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that users preferred the details of the dominant relationship,
Introduction i.e., an itemp is better than (dominates) how many other
; P . : . items. The general dominant relationship between items can
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o : X : the corresponding partial order (encoded as DAG format) of
featurgs of these appllqatlon§ mglude. Q) th_e query from the produgt itemgi% Fig. 1 (a)(. We can easily know a)ny
USErs 1S based on multiple criteria; and (2) different users product’s dominating items by traverse its out-link in the
may prefer different answers based on their personal inter- DAG (i.e.,c dominates)
ests and hence, no single optimal one exists. A practical o o . . .
L . . Although the general dominant relationship analysis plays
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: : est comprehensive scores by fusing the values on different
candidates recommendepl to you because all the other Itemsattributers) For example, Fig yl © sﬁows one fused rank list
are worse than these two items with regard the two attributes, of the sarﬁple dataset in' Fig ' 1{aonsider you are a man-
Iorl'I(Eﬁea gcejtvll)?lgg.se “best” items is called the Pareto set, ad- 296" Of a digital camera corporation. You may want to know
missible points (Barndorff-Nielsen & Sobel 1966), maximal ;[<heet bgmgﬁ:ilggsr;l:?n Olf ?C()j'g'éﬂ gzwﬁmw?&g?n?;;:
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ossmann, tocker . However, as pointed in (Yang ' . . ; L
2 discovered by general dominant relationship analysis @.e.,
etal. 2?0-7) aIIh_of t_hese Workg concerned (r)]nb;]the pure bi- only dominat)ésgz) In this paper, we relax thpe strig/t mgan-
nary relationship, i.e., a product itemis whether or not ; . : i X . ;

- ; ing of “dominate” in general dominant relationship analysis
worse than (dominated by) others_. I_nterestlngly, vang et al b)gconsidering on thge comprehensive value of itepms WyhiCh
(Yanget al. 2007) proposed an efficient data structure (i.e., . ¢ K i thod '
ParCube) to analyze a more general dominant relationship, Incorporates rank aggregation methods.

Copyright © 2008, American Association for Artificial Intelli- !Borda Count rank aggregation method (Borda 1781) is em-
gence (www.aaai.org). All rights reserved. ployed here.
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We find the relaxed dominant relationship analysis can (Aslam & Montague 2003), the preference rank combina-
be efficiently explored based on the partial order. The in- tion method (Fagin & Wimmers 1997) and the probabilistic
tuitive idea is that the “strong” ranking in general dominant model based method (Lillist al. 2006)), while others not.
relationship can be utilized to induce the “weak” ranking Dominant relationship analysis with rank aggregation can
in relaxed dominant relationship. With the help of partial be seen as a special case, that traditional rank aggregation
order representation (DAG), we can prune some candidate methods give the order of whole datasets, in contrast, after
items earlier and do not need to compute their comprehen- combining dominant relationship analysis, the relaxed
sive value. To illustrate the idea, here we show a simple dominant relationship analysis issue becomes finding the
example. Fig. 1 (c)-(e) shows three possible fused rank lists order of those items ranked lower than a given item. The
of the sample product items after applying some rank aggre- two issues coincide when the given query item is the one
gation method with users’ preferences. We can observe that with highest score (rank) in the dataset.
no matter which rank aggregation method is employed, the
relaxed dominant relationship between some items do not Maximum vector and Skyline. The maximum vector prob-
change. For instance, the itefalways dominateg, g, and lem (Kung, Luccio, & Preparata 1975) is a special case of
is dominated by: andb. The stable property between these dominantrelationship analysis. There are some other related
items can be deduced from the partial order representation issues, i.e., convex hull (Preparata & Shamos 1985) and the
(DAG in Fig. 1 (b)) based on the out-link and in-link df skyline query (Borzsonyi, Kossmann, & Stocker 2001). All
In this paper we formally justify this discovery and more- these works concerned only the pure dominant relationship
over, explore how to efficiently index and query such suc- and, output those items which are not “dominated” by oth-
cinct representative partial orders. For the purposes of this ers. In contrast, Yang et al. (Yargd al. 2007) proposed
paper, we assume the attribute sets of products are availableto analyze a general dominant relationship from a microeco-
in structured format. nomic aspect in dynamic environments. The authors devised

Our contributions in this paper are as follows: an efficient data structur&arCube, to compress the gen-
eral dominant relationship.

