techniques (Pradhan et al. 2007). Third, previous ex-
perimental results on linking Wikipedia classes to WordNet
concepts confirm that first-sense selection is more effective
in practice than other techniques (Suchanek, Kasneci, and
Weikum 2007). Thus, a class label and its associated in-
stances are inserted under the first WordNet sense available
for the class label. For example, silicon valley companies
and its associated instances (apple, hewlett packard etc.) are
inserted under the first of the 9 senses that companies has
in WordNet, which corresponds to companies as institutions
created to conduct business. In the process, lexically distinct
but semantically equivalent class labels (e.g., marine ani-
mals and sea creatures) and their associated instances may
be judiciously inserted under the same WordNet concept that
captures the shared meaning of the class labels.

Hierarchical Extraction of Class Attributes
Flat-Set Extraction: The labeled classes of instances col-
lected automatically from Web documents are passed as in-
put to the second extraction phase (top-left in Figure 1),
which acquires class attributes by mining a collection of
Web search queries. The attributes capture properties that
are relevant to the class. The extraction of attributes exploits
the set of class instances rather than the associated class la-
bel, and has four stages:

1) identification of a noisy pool of candidate attributes, as
remainders of queries that also contain a class instance. In
the case of the class movies, whose instances include jay and
silent bob strike back and kill bill, the query “cast jay and
silent bob strike back” produces the candidate attribute cast;

2) construction of internal search-signature vector rep-
resentations for each candidate attribute, based on queries
(e.g., “cast for kill bill”) that contain a candidate attribute
(cast) and a class instance (kill bill). These vectors consist
of counts tied to the frequency with which an attribute oc-
curs with “templatized” queries. The latter are automati-
cally derived from the original queries, by replacing specific
attributes and instances with common placeholders, e.g., “X
for Y”;

3) construction of a reference internal search-signature
vector representation for a small set of seed attributes pro-
vided as input. A reference vector is the normalized sum of
the individual vectors corresponding to the seed attributes;

4) ranking of candidate attributes with respect to each
class (e.g., movies), by computing similarity scores between
their individual vector representations and the reference vec-
tor of the seed attributes.

The result of the four stages is a ranked list of attributes
(e.g., [opening song, cast,...]) for each class (e.g., movies).

In a departure from previous work, the instances of each
input class are automatically generated as described earlier,
rather than manually assembled. Furthermore, the amount
of supervision is limited to seed attributes being provided
for only one of the classes, whereas (Paşca 2007) requires
seed attributes for each class. To this effect, the extraction
includes modifications such that only one reference vector
is constructed internally from the seed attributes during the
third stage, rather one such vector for each class in (Paşca
2007); and similarity scores are computed cross-class by
comparing vector representations of individual candidate at-
tributes against the only reference vector available during the
fourth stage, rather than with respect to the reference vector
of each class in (Paşca 2007).
Hierarchical Propagation: As discussed in the previous
section, the labeled classes and their associated sets of in-
stances are linked under various concepts from existing con-
ceptual hierarchies. Therefore, the attributes extracted from
query logs for the labeled classes can be iteratively propa-
gated upwards in the conceptual hierarchies. The computa-
tion proceeds from the bottom towards the top of the hier-
archies. The formula that computes the score of some at-
tribute A for an intermediate hierarchy concept H promotes
attributes that have higher scores for more of the direct (i.e.,
non-inherited) hierarchy subconcepts HC ⊂ H of the con-
cept H:

S(Att(H,A)) =

∑
HC

S(Att(HC ,A))

1 + |{HC : HC ⊂ H}|
The computed scores define the relative ranking of at-

tributes for each hierarchy concept. As illustrated earlier in
the top-right part of Figure 1, the ranked lists of attributes of
higher-level hierarchy concepts such as Organism are thus
computed from attributes of subconcepts such as Plant and
Person, which are in turn computed from attributes of sub-
concepts such as Artist and Scientist.

The two-stage computation of attributes, for labeled
classes and then for hierarchy concepts, is a practical im-
plementation of two theoretical observations. First, a con-
cept is traditionally a placeholder for a set of instances that
share similar properties (Dowty, Wall, and Peters 1980).
Therefore, the attributes of our labeled classes are computed
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by analyzing candidate attributes of the respective class in-
stances. Second, a superconcept captured properties that
are common across its subconcepts (Dowty, Wall, and Pe-
ters 1980). In our case, the attributes of a hierarchy concept
are iteratively computed from attributes of its subconcepts,
starting from the bottom of the hierarchies where the labeled
classes are linked under hierarchy concepts.

