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Abstract

We consider the problem of grasping novel objects in
cluttered environments. If a full 3-d model of the scene
were available, one could use the model to estimate the
stability and robustness of different grasps (formalized
as form/force-closure, etc); in practice, however, a robot
facing a novel object will usually be able to perceive e —

only the front (visible) faces of the object. In this paper, Figure 1: Image of an environment (left) and the 3-d point-

we propose an approach to grasping that estimates the cloud (right) returned by the Swissranger depth sensor.
stability of different grasps, given only noisy estimates

of the shape of visible portions of an object, such as that In detail, we will consider a robot that uses a camera, to-

obtained from a depth sensor. By combining this with gether with a depth sensor, to perceive a scene. The depth

glggr:ﬁkr?n?tlig gﬁf;rt'gt&nm%fu?ergbsogeiri?c %T)dsitrilgrr:i?\'gogfr sensor returns a “point cloud,” corresponding to 3-d loca-
tions that it has found on the front unoccluded surfaces of

the robot’s fingers so as to grasp an object. . . . .
We test our algorithm on two robots (with very different the objects. (See Fig. 1.) Such point clouds are typically

arms/manipulators, including one with a muiti-fingered noisy .(because of small errors in the depth estimates); but
hand). We report results on the task of grasping objects more importantly, they are also incompléte.
of significantly different shapes and appearances than This work builds on Saxena et al. (2006a; 2006b; 2007;
ones in the training set, both in highly cluttered and in 2008) which applied supervised learning to identify visual
uncluttered environments. We also apply our algorithm properties that indicate good grasps, given a 2-d image of
to the problem of unloading items from a dishwasher. the scene. However, their algorithm only chose a 3-d “grasp
point"—thatis, the 3-d position (and 3-d orientation; Saxena
Introduction et al. 2007) of the center of the end-effector. Thus, it did not

generalize well to more complex arms and hands, such as to
multi-fingered hands where one has to not only choose the 3-
in this setting is that a full 3-d model of the scene is typically d.posmon (and 0r|entat|0n_) of the har)q, but also address the
not available. Instead, a robot's depth sensors can usually es-Nigh dof problem of choosing the positions of all the fingers.
timate only the shape of the visible portions of the scene. In  OUr approach begins by computing a number of features
this paper, we propose an algorithm that, given such partial ©f grasp quality, using both 2-d image and the 3-d point
models of the scene, selects a grasp—that is, a configurationcloud features. For example, the 3-d data is used to com-
of the robot’s arm and fingers—to try to pick up an object. ~ PUté & number of grasp quality metrics, such as the degree

If a full 3-d model (including the occluded portions of a to which the fln_gers are exerting forces no.rmal to the sur-
scene) were available, then methods such as form- and force-faces of the object, and the degree to which they enclose
closure (Mason and Salisbury 1985; Bicchi and Kumar (he object. Using such features, we then apply a supervised
2000; Pollard 2004) and other grasp quality metrics (Pelos- Iearmng al_gorlthm to estimate thg degree to which different
sof et al. 2004; Hsiao, Kaelbling, and Lozano-Perez 2007; configurations of the full arm and fingers reflect good grasps.
Ciocarlie, Goldfeder, and Allen 2007) can be used to try to Ve test our algorithm on two robots, on a variety of ob-
find a good grasp. However, given only the point cloud re- Jects of shapes very different from ones in the training set,
turned by stereo vision or other depth sensors, a straightfor- including a ski boot, a coil of wire, a game controller, and
ward application of these ideas is impossible, since we do

We consider the problem of grasping novel objects, in the
presence of significant amounts of clutter. A key challenge

not have a model of the occluded portions of the scene. !Forexample, standard stereo vision fails to return depth values

for textureless portions of the object, thus its point clouds are typ-
Copyright(©) 2008, Association for the Advancement of Atrtificial ically very sparse. Further, the Swissranger gives few points only
Intelligence (www.aaai.org). All rights reserved. because of its low spatial resolution bf4 x 176.
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form- and force-closure (to minimize slippage), sufficient
contact with the object, distance to obstacles (to increase ro-
bustness of the grasp), and distance between the center of
the object and the grasping point (to increase stability). In
real world grasping, however, such properties are difficult to
compute exactly, because of the quality of sensor data. Our
: algorithm will first compute a variety of features that attempt
s to capture some of these properties. Using these features,
2 we then apply supervised learning to predict whether or not
Figure 2: (Left) Barrett 3-fingered hand. (Right) Katana par- a given arm/finger configuration reflects a good grasp.