However, all these works gave strict definition on “dom-
inate” between two items that, i.e., one itendominates
another itend, if and only if all the attribute values (inferred

e We propose a new problem, Relaxed Dominant Relation-
ship Query (RDRQ), which extends the work in (Yaely
al. 2007) by incorporating rank aggregation. RDRQ is
based on a more natural model to rank relational data for by users) ofs is not worse than those of This criteria is

business analysis. . L .
y o ) too strict and leads to such a result that, it is most likely no
e We propose efficient methods to improve the perfor- jtems have dominating items, due to the market mechanism

mance of constructing the data culiégrC'ube(Yang et of automatic adjustment. Hence, in this paper, we aim to
al. 2007), which concisely represents the dominant rela- stydy a ranking-relaxed problem, by incorporating rank
tionship as partial order representation (DAGS). aggregation.

e We introduce efficient query processing strategies, which
is indeed rank-based fusion method, to answer the general

dominant relationship queries with rank aggregation. Preliminaries
¢ We conduct comprehensive experiments to confirm the ef- We first introduce some basic notations to present the re-
ficiency of our strategies. laxed dominant relationship analysis in a uniform way.
Given ad-dimension (attribute) spac&={s1, s2,..., 84},

The remainder of this paper is organized as follows. After
discussing the related work, we introduce the preliminaries
and then propose several strategies to efficiently construct
data index and then query it to analyze relaxed dominant re-
lationship. The performance analysis is reported in Section
5. We conclude the paper in Section 6.

a set of product item®={p1,ps,...,p,} is said to be a
dataset orb' if everyp; € D is ad-dimensional item orf.
We usep;.s; to denote the** dimension value of iterp;.
For each dimensior;, we assume that there exists a total
order relationship. For simplicity and without loss of gener-
ality, we assume smaller values are preferred, and are ranked
Related work higher. A dimension with ranked items will be calledan k

list, denoted as.
Rank Aggregation. Relaxed Dominant Relationship Anal- A partial order onD is a binary relation< on D such
ysis is related to the problem of merging rank-ordered lists. that, for allz,y,z € D, (i) =< = (reflexivity), (i) z < y
There are mainly two kinds of strategies in merging rank- andy =< x imply z=y (antisymmetry), (iii)z < y andy < z
ordered lists. One is score-based, that the score is comeimply =z < z (transitivity). We use D,<) to denote the
from the original score of an item in the rank list, or some partial order set (or poset) of D.
transformation of this score (Aslam & Montague 2003;
Fagin & Wimmers 1997; Lee 1997). The other strategy is ’ .
rank-based, that the rank is the original rank of an item as- another producy on 5 if and only ifVsi € 5, p.sy < ¢si
signed to the rank list, or some transformation of this rank and3s, € 5,p.s¢ < ¢.5t.
(Aslam & Montague 2003; Dworkt al. 2001). As another The partial order D,=<) can be represented by a DAG
category to classify different approaches, some rank fusion G = (D, E), where(v,u) € E if ¢ < v and there does
methods rely on training data (e.g., the Bayes-fuse method not exist another valug € D such thaty < = < v. For

Definition 1 (dominate) A productp is said to dominate
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Table 1: Sample Product Iltems Dataset

a|lb|lc|d|el|f]lg
D: 2 1({6|3|7|4]|5
D2 1({4)12|5|3|7]|6
D3 3 1({4]|2|5]|6]|7

simplicity and without loss of generality, we assume tf¥at
is a single connected component.

To relax the strict meaning @fominate in Definition 1,
we need to compute each product’s comprehensive value
by fusing product values (scores) on multiple dimensions
(rank lists) into one rank list. Since the values in different
dimensions may be not comparable, normalization is usu-
ally applied before merging dimensions (rank lists) in order
to uniform value distributions to capture within an unique
framework. We can apply any normalization method here
BecauseBorda Count (Borda 1781) is one of the semi-
nal rank aggregation methods, we employ its normalized
weight. Consider a sef of rank lists (dimensions), a set
D of product items, and let a rank liste S. 7(p;) is the
rank of producp; in 7.

Definition 2 (normalized weight (Borda rank)) The nor-
malized weightw™(p;), of a productp; € 7 is defined as

follows:
1— T(pi)—1 piET
o= { LI @
5+ 2D otherwise

Definition 3 (Borda score) The fused rank list is ordered
with regard to theBorda score s™ , where theBorda score
of anitemp; € D in 7 is defined as

s = ZWT(Pi)
TES
Definition 4 (relaxed-dominate) A productp is said to
relaxed-dominate another produgton S if and only if the
Borda score of p is larger than theBorda score of q.

Definition 5 (relaxed-dominating set, RDS(p, D, S"))

Given a product p, we use RDS(p, D, S’) to denote the set of
products from D which are relaxed-dominated by p in the
subspace S’ of S.