Experimental Setting
Textual Data Sources: The acquisition of open-domain
knowledge relies on unstructured text available within a
combination of Web documents maintained by, and search
queries submitted to the Google search engine. The col-
lection of queries is a random sample of fully-anonymized
queries in English submitted by Web users in 2006. The
sample contains about 50 million unique queries. Each
query is accompanied by its frequency of occurrence in the
logs. Other sources of similar data are available publicly for
research purposes (Gao et al. 2007). The document collec-
tion consists of around 100 million documents in English,
as available in a Web repository snapshot from 2006. The
textual portion of the documents is cleaned of HTML, tok-
enized, split into sentences and part-of-speech tagged using
the TnT tagger (Brants 2000).
Parameters for Extracting Labeled Classes: The extrac-
tion method collects labeled classes of instances from the
input documents. During pattern matching, the instance
boundaries are approximated by checking that the collected
instances occur among to the top five million queries with
the highest frequency within the input query logs. The ex-
tracted data is further filtered by discarding classes with
fewer than 25 instances, and retaining the top 100 instances
in each class. The labeled classes are linked under concep-
tual hierarchies available within WordNet 3.0, which con-
tains a total of 117,798 English noun phrases grouped in
82,115 concepts (or synsets).
Parameters for Extracting Class Attributes: The amount
of supervision for extracting attributes of labeled classes is
limited to 5 seed attributes (population, area, president, flag
and climate) provided for only one of the extracted labeled
classes, namely european countries. Internally, the ranking
of attributes uses the Jensen-Shannon divergence to compute
similarity scores between internal representations of seed at-
tributes, on one hand, and each of the candidate attributes, on
the other hand. The top 50 attributes extracted for each class
are retained for the upward propagation towards higher-level
WordNet concepts under which the class labels are linked.

Evaluation
Quantitative Results
The extracted set of labeled classes consists of 9,537 class
labels, each of them associated with 25 to 100 instances,
with an average of 54 instances per class. The labeled
classes exhibit great variation from the point of view of their
popularity within query logs, measured by the sum of the
frequencies of the input queries that fully match any of the
instances of each class (e.g., the queries british open for
sports events, or san jose mercury news for newspapers). As
illustrated in Figure 2, the corresponding frequency sums per
class vary considerably, ranging from 13.8 million at rank
1 for sites, down to 0.9 million at rank 1,501 for hip-hop
artists. More importantly, the extracted classes cover a wide
range of domains of interest such as health for flu symptoms,
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Figure 2: Popularity of the extracted labeled classes, mea-
sured by the aggregated frequency of queries that are full,
case-insensitive matches of any of the instances in each class

entertainment for classic shows, finance for operating ex-
penses, or philosophy for critical theorists.

Since some class labels (e.g., isps and patent apps) are
not found in WordNet even after removing all their mod-
ifiers, only a subset of 9,519 of the 9,537 labeled classes,
containing a total of 199,571 unique instances, are linked
under WordNet concepts.

Qualitative Results
Experimental Runs: The experiments consist of six dif-
ferent runs, which correspond to different choices for the
source of conceptual hierarchies and class instances linked
to those hierarchies, as illustrated in Table 1. In the first
two runs, N1 and N2, the class instances are those available
within the latest version of WordNet (3.0) itself via HasIn-
stance relations. N1 is a subset of N2, obtained by discard-
ing instances that belong to concepts with fewer than 25 in-
stances. In the third and fourth runs, K1 and K2, the class
instances are available in an earlier version of WordNet (2.1)
that was extended as part of previous work (Snow, Juraf-
sky, and Ng 2006). K1 does not include the HasInstance in-
stances already available in WordNet, whereas K2 includes
them. The last two runs from Table 2, E1 and E2, correspond
to the fully-fledged extraction method described in this pa-
per. In E2, class labels are linked to the first sense available
at the point of insertion in WordNet. The manual assessment
of the points of insertion selected for a random sample of
100 class labels indicates a precision of 0.8. Comparatively,
E1 is stricter, as it discards class labels and their associated
instances whenever multiple, rather than only one, senses
exist in WordNet at the point of insertion.
Target Hierarchy Concepts: The performance of attribute
extraction is computed over a set of target concepts chosen
to contain a large enough number of concepts (25) to prop-
erly ensure varied experimentation on several dimensions,
while taking into account the time intensive nature of man-
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Description Source of Hierarchy and Instances
N1 N2 K1 K2 E1 E2

WordNet 3.0 3.0 2.1 2.1 3.0 3.0
version

Discard inst. - - - -
√

-
of ambiguous

concepts?
Discard small

√
- - -

√ √

(≤25 inst.)
instance sets?

