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Abstract

The most efficient planning algorithms recently devel-
oped are mainly based on Graphplan system or on sat-
isfiability approach. In this paper we present a new
approach to plan generation based on planning graph
analysis, which can be considered as a bridge between
the two planning approaches.
The method exploits the propagation of planning ax-
ioms and constraints in order to make deductions on
the planning graph and therefore to prune the search
space. The consequences of decisions made during
search have backward and furward impact on the plan-
ning graph. In contrast with Graphplan based back-
ward algorithms, our approach allows to search the
planning graph without committing to any specific di-
rection. The experimental results obtained with DP-
Plan, a planner implementing the presented propaga-
tion approach by systematic search, are encouraging
even if compared with approaches based on SAT.
DPPian has not the huge memory requirements as SAT
solvers and keeps a strong connection with the planning
problem allowing the development of search strategies
which incorporate domain dependent heuristics. More-
over, the typical SAT techniques, such as stochastic
and incomplete strategies, can easily be transferred and
integrated in this framework.

Introduction
The most recent relevant results in domain independent
planning are represented by Graphplan, SATPLAN,
Medical, IPP and Blackbox (Blum and Furst 1995;
Kautz and Selman 1996; Ernst et al. 1997; Koehler
et al. 1997; Kautz and Selman 1998). According to
(Kambhampati 1997) these planners follow approaches
which relate plan synthesis with constraint satisfaction.
The most interesting performance results have been
firstly obtained by Graphplan, which outperformed all
previous domain independent plan synthesis algorithms
by various many magnitude orders and by SATPLAN
and its successor Blackbox, which has been shown to
outperform Graphplan itself.

Graphplan is based on the construction of a data
structure, called the planning graph, which is a very
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compa~ representation of set of states and actious that
are possible after n step levels. The algorithm inter-
leaves the planning graph construction phase, which
adds a new step level to the graph, and a search phase,
in which a solution to the planning problem is sought.
The algorithm goes on until a solution is found or when
the termination condition becomes true.

The search engine implemented in Graphplan is ba-
sically a backward-chain search, which starts from the
goals layer and proceeds backwardly by finding opera-
tors which supports goals, then it continues by finding
operators in the previous time levels supporting precon-
ditions of newly added operators and so on. At each
step the mutual exclusion relation is propagated dur-
ing searching and conflicts can lead the ’algorithm to
backtrack. As noted in (Kambhampati et al. 1997) the
propagation of mutual exclusion constraints can be seen
as a form of constraints propagation.

SAT planners are based on the transformation of a
planning problem into the satisfiability problem of a
propositional formula: if the formula is satisfiable then
a solution plan can be obtained by the truth assign-
ments which verify the formula. The formula can be
generated in several ways: by hand, by expressing op-
erator precondition/effect and frame axioms (through
different types of encoding) and by translating the plan-
ning graph into a propositional formula. The latter is
the way used in Medical and in Blackbox.

The formula, however is generated, is then passed to
SAT solver in order to see if it is satisfiable and in this
case to find a satisfying assignment, which corresponds
to a solution of the initial planning problem.

Thus some existing planners, Medical and Blackbax,
propose to use a planning graph construction phase in-
terleaved to a search phase, with the difference, with
respect to Graphplan, that this search is done in the
SAT framework, by converting the planning graph into
a propositional formula. This is one of the possible way
to combine Graphplan and SATPLAN approaches.

We propose a completely different way to combine
these two approaches: instead of converting a planning
graph in a form that is useful to a SAT solver, we have
built a search engine which is able to search for a solu-
tion within the planning graph and which behaves like
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a SAT solver.
Compared to Blackbox and the other SATPLAN

planners, our system will not need roD" trtmslation phase
to search a solution. Moreover if the search is performed
into the planning graph, the search engine can exploit
till the information contained in the planning graph and
which are usually hidden after the translation into a
propositional formula. Consider, for instance, that a
deterministic SAT solver can receive a good speed up,
as was shown in (Giunchiglia, Massarotto and Sebas-
tiani 1998), if it is able to distinguish between a¢,~ion
nodes and fact nodes by trying to assign values only to
action nodes.

On the other hand, an apparent ’advantage of our
approach oll Graphplan-based systems is that the di-
rection of the search is not fixed, but it can be unidi-
rectional (either forward or backward), bidirectional 
mixed, according to the strategy- selected. This is possi-
ble because we have found propagation rules that allow
the planner to choose any planning variable, either an
action or a fact, (independently to which other vari-
ables have already been assigned) and to try to give
that variable any value (true of false), by computing
and propagating all the possible consequences of that
choice.

The rules used in our approach have the following
form: if the variable attached to a node N receives a
certain value B, then the variables associated to nodes
belonging to a set S must receive the value B~, where S
is, for the most part of rules, a set of nodes connected
to N. Thus the modification of a single node can lead
to the modification of a subgraph, which in some case
can be quite large.

