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Abstract

This paper summarizes recent advances in the application of
multiagent coordination algorithms to air traffic flow man-
agement. Indeed, air traffic flow management is one of the
fundamental challenges facing the Federal Aviation Admin-
istration (FAA) today. This problem is particularly complex
as it requires the integration and/or coordination of many fac-
tors including: new data (e.g., changing weather info), po-
tentially conflicting priorities (e.g., different airlines), limited
resources (e.g., air traffic controllers) and very heavy traffic
volume (e.g., over 40,000 flights over the US airspace).

The multiagent approach assigns an agent to a navigational
fix (a specific location in 2D space) and uses three separate
actions to control the airspace: setting the separation between
airplanes, setting ground holds that delay aircraft departures
and rerouting aircraft. Agents then use reinforcement learn-
ing to learn the best set of actions. Results based on FACET
(a commercial simulator) show that agents receiving person-
alized rewards reduce congestion by up to 80% over agents
receiving a global reward and by up to 85% over a current
industry approach (Monte Carlo estimation). These results
show that with proper selection of agents, their actions and
their reward structures, multiagent coordination algorithms
can be successfully applied to complex real world domains.

Introduction

The efficient, safe and reliable management of our ever in-
creasing air traffic is one of the fundamental challenges fac-
ing the aerospace industry today. On a typical day, more than
40,000 commercial flights operate within the US airspace
(Sridhar et al. 2006). In order to efficiently and safely route
this air traffic, current traffic flow control relies on a central-
ized, hierarchical routing strategy that performs flow projec-
tions ranging from one to six hours. As a consequence, the
system is slow to respond to developing weather or airport
conditions leading potentially minor local delays to cascade
into large regional congestions. In 2005, weather, routing
decisions and airport conditions caused 437,667 delays, re-
sulting in 322,272 hours of delays. The total cost of these de-
lays was estimated to exceed three billion dollars by indus-
try (FAA OPSNET data Jan-Dec 2005 2005). Unlike many
other flow problems where the increasing traffic is to some
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extent absorbed by improved hardware (e.g., more servers
with larger memories and faster CPUs for internet routing)
the air traffic domain needs to find mainly algorithmic solu-
tions, as the infrastructure (e.g., number of the airports) will
not change significantly to impact the flow problem.

This paper presents a solution to this problem that is based
on agents associated with a “fix,” or a specific location in 2D.
Because aircraft flight plans consist of a sequence of fixes,
this representation allows localized fixes (or agents) to have
direct impact on the flow of air traffic. In this approach, the
agents’ actions are to:

e sct the separation between approaching aircraft;
e order ground delays; and
e reroute traffic

These simple agent-action pairs allow the agents to slow
down or speed up local traffic, shift the burden from one re-
gion to another and prevent congestion from occurring. The
first multiagent solution to this problem was presented in
(Tumer & Agogino 2007), with extensions to multiple ac-
tions and coupled agent actions following in (Agogino &
Tumer 2008).

Significance of Results

An adaptive, multi-agent approach is an ideal fit to this nat-
urally distributed problem where the complex interaction
among the aircraft, airports and traffic controllers renders a
pre-determined centralized solution severely suboptimal at
the first deviation from the expected plan. Though a truly
distributed and adaptive solution (e.g., free flight where air-
craft can choose almost any path) offers the most potential
in terms of optimizing flow, it also provides the most radi-
cal departure from the current system. As a consequence, a
shift to such a system presents tremendous difficulties both
in terms of implementation (e.g., scheduling and airport ca-
pacity) and political fallout (e.g., impact on air traffic con-
trollers).

The method summarized in this paper though focuses on
a system that can be implemented readily. In addition the
use of a commercial simulator (FACET) allows the domain
experts to compare these results to current methods and re-
moves a key barrier to the adoption of new innovative multi-
agent algorithms: a mismatch between the degree of fidelity
expected by a domain expert and that provided by a multia-
gent researcher.



Air Traffic Flow Management

The management of traffic flow is a complex and demanding
problem, where over 40,000 flights a day operate over the
US airspace. Critical issues include efficiency (e.g., reduce
delays), fairness (e.g., deal with different airlines), adapt-
ability (e.g., respond to developing weather patterns), reli-
ability and safety (e.g., manage airports). In order to ad-
dress such issues, the management of this traffic flow occurs
over four hierarchical levels. The multiagent work presented
in this paper focuses on the “regional” and “national flow”
where agents look at time horizons between twenty minutes
and eight hours. The solution is therefore not directly af-
fected by guidelines for separation assurance (2-30 minute
decisions) and political and business concerns for airspace
configuration (long term management). Instead our solution
fits between long term planning by the FAA and the very
short term decisions by air traffic controllers.
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Figure 1: FACET screenshot displaying traffic routes and air
flow statistics.