Include inst.
√ √

-
√

- -
from WordNet?

Include inst. - -
√ √ √ √

from elsewhere?

Total instances 13.5 17.4 110.2 127.6 48.0 199.5
(×103)

Total classes 136 945 2,465 3,078 1,422 9,519

Table 1: Source of conceptual hierarchy and class instances
for various hierarchical attribute extraction runs

ual accuracy judgments often required in the evaluation of
information extraction systems (Banko et al. 2007). The
set of 25 target concepts includes: Actor, Award, Battle,
CelestialBody, ChemicalElement, City, Company, Country,
Currency, DigitalCamera, Disease, Drug, FictionalCharac-
ter, Flower, Food, Holiday, Mountain, Movie, NationalPark,
Painter, Religion, River, SearchEngine, Treaty, Wine. Each
target concept is mapped into exactly one WordNet concept
(synset). For instance, one of the target concepts, denoted
Country, corresponds to a synset situated at the internal off-
set 08544813 in WordNet 3.0, which groups together the
synonymous phrases country, state and land and associates
them with the definition “the territory occupied by a na-
tion”. 1 The target concepts exhibit variation with respect to
their depths within WordNet conceptual hierarchies, ranging
from a minimum of 5 (e.g., for Food) to a maximum of 11
(for Flower), with a mean depth of 8 over the 25 concepts.
Evaluation Procedure: The measurement of recall requires
knowledge of the complete set of items (in our case, at-
tributes) to be extracted. Unfortunately, this number is
often unavailable in information extraction tasks in gen-
eral (Hasegawa, Sekine, and Grishman 2004), and attribute
extraction in particular. Indeed, the manual enumeration
of all attributes of each target concept, to measure recall,
is unfeasible. Therefore, the evaluation focuses on the as-
sessment of attribute accuracy. To remove any bias towards
higher-ranked attributes during the assessment of class at-
tributes, the ranked lists of attributes produced by each run
to be evaluated are sorted alphabetically into a merged list.
Each attribute of the merged list is manually assigned a cor-
rectness label within its respective class. In accordance with
previously introduced methodology, an attribute is vital if
it must be present in an ideal list of attributes of the class
(e.g., side effects for Drug); okay if it provides useful but
non-essential information; and wrong if it is incorrect.

To compute the precision score over a ranked list of at-
tributes, the correctness labels are converted to numeric val-
ues (vital to 1, okay to 0.5 and wrong to 0). Precision at

1The target concepts are also uniquely mapped to WordNet 2.1
synsets whose internal offsets are different but are semantically
equivalent to their WordNet 3.0 counterparts, with respect to com-
ponent phrases, associated definitions, and localization within the
conceptual hierarchy.
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Figure 3: Accuracy of the attributes extracted for various
runs, as an average over the entire set of 25 target concepts
(first graph) and as an average over (variable) subsets of the
25 target concepts for which some attributes were extracted
in each run (second graph)

some rank N in the list is thus measured as the sum of the
assigned values of the first N attributes, divided by N .
Attribute Accuracy: Figure 3 plots the precision at ranks
1 through 50 for the ranked lists of attributes extracted by
various runs. In the first graph from the figure, each of the 25
target concepts counts towards the computation of precision
scores of a given run, regardless of whether any attributes
were extracted or not for the target concept. In the second
graph, only target concepts for which some attributes were
extracted are included in the precision scores of a given run.
Thus, the first graph properly penalizes a run for failing to
extract any attributes for some target concepts, whereas the
second graph does not include any such penalties.