The problem that we want to solve is as follows:

Problem 1 (Relaxed Dominant Relationship Query (RDRQ))
Given a dataset D, dimension space S’, and a product p,
find RDS(p, D, S’).

)

Example 1 Consider the 3-dimensional dataset D{g, b,

c, d, e, f, g in Table £. Given a query point, dimension
spaceS’={D;, D-}, the relaxed-dominating set RDSD,

S") = {e, f, gt. We will use this dataset as a running example
hereafter.

2The aim of this paper is to incorporate rank aggregation mech-
anism, rather than comparing different rank aggregation methods.

3D, denotes theth attribute. For simplicity, we use small in-
teger to simulate items’ values on the attributes for convenience of
description in this paper.
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Table 2: Finding (k+1)-length frequent patterns with opti-
mization

INPUT: D B =the converted sequence DB

OUTPUT: FreMaxPatterns = frequent maximal sequential paf-
terns

Function: Gen_Pattern(S)

Parameters: S = Set of k-length frequent patterns

Goal: Generate (k+1)-length frequent sequential pattern

Main():

1. F»> = Scan D B to find 2-length sequential patterns;

2. Call Gen_Pattern (F2);

3. FreMaxPatterns = Merge all the atoms id;;

Function: Gen_Pattern(S)

4, For all atomsA; € F»

5. T; = @;

6. For all atomsA ; € Fa, with j > 4

7. R=A;V A]‘;

8. T;=T; UR,;

9. F‘R‘zF‘R‘UR;

10. ForallT; # 0

11. Call Gen_Pattern (T3);

As illustrated in the Introduction section, with the help
of partial order representation, the Relaxed Dominant Rela-
tionship can be extracted efficiently. In the next sections, we
will first propose several optimized strategies on discovering
partial orders (DAGSs), and then give our effective algorithm
to tackle RDRQ problem.

Optimization of ParCube Construction

In this section, we will propose our strategies on optimizing
the partial order data cub&trCube) construction. We first
introduce the methods proposed in (Yagtgal. 2007) and
then present our optimized approaches.

Naive ParCube Building

To get partial orders from spatial datasets, Yang et al.
(Yang et al. 2007) proposed to apply strategies from an-
other research context, sequential pattern mining (Agrawal
& Srikant 1995). There are three processesRarCube
construction, as illustrated in Fig. 2.

The first process is to convert the spatial dataset to the se-
guence dataset. With/adimensional dataset, it is easy to
get ak-customer sequence dataset by sorting the objects in
each customer (dimension) according to their value in as-
cending order. In process 2, the sequential patterns from
the transformed sequence dataset are discovered by apply-
ing PrefixSpan algorithm (Padt al. 2001), which is the
state-of-the-art method. The patterns are then merged as
local maximal sequential sequences, which are not the
subsequence of other sequential sequences. The resultant
data cube §eqCube) from process 2 for the sample dataset
is shown in Fig. 2 (c). In process 3, the combinations of
thelocal maximal sequential sequences are enumerated
to generate partial orders with DAG representation, by ap-
plying the method proposed in (Casas-Garriga 2005). The
resultant data cubeParCube) for the example dataset is
shown in Fig. 2 (d).

Optimization of Sequential Pattern Mining Among the
three processes of partial orders finding as illustrated in Fig.
2, the second one, sequential pattern mining, is the slowest
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of the local maximal common sequential patterns

Figure 2: The result representation of each process for thegespatial dataset

process although the state-of-the-art algorithm is used. To extent, we can further improve the compression by employ-
improve the efficiency of the whole work, we aim to develop ing the technique of closed sequence (Yan, Han, & Afshar
a new algorithm to fasten the mining process by considering 2003; Casas-Garriga 2005). If a local maximal sequénce
the special property of the converted sequence datasets. exists in two subspaces; andS; whereS; C S, then!

We find that the converted sequence dataset has one im-is only recorded inS;. For instance, although a sequence,
portant characteristic: for each customer sequence (dimen-b — d — g, exists in three subspacé®;,Ds>}, {D2,Ds}
sion), one item appears and only appears once. In otherand{D;,D5,Ds}, we only record it in the super-subspace,
words, there is no two same items existing in the same cus- i.e., {D1,D2,D3}. This technique can largely reduce the
tomer sequence (dimension). This is very different from space consumed to store the DAGs. While querying the re-
general sequence, i.e., Web log sequence, customer shoplaxed dominant in the local subspace, we should also check
ping history or DNA sequence. Based on this discovery, we the super-subspace because some local sequences are ab-
have the following two lemmas: sorbed by their super-subspace ones.