FACET

FACET (Future ATM Concepts Evaluation Tool), a physics
based model of the US airspace was developed to accurately
model the complex air traffic flow problem (Bilimoria et al.
2001). Itis based on propagating the trajectories of proposed
flights forward in time (Figure 1). FACET is extensively
used by the FAA, NASA and industry (over 40 organizations
and 5000 users) (2006 NASA Software of the Year Award
2006). In this paper, agents have FACET simulate air traffic
based on their control actions. The agents then produce their
rewards based on receive feedback from FACET about the
impact of these actions.

Agent Based Air Traffic Flow

The multi agent approach to air traffic flow management we
present is predicated on adaptive agents taking independent
actions that maximize the system evaluation function dis-
cussed above. To that end, there are four critical decisions
that need to be made: agent selection, agent action set se-
lection, agent learning algorithm selection and agent reward
structure selection.

Agent Selection

Selecting the aircraft as agents is perhaps the most obvious
choice for defining an agent. That selection has the advan-
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tage that agent actions can be intuitive (e.g., change of flight
plan, increase or decrease speed and altitude) and offer a
high level of granularity, in that each agent can have its own
policy. However, there are several problems with that ap-
proach. First, there are in excess of 40,000 aircraft in a given
day, leading to a massively large multi-agent system. Sec-
ond, as the agents would not be able to sample their state
space sufficiently, learning would be prohibitively slow. As
an alternative, we assign agents to individual ground loca-
tions throughout the airspace called “fixes.” Each agent is
then responsible for any aircraft going through its fix. Fixes
offer many advantages as agents:

1. Their number can vary depending on need. The sys-
tem can have as many agents as required for a given
situation(e.g., agents coming “live” around an area with
developing weather conditions).

2. Because fixes are stationary, agents can collect data and
readily match behavior to reward.

3. Because Aircraft flight plans consist of fixes, agent will

have the ability to affect traffic flow patterns.

They can be deployed within the current air traffic routing

procedures, and can be used as tools to help air traffic

controllers rather than compete with or replace them.

Agent Action Sets

Based on this definition of an agent, we explore three meth-
ods for the agent based fixes to control the flow. Allowing
agents to have the flexibility to control aircraft in multiple
ways is essential to their ability to be integrated into existing
systems. Even if all the methods work relatively well, an
organization or a sector controller may only be comfortable
with a particular form of flow control. Agents that are not
flexible enough to conform to these needs will not be used.
The methods used in this paper are as follows:

1. Miles in Trail (MIT): Agents control the distance air-
craft have to keep from each other wile approaching a fix.
With a higher MIT value, fewer aircraft will be able to
go through a particular fix during congested periods, be-
cause aircraft will be slowing down to keep their spacing.
Therefore setting high MIT values can be used to reduce
congestion downstream of a fix.

2. Ground Delays: An agent controls how long aircraft that
will eventually go through a fix should wait on the ground.
Imposing a ground delay will cause aircraft to arrive at a
fix later. With this action congestion can be reduced if
some agents choose ground delays and others do not, as
this will spread out the congestion. However, note that
if all the agents choose the same ground delay then the
congestion will simply happen at a later moment in time.

3. Rerouting: An agent controls the routes of aircraft going
through its fix, by diverting them to take other routes that
will (in principle) avoid the congestion.

Agent Learning and Reward Structure

In this paper we assume that each agent will have a re-
ward function and will aim to maximize its reward using its
own reinforcement learner (Sutton & Barto 1998). At every



episode an agent takes an action and then receives a reward
evaluating that action. It then uses this reward to update its
action policy in such a way that it will try to take actions
in the future that will lead to higher reward (for details see
(Tumer & Agogino 2007)).

The system performance evaluation function focuses on
delay and congestion. The linear combination of these two
terms gives the full system evaluation function, G(z) =
—((1 — a)B(z) + aC(z)) as a function of the full system
state z. where B(z) is the total delay penalty for all air-
craft in the system, and C'(2) is the total congestion penalty,
which penalizes a system state where the number of air-
craft in a sector exceeds the FAAs official sector capacity.
The relative importance of these two penalties is determined
by the value of a. (Details provided in (Tumer & Agogino
2007; Agogino & Tumer 2008)).

We explored three different reward functions for the
agents. The first option was to let each agent receive the
system performance as its reward. While this form of re-
ward has been successfully used in small multi-agent rein-
forcement learning problems, it does not scale well, since
the impact of a single agent’s actions of the system reward
is relatively small. To alleviate this problem, we explored
using a reward that is more agent-specific. To that end, we
focus on difference rewards which aim to provide a reward
that is both sensitive to that agent’s state/actions and aligned
with the overall system reward (Tumer & Wolpert 2004;
Tumer & Agogino 2007), given by:

D, =G(z)—G(z—z +ci), (1)
where z; is the state of agent ¢. All the components of z
that are affected by agent ¢ are replaced with the fixed con-
stant ¢;. While the difference reward is effective in allowing
an agent to see the impact of its own actions, one issue that
may plague D is computational cost. Because it relies on
the computation of the counterfactual term G(z — z; + ¢;)
(i.e., the system performance without agent ¢) it may be dif-
ficult or impossible to compute, particularly when the exact
mathematical form of G is not known. Our third reward is
therefore an estimate of D that is computationally tractable
and requires far fewer calls to the FACET simulator (one per
time step, rather than one per agent).