allel plate gripper. Definition of grasp: We will infer the full goal configura-
others. Even when the objects are placed amidst significant tion of the arm/fingers that is required to grasp an object. For
clutter, our algorithm often selects successful grasps. example, STAIR 1 uses an arm with S joints and a parallel
plate gripper (with one degree of freedom); for this robot,
Related Work the configuration is given by € RS. The second robot

Space constraints prevent us from doing full justice to prior STAIR 2 uses an arm with 7 joints, equipped with a three-
work, and here we will focus on prior work that performed  fingered hand that has 4 joints (Fig. 2); for this robot, our
real-world grasping experiments. For a more detailed treat- algorithm infers a configuration € R''. We will infor-
ment of related work, see, e.g., (Mason and Salisbury 1985; mally refer to this goal configuration as a “grasp.”
Bicchi and Kumar 2000; Saxena, Driemeyer, and Ng 2008).  We will then use a motion planner algorithm (Saha and
In prior work that used vision for real-world grasping Isto 2006) to plan a path (one that avoids obstacles) from the
experiments, most were limited to grasping 2-d planar ob- initial configuration to this goal configuration.
jects. For a uniformly colored planar object lying on a
uniformly colored table top, one can find the 2-d contour Probabilistic Model
of the object quite reliably. Using local visual features We will use both the point-clouft and the imagé taken of
(based on the 2-d contour) and other properties such as a scene to infer a goal configuratiarof the arm/fingers.
form- and force-closure, (Coelho, Piater, and Grupen 2001;  Saxena et al. (2006a) classified each 2-d point in a given
Chinellato et al. 2003; Bowers and Lumia 2003; Morales image as d (candidate grasp) @. For example, for an im-
et al. 2004) computed the 2-d locations at which to place age of a mug, it would try to classify the handle and rim as
(two or three) fingertips to grasp the object. In more general candidate grasping points. In our approach, we use a similar
settings (i.e., non-planar grasps), Edsinger and Kemp (2006) classifier that computes a set of image features and predicts
grasped cylindrical objects using a power grasp by using vi- the probabilityP(y = 1|a, I) € [0, 1] of each point in the
sual servoing and Platt et al. (2006) used schema structuredimage being a candidate grasping point. However, a remain-
learning for grasping simple objects (spherical and cylin- ing difficulty is that this algorithm does not take into account
drical) using power grasps; however, this does not apply the arm/finger kinematics; thus, many of the 2-d points it se-
to grasping general shapes (e.g., a cup by its handle) or to lects are physically impossible for the robot to reach.
grasping in cluttered environments. To address this problem, we use a second classifier that,
. given a configuratiorx and a point-cloudr, predicts the
our experimen?sevigtlepgggrcrgeﬁggc:&vso robots. STAIR 1 Probability P(y|a, R) that the grasp will succeed. This clas-
uses a 5-dof harmonic arm (Katana, by Neuronics) with a sifier will compute features that capture a variety of prop-

arallel plate gripper, and STAIR 2 uses a 7-dof arm (WANM, E'ties that are indicative of grasp quality. Our model will
Ey Barreett Tecghnpcflogies) with a three-fingered 4—dof(hand. combine these two classifiers to estimate the probability
The robot’s vision system consists of a stereo camera P(yla, R, I) of a graspa succeeding. Ley € {0, 1} in-

(Bumblebee?2, by Point Grey Research), and a SwissRangerdicate whethefa, R, I} is a good grasp. We then have:

camera (Swissranger 2005). The SwissRanger camera is a P(yle, R, I) o< P(R, 1|y, o) P(y, @) (1)
time-of-flight depth sensor that returnsld4 x 176 array We assume conditional independencd®énd/, and uni-
of depth estimates, spanningla5° x 39.6° field of view, form priors P(«), P(I), P(R) andP(y). Hence,

with a range of aboudm. Using an infrared structured light P(yla, R, I) < P(Rly,a)P(I|y,a)P(y, )
source, each pixel in the camera independently measures the  P(yla, R)P(y|a, I) @)

arrival time of the light reflected back by the objects. Its . . - .
depth estimates are typically accurate to atmmh. How- Here, theP(y|a, I) is the 2-d image classifier term sim-
ever, it also suffers from systematic errors, in that it tends !1ar to the one in Saxena et al. (TZOO6a). We also use
not to return depth estimates for dark objects, nor for sur- £ (|, B;0) = 1/exp (1+¢(R,a)"0), wherey(R, a)

faces lying at a large angle relative to the camera’s image &€ the features discussed in the next section.