Lemma 1 (Transitivity) Let AB and BC be two sequential
patterns in k-customer sequences, then AC should also be a
frequent sequence in the k-customer sequences.

Efficient Strategies on Relaxed Dominant
Relationship Query

We assume that the query poiRf,.., is in the dataseD.

Lemma 2 (Pattern Growth) Let AB and BC be two se-  \wjith the help of the partial order models, DAGs, we have
quential patterns in k-customer sequences, then ABC should i,¢ following lemmas:

also be a frequent sequence in the k-customer sequences.
. . Lemma 3 Let A be a node on the path from the root to
These two lemmas can be easily proofed and we avoid de- the query poINt, Pyyery, in the DAG, thenP,,.,, can-

tail here. Based on Lemma 1 and Lemma 2, we can develop pot relaxed-dominate A, no matter which rank aggregation
a much more efficient algorithm to find the sequential pat- ethod is used.
terns. The pseudo code of the algorithm is shown in Table )

2. Lemma 4 Let Abe anode onthe path from the query point,
Because every item (point) must exist in each customer Fauery, t0 any leaf node in the DAG, the,,, relaxed-
sequence (dimension), we do not need to find 1-length pat- dominates A, no matter which rank aggregation method is

terns. In line 1, we thus directly find the 2-length sequential Used.

patterns. We scan each item’s suffix database to accumulateLemma 5 If the aggregate score of a nodé is smaller
the support of 2-length candidate sequences. Thenin line 2, than the aggregation score of the query POIRy,c.-y

we recursively call the functiotven_Pattern to get those with regard to some rank aggregation method (iBarda
patterns whose length are larger than 2. We just merge two Count), then all the child nodes ofi in the DAG are
atoms together based on their prefix sequences. For exam-relaxed-dominated by A with regard to the same rank ag-
ple, when merging two patterns, i.ep andac, we need gregation method.

to check the existence 6f or cb in the frequent pattern list.
The pattermbc could be claimed ibc is found. By this way,

we do not need to do DB projecting and scanning operation
in PrefixSpan, which largely reduce the computation cost.
The experimental results illustrates the improvement of this
strategy. In line 3, we merge these sequential patterns to get
maximal ones.

These three lemmas can be easily proofed and we avoid
detail here. The intuition idea is that the general dominant
relationship has a stronger rank meaning compared with re-
laxed dominant relationship. Therefore the semantic mean-
ing compressed in the partial order representation, DAG, can
be utilized to deduce relaxed dominant relationship with the
help of rank aggregation methods. We next introduce our ef-
Compression of the ParCube Data Cube The local ficient algorithm based on Lemma 3, Lemma 4 and Lemma
maximal sequential sequences compress the data to somes. Notice thatBorda score is counted as the aggregation
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70

@ ParCube

Table 3: Relaxed Dominant Relationship Query Processing

60

INPUT: Partial order representatidd AG, a query pointPy. ey, @ sub- % 5
spaceS’ g 0
OUTPUT: RDRQP,ycry, D, S’) 5 .
1. Insert all points with sorting into the candidate liét,, based on 3
their level value inD AG (from top to bottom) 5 2
2. for each parent nods, of Pyycry in DAG and its subspacg’ & 10
3. removec,, from the candidate lisE . 2 0 s . s . .
4. for each child node,, of Pyyery in DAG and its subspacg’ Dimensionality
5. pute; in the result set RDORQRguery, D, 8" (a) Average number of result points when varying
6. removec,, from the candidate lisk . dimensionality (number of points=10K)
7. computeBorda score 0fPgyery, sq (based on Equation 2) 2
8. for each candidate poiny, in the candidate lisL . (start from the é 00
root node ofL ) @ 55 | BRORA
9. computeBorda score ofc,, s. (based on Equation 2) s
10. if (se < sq) g
11. putcy, in the result set RDR@wery, D, S”) 2 150
12. fmewhmMnmmnMCﬂnDAGmmmmwm§’ é 100
13. putc,, in the result set RDR@guery, D, S) g
5000 ;n N I J
—&— ParCube g 0
. 4000 | ——FRORA 2 10 20 30 . 40 50
: Number of points
-E 3000 (b) Average number of result points when varying
H number of points in the dataset
3 2000 (dimensional i ty=5)
8 o Figure 4: Querying result comparison betwdeb R A and
ParCube against dimensionality and number of points in
o a0 the dataset
Number of points (*1K) i
Execution time on buliding index against number Performance AnaIySIS
_ ~ of points (dinensional ity=5) To evaluate the efficiency and effectiveness of our strate-
Figure 3: Execution time comparison betweEnrCube gies, we conducted extensive experiments. We performed
andRDRA on data index construction the experiments using a Intel(R) Core(TM) 2 Dual CPU PC