Simulation Results

In all experiments we test the performance of four different
methods. In addition to the three methods discussed above
(G, D, D.s), we also provide a Monte Carlo estimation,
where random policies are created, with the best policy be-
ing chosen. The next three subsections provide results for
agents following the three actions: Miles in Trail, Ground
Delay and Rerouting. The results are based for all three
action sets are based on a scenario that consists of two in-
dependent congestions with a total of 300 aircraft over the
course of five hours of flight time. The first congestion is
relatively light and has a total of 75 aircraft. The main goal
of agents in this congestion is to minimize delay. The sec-
ond congestion is heavy and has a total of 225 aircraft. Here
agents have to take firm actions to minimize the congestion.
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In all experiments the parameter for the tradeoff between
congestion and lateness is set to a = 0.5. For rerouting
problems the reroute penalty p is set to one hour. These
parameters are setup so that congestion and lateness have
approximately the same impact. Note that the absolute per-
formance between experiments with different actions is not
comparable because of the different methods used to evalu-
ate the penalties. All results are based on 30 runs and though
they are plotted, the error bars are in most cases smaller than
the symbols used to distinguish the rewards.

Controlling Miles in Trail

In our first set of experiments, agents control Miles in Trail
(MIT). Here agents choose between the three actions of set-
ting the MIT to 0, 25 and 50 miles. Setting the MIT to
0 produces no effect, while setting it to high values forces
the aircraft to slow down to keep their separation distance.
Therefore setting high MIT values upstream of a congestion
can alleviate a congestion, at the cost the increased delay.
The results shown in Figure 2 illustrate the benefit of using
difference rewards. While agents directly optimizing G per-
form better than a Monte Carlo system, agents using any of
the difference rewards perform considerable better.
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Figure 2: Performance for agents controlling miles in trail.
300 Aircraft, 40 Agents.

Controlling Ground Delays

In the second set of experiments, agents control aircraft
through ground delays. Here an agent can order aircraft
that are scheduled to go through its fix to be delayed on the
ground. In this scenario agents choose between one of three
actions: no delay, 2 hour delay and 4 hour delay. Note that
the dynamics of ground delays are quite different than with
MITs since if all the agents choose the same ground delay,
the congestion will still happen, just at a later time. Instead
agents have to form the correct pattern of ground delays.
The results show (Figure 3) that the different rewards’ per-
formance is qualitatively similar to the case where agents
control MITs. Note however, that agents using G or Monte
Carlo estimation perform particularly poorly in this prob-
lem. This can be attributed to the problem being more diffi-
cult, since the action-reward mapping is more dependent on
the actions of other agents. In essence, there is more “noise”



in this system, and agent rewards that do not deal well with
noise perform poorly.
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Figure 3: Performance for agents controlling ground delays.
300 Aircraft, 40 Agents.

Controlling Reroutes

In this experiment agents alleviate congestions by rerouting
aircraft around congestions. Here an agent’s action is the
probability that it will reroute an aircraft that goes through
it’s associated fix. In this experiment agents choose between
one of three probabilities: 0%, 50% and 100%. As before
the results show that using a reward that can handle the cou-
pling is important in obtaining high performance.
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Figure 4: Performance for agents controlling rerouting. 300
Aircraft, 40 Agents.

Discussion

The main contribution of this paper is to present a distributed
adaptive air traffic flow management algorithm that can be
readily implemented and to test that algorithm using FACET,
a simulation tool widely used by the FAA, NASA and in-
dustry. Air traffic management is a complex problem and
requires new solutions that integrate policies with time hori-
zons ranging from minutes up to a year. Our solution is
based on agents representing fixes and having each agent
taking one of three actions (setting miles in trail, ground de-
lays or reroutes) for aircraft approaching its fix. It offers the
significant benefit of not requiring radical changes to the cur-
rent air flow management structure and is therefore readily
deployable. The agents use reinforcement learning to learn
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control policies and we explore different agent reward func-
tions and different ways of estimating those functions.

We are currently extending this work in four directions.
First, we are exploring new methods of estimating agent re-
wards, to further speed up the simulations. Second, we are
exploring the impact of agent coupling on system perfor-
mance, where the actions of one agent restrict the actions of
another agent (for example, setting ground delays can im-
pact a reroute, or a reroute can impact miles in trail). Third
we are investigating deployment strategies and looking for
modifications that would have larger impact. One such mod-
ification is to extend the definition of agents from fixes to
sectors, giving agents more opportunity to control the traf-
fic flow, and allow them to be more efficient in eliminat-
ing congestion. Finally, in cooperation with domain experts,
we are investigating different system evaluation functions,
above and beyond the delay and congestion dependent G
presented in this paper.
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