plane. (See Fig. 1 for a sample 3-d scan.) Inference: From Eq. 2, the inference problem is:
Grasping Strategy a” = argmaxlog P(y = 1|a, R, I)

There are many different properties that make certain grasps _ log P(y = 1loe. R) + log Py = 1lav. I

preferable to others. Examples of such properties include argmixsog (v o, B) +log P(y |, I)
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Now, we note that a configuratienhas a very small chance
of being the optimal configuration if either one of the two
terms is very small. Thus, for efficiency, we implemented an
image-based classifiét(y|I, «) that returns only a small set
of 3-d points with a high value. We use this to restrict the set
of configurationsy to only those in which the hand-center

classifier. Given one such 3-d location, finding a full con-
figuration « for it now requires solving only am — 3 di-
mensional problem (where = 6 or 11, depending on the

arm). Further, we found that it was sufficient to consider

only a few locations of the fingers, which further reduces

the search space; e.g., in the goal configuration, the gap be-

tween the finger and the object is unlikely to be larger than
a certain value. By sampling randomly from this space of
“likely” configurations (similar to sampling in PRMs) and
evaluating the grasp quality only of these samples, we ob-
tain an inference algorithm that is computationally tractable
and that also typically obtains good grasps.

Features

Below, we describe the features that make up the feature
vectory (R, ) used to estimate a good grasp. The same
features were used for both robots.

Presence / ContactiFor a given finger configuration, some
part of an object should be inside the volume enclosed by
the fingers. Intuitively, more enclosed points indicate that
the grasp contains larger parts of the object, which generally
decreases the difficulty of grasping it (less likely to miss).
For example, for a coil of wire, it is better to grasp a bundle
rather than a single wire. To robustly capture this, we calcu-
late a number of features—the number of points contained

in spheres of different sizes located at the hand’s center, and

also the number of points located inside the volume enclosed
within the finger-tips and the palm of the hand.

Symmetry / Center of Mass: Even if many points are en-
closed by the hand, their distribution is also important. For

Figure 3: Snapshots of our robot grasping novel objects of
various sizes/shapes.

example, when grasping a plate, it is more desirable that the
fingers close in a direction perpendicular to the plate surface.
To capture such properties, we start with calculating the
principal directions of a 3-d point cloud centered at the point
in question. This gives three orthonormal component direc-
tionsu;, with u; being the component with largest variance,
followed by us andus. (Leto; be the corresponding vari-
ances.) For a point on the rim of a circular platg, and
uo would lie in the plane in which the plate lies, with
usually tangent to the edge, ang facing inwards. Ideally,
the finger direction should be orthogonal to large variance
directions and parallel to the small variance ones. Fas
the finger direction{ = 1 for parallel gripper, ang = 1,2
for three-fingered hand), we would calculate the following
features: (a) Directional similarity;;; = |u; - f;], and (b)
Difference from ideal(2*=2- — s;;)*.

Experiments
We performed three sets of extensive experiments: grasping
with our three-fingered 7-dof arm in uncluttered as well as
cluttered environments, and on our 5-dof arm with a parallel
plate gripper for unloading items in a cluttered dishwasher.

example, a stick should be grasped at the middle instead of Grasping single novel objects

at the tip, as slippage might occur in the latter case due to a

greater torque induced by gravity. To capture this property,
we calculate a number of features based on the distribution
of points around the hand’s center along an axis perpendic-
ular to the line joining the fingers. To ensure grasp stability,
an even distribution (1:1 ratio) of points on both sides of the
axis is desirable. More formally, if there aré points on
one side andV’ on the other side, then our feature would be
[N — N'|/(N + N’). Again, to increase robustness, we use
several counting methods, such as counting all the points,
and counting only those points not enclosed by the hand.