(3GHz) with a 3G memory, running Microsoft Windows XP.
All the algorithms were written in C++, and compiled in an
MS Visual C++ environment. We conducted experiments on
both synthetic and real life datasets. However, due to space
limitation, we will only report results on synthetic datasets

In Line 1, we first insert all points into the candidate list here. Results from real life datasets mirror the results of
based on their level value iR AG. In fact, this step can be  the synthetic datasets closely. We employ the synthetic data
executed in the pre-processing. The reason why we sort the generator (Borzsonyi, Kossmann, & Stocker 2001) to create
points is based on Lemma 5. We fasten the process if the our synthetic datasets. They hawelependent distribution,
root of a subgraph is relaxed-dominated by the query point, with dimensionalityd in the range [3, 7] and data size in the
and hence, all the nodes in the subgraph can be extractedrange [10k, 50k]. The default values of dimensionality were
immediately. 5. The default value of cardinality for each dimension was
50k.

Detailed implementation of the algorithms used to com-
pare is described as follows:

score of a point. Other rank aggregation method can be also
applied. The pseudo code is shown in Table 3.

Line 2 and Line 3 is based on Lemma 3, which prunes
candidates as soon as possible, before we compute their
Borda scores. Lines 4-6 are based on Lemma 4, which
extracts the results before we compute thigirda scores. 1. ParCube. ParCubevas implemented as described in

= . . (Yanget al. 2007).

rom Line 7 to Line 13, we compute and compare the

Borda score of each candidate point with the query point. 2. RDRA. RDRAwas implemented as described in this pa-
This is similar to the traditional rank aggregation process.  Per.

The difference is that we give the order of the candidate ]

points used to compare, that those located in the higher layer Index Data Structure Construction Performance

of the DAG will be tested first. By this way, we can enlarge In this section, we show the Comparison betwdtbh RA

the probability of pruning points earlier. As the experimen-  and ParCube on building the partial orders (DAGs). Fig. 3

tal results illustrate, which will be introduced shortly, our jjlustrates the execution time for index building against the
proposed algorithm largely improves the efficiency of ex-
tracting the relaxed-dominant relationship. “Relaxed Dominant Relationship Analysis.
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Figure 5: Execution time comparison of querying between
RDRA andBorda Count against dimensionality and num-
ber of points in the dataset (hnumber of query points=500)

number of points in the dataset. We can see thaiiba? A

is much faster thaiarCube. The reason whyz D R A per-
forms so well, is because we can prune many candidates ear-
lier and avoid to compare the positions of every item.

Query Performance

In this section, we evaluated the query answering perfor-
mance of RDRA compared withParCube. Note that in

this paper, our major purpose is to provide more natural
candidate items that users may favor, rather than compare
the precision of results between different rank aggregation
methods. To test the effect of RDR query, we randomly se-
lected 500 different points fron» and the result is the av-
erage value. FoORDRA, given the randomly selected point

p, we querie’s relaxed dominating points. FdtarCube,

we queriedp’s general dominating points.

The result is shown in Fig. 4, from where we can see
that RDRA always extracts more dominated points than
ParCube. This is not surprising because we relax the strict
meaning oflominate in ParCube and thus, can give users
more favorable candidate items. When dimensionality in-
creases, as shown in Fig. 4 (a), the size of the result set in
ParCube decreases quickly, sindéarCube is sensitive to
the dimensionality. In contrasR D RA is relative stable on
output result set. When changing the number of points in the
dataset, the result set 8D R A proportionally varies. How-
ever, the result set dParCube keeps stable. In summary,
compared withParCube, RDRA outputs more reasonable
candidates items.

The comparison of the execution time on querying relaxed
dominant relationship betweddD R A and traditional rank
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aggregationBorda Count) is shown in Fig. 5. The reason
why we compared withBorda Count is that we want to
demonstrate the efficiency of partial orders on querying re-
laxed dominant relationship, rather than comparing two rank
aggregation methods themselves. The latter issue is beyond
the scope of this paper. We can know tii&D R A is much
efficient than its competitor for the two cases (varying di-
mensionality and number of points) because of the effect of
partial orders we used.

Conclusions

We have introduced Relaxed Dominant Relationship Query
(RDRQ), which is an extension model based on general
dominant relationship by incorporating rank aggregation.
We found thatR D RQ can provide more natural candidates
that users may favor. We have proposed efficient strategies
to build partial order models and to answeDR(@). The
performance study confirmed the efficiency of our strategies.
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