Several conclusions can be drawn after inspecting the re-
sults. First, the more restrictive runs (N1, K1 and E1) have
lower precision scores across all ranks in the first graph of
Figure 3 than their than less restrictive counterparts (N2,
K2 and E2 respectively). In other words, adding more re-
strictions may improve precision but hurts recall of class in-
stances, which results in lower average precision scores for
the attributes. Second, N1 and N2 have the lowest precision
scores in the first graph, which is in line with the relatively
small number of instances available in the original Word-
Net, as discussed earlier and confirmed by the counts from
Table 1. Third, the runs using our automatically-extracted
labeled classes (E1 and E2) clearly outperform not only N1

and N2, but also K1 and K2. Concretely, in the left graph, the
precision scores at rank 10 are 0.33 for K2, 0.47 (that is, a
42% improvement over K2) for E1 and 0.64 (94% improve-
ment over K2) for E2. The total counts of unique instances
and classes listed in Table 1 for the six runs may suggest
that the superior performance with automatically-extracted
classes (E1 and E2) is simply due to the higher coverage of
those runs, which must reduce the number of concepts for
which no attributes can be extracted. However, this is not
the case. Indeed, the precision scores are higher for E2 than
for K1 and K2 in the second graph as well, that is, even with-
out taking into account target concepts without any extracted
attributes. In fact, even the precision scores for the more re-
strictive run E1 are higher across all ranks than the precision
of both K1 and K2, for both the first and the second graph,
although the coverage of E1 is clearly smaller than the cov-
erage of K1 and K2 as shown in Table 1. The different levels
of attribute accuracy can be explained by the different qual-
ity and usefulness of the input class instances in the various

1229



runs. In the case of N1 and N2, although the class instances
are theoretically perfect since they are part of the manually-
created WordNet, their usefulness in practice suffers due to
the ambiguity of the instances. For example, WordNet con-
tains constable (as an alternative to john constable) as an
instance of a painter, and buena vista as an instance of a
pitched battle, which are certainly valid when considered in
the context of WordNet, but are ambiguous in isolation, re-
sulting in spurious matches over search queries during at-
tribute extraction. On the other hand, the instances available
within the pre-existing WordNet extension (Snow, Jurafsky,
and Ng 2006) behind the runs K1 and K2 are sometimes
listed for the wrong concepts. For instance, laura serrano
and mario miranda are incorrectly listed in K1 and K2 as
instances of a boxer in the sense of a dog breed, whereas ad-
vanced micro devices and david chase occur as instances of
makers or creators in the religious sense. The automatically-
extracted labeled classes in E1 and E2 are certainly not free
of errors either, but when aggregated over many classes, they
do offer more useful representative instances of various con-
cepts, at least for the task of class attribute extraction.

Comparison to Previous Results
Previous work on the automatic acquisition of attributes for
open-domain classes from text requires the manual enumer-
ation of sets of instances and seed attributes, for each class
for which attributes are to be extracted. Under those condi-
tions, the accuracy of attributes extracted from text reaches
0.90 at rank 10, 0.85 at rank 20, and 0.76 at rank 50, when
measured over selected flat sets of classes (Paşca 2007).
In contrast, the current method operates on automatically-
extracted, open-domain classes of instances. Furthermore,
by dropping the requirement of manually providing a small
set of seed attributes for each target class, and relying on
only a few seed attributes specified for one reference class,
we acquire class attributes without the need of first determin-
ing what the classes should be, what instances they should
contain, and from which resources the instances should be
collected. To our knowledge, the method presented in this
paper is the first to pursue the extraction of class attributes
over conceptual hierarchies, rather than over a flat set of
classes. As such, it is related to previous work on on-
tologizing relations acquired from text (Pennacchiotti and
Patrick 2006), which focused on PartOf and CauseOf rela-
tions rather than class attributes.

Conclusion
This paper introduces an extraction framework for mining a
combination of both documents and search query logs. Web-
derived labeled classes of instances allow for the extraction
of attributes over existing conceptual hierarchies, without a-
priori restrictions to specific domains of interest and with
very little supervision. The quality of the extracted hierar-
chical attributes reaches 0.64 at rank 10 and 0.46 at rank 50,
and thus exceeds the quality of attributes extracted based on
previous resources of class instances. Current work aims at
assigning various attributes to their most appropriate loca-
tions within the conceptual hierarchies, rather than comput-
ing ranked lists of attributes for each hierarchy concept.
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