Local Planarity / Force-Closure: One needs to ensure a
few properties to avoid slippage, such as a force closure on
the object (e.g., to pick up a long tube, a grasp that lines up
the fingers along the major axis of the tube would likely fail).
Further, a grasp in which the finger direction (i.e., direction
in which the finger closes) is perpendicular to the local tan-
gent plane is more desirable, because it is more likely to lie
within the friction cone, and hence is less likely to slip. For
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We considered several objects from 13 novel object classes
in a total of 150 experiments. These object classes varied
greatly in shape, size, and appearance, and are very different
from the plates, bowls, and rectangular blocks used in the
training set. During the experiments, objects were placed at
arandom location in front of our robot. Table 1 shows the re-
sults: “Prediction” refers to the percentage of cases the final
grasp and plan were good, and “Grasp success” is the per-
centage of cases in which the robot predicted a good grasp
and actually picked up the object as well (i.e., if the object
slipped and was not picked up, then it counted as failure).

Using the same robot, Saxena et al. (2007) considered
power grasps only and required that objects be neatly placed
on a “rack.” However, we consider the significantly harder
task of grasping randomly placed objects in any orientation.
Further, many objects such as ski boots, helmets, etc. re-
quire more intricate grasps (such as inserting a finger in the
ski boot because it is too big to hold as a power grasp).

For each object class, we performed 10-20 trials, with



Table 1: STAIR 2. Grasping single objects. (150 trials.)

different instances of each object for each class (e.g., dif-
ferent plates for “plates” class). The average “Prediction”
accuracy was 81.3%; and the actual grasp success rate was
76%. The success rate was different depending on the size of
the objec Both prediction and actual grasping were best
for medium sizes, with success rates of 92% and 86% re-
spectively. Even though handicapped with a significantly
harder experimental trial (i.e., objects not neatly stacked,
but thrown in random places and a larger variation of ob-
ject sizes/shapes considered) as compared to Saxena et al.,
our algorithm surpasses their success rat6%y

Grasping in cluttered scenarios

In this case, in addition to the difficulty in perception, ma-
nipulation and planning became significantly harder in that
the arm had to avoid all other objects while reaching for the
predicted grasp; this significantly reduced the number of fea-
sible candidates and increased the difficulty of the task.

In each trial, more than five objects were placed in random
locations (even where objects touched each other, see some
examplesin Fig. 3). Using only the 2-d image-based method
of Saxena et al. (with PRM motion planning), but not our
algorithm that considers finding all arm/finger joints from
partial 3-d data, success was bel6d. In a total of 40
experiments, our success rate Wado (see Table 2). We
believe our robot is the first one to be able to automatically
grasp objects, of types never seen before, placed randomly
in such heavily cluttered environments.

Table 2: STAIR 2. Grasping in cluttered scenes. (40 trials.)

ENVIRONMENT OBJECT PREDICTION GRASP SUCCESS
TERRAIN TUBE 87.5% 75%
TERRAIN Rock 100% 75%
KITCHEN PLATE 87.5% 75%
KITCHEN BowL 75% 75%

Table 3: STAIR 1. Dishwasher unloading results. (50 trials.)

OBJECT CLASS | PREDICTION GOOD | ACTUAL SUCCESS
PLATE 100% 85%
BowL 80% 75%
Muc 80% 60%

2\We defined an object to be small if it could be enclosed within
the robot hand, medium if it was approximately 1.5-3 times the size
of the hand, and large otherwise (some objects were even 4ft long).
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Applying algorithm on a different robotic platform

OBJECT CLASS SizE PREDICTION | GRASP SUCCESS . . . o

BALL SVALL 30% 30% One of the properties of the algorithm is that it is agnos-
APPLE SMALL 90% 80% tic to particular robot platforms. We applled our algorithm
GAMEPAD SMALL 85% 80% on STAIR 1, and attempted to grasp kitchen items from a
CD CONTAINER SMALL 70% 60% cluttered dishwasher with the presence of 3 or more objects
HELMET MED 100% 100% placed randomly (see Table 3). In a totabofexperiments,

SKI BOOT MED 80% 80% even with more clutter than in Saxena et al. (2006a; 2007)
PLATE BUNDLE MED 10‘1% 802/° (where objects were placed neatly in dishwasher), our algo-
22:0T PO Bt Zgo//“’ :go//“ rithm gave comparable results. Our algorithm is therefore

> > generalizable to different robots.

CARDBOARD TUBE | LARGE 70% 65% . . . .

F We have made our grasping movies available at:

OAM LARGE 60% 60% ) . . .

STYROEGAM LARGE 80% 70% http://stair.stanford.edu/multimedia.php

CoOIL OF WIRE LARGE 70% 70% References
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