Note that one of the most important feature of SAT-
PLAN planners, which is also one of the most influen-
tial cause of their speed, is that search has no direction:
variables can be given values in any order, without be-
ing restricted to follow a determinate direction.

Another importmlt point of our approach is to bring
into the planning graph context the principle underly-
ing Davis-Putnam algorithm (Davis et al. 1962), that
is, if a given choice (e.g. assume an operator node is
selected to be executed) is inconsistent with the value
of some other ~triable, through the propagation rule,
then the only way to obtain a solution is to assume
the corresponding opposite choice (i.e. that operator
cannot be executed). Positive ~md negative choices are
then propagated through the planning graph and can
have impact as both in the previous and the following
time levels. For example determining that a fact must
be false, has as a consequence of avoiding the choice
of operators in next (previous) time level for which ~he
fact is a precondition (effect).

A closely related approach is presented in (RJnta~mn
1998), where a planning algorithm on the background
of SAT/CSP also based on non directional search is
described. The main difference between our approach
m~d B~ntanen approach is that tim latter is not based on
the Graphplml data structure and uses a less number

of rules, some of which are slightly different from ours.
The higher number of rules of our approach can cause in
most cases backtracking at earlier points in the search.

Experimental results show that the application of the
principle of maximum propagation of consequences and
Davis-Putnam principle leads to a po~erful pruning of
the search space and a problem can be solved with a
low number of search branching points, if compared
to standard Graphplan backward search. Furthermore
DPPlan, our planning system based on the principles
described above, keeps a strong connection with the
planning problem, i.e. the planning graph information
is directly available to the search strategy, this feature
allows the easy development of search strategies which
incorporate domain dependent or domain independent
heuristics, with respect to a blind "blackbox" search.

In the next two sections the basic elements of our
approach and the rules for reasoning and propagating
search decisions on the planning graph are presented. In
Section 4 different search strategies for solution extrac-
tion are discussed. Section 5 presents experimental re-
sults obtained by DPPlan. Comparisons with previous
and related works and formal issues, as completeness,
systematicity and termination are discussed in section
6 and conclusions are drawn in section 7.

The algorithm

In this section we describe DPPlan, the planning system
that we have developed and tested. DPPIan is mainly
based on Graphplan (Blum and Furst 1995), with which
it shares the plans representation (the so called plan-
ning graph) and the deseription and syntax of problems
and planning domains.

Both tim planners interleave the phase of construc-
tion of planning graph, level by level, with the phase of
solution search.

The main difference between our planner and Graph-
plan is the procedure used for searching a possible so-
lution within the planning graph: the latter uses a
backward-chaining ’algorithm (starting from the users
goals to the initial state), while the former uses a Davis-
Putnam-like procedure combined with several possible
search strategies.

One of the basic elements of DPPlan is that it repre-
sents the choioes made on the planning graph by associ-
ating to each node N a variable Value(N) analogously
to what happens in SAT-based approaches.

For an action node A at time t, Value(A) has value
true if A is used at time t in the solution, otherwise it
has value false.

For a given fact F at a time t, Value(F) would be
true in two different cases, we therefore will use two dif-
ferent values: Value(F) is asserted when F is achieved
by any true action node at time t - 1 and Value(F) is
required if F is a precondition of some true action at
time t or it is one of the user goals.

Similarly we distinguish two ways of being false:
Value(F) is denied if F is deleted by a true action at
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time t- 1 and Value(F) is required-false if F is required
to be false by the search engine.

During search phase it can happen that a fact, whose
value was required, is added by an action. In this ease we
set its state to a new value required-and-then-asserted in
order to be able to restore the previous state when doing
backtracking. Also for state required-false a new value
rcquired-]alse-and-then-denied should be used. In the
rest of the paper we shall not use this distinction, be-
cause except for the backtracking phase, a node whose
value is required-and-then-asserted (required-false-and-
then-denied) can be handled like a node with value a,-
serted (denied).

The ,~dues required, asserted and true are called posi-
tive values, while required-false and false are called neg-
ative values. It is clear that a positive goal, or just a
goal as meant in ordinary planner, is a fa~ F whose
value is required, while a negative goal is a fact whose
value is required-false.

The algorithm consists in an initialization step of the
planning graph (see initialize) followed by a solution
extraction step (see search).

In the first step all the ~-ariables associated to every
node in the planning graph are set to the undefined
value; then the facts in the initial state are asserted
while the user goals are required to be false.

procedure initialize
begin

for each N in PLANNING-GRAPH do
Value(N) := undefined

for each F in INITIAL-FACTS do
assert(F)

for each F in USER-GOALS do
require(F)

end

The core of the DPPlan search algorithm is described
in the following recursive procedure:

procedure search
begin

if the goals list is empty
then return success
else if there are no undefined nodes
then return failure
else begin

choose(V,B)
set(V,B)
if search0 then return success
backtrack(V)
set(V,not B)
return search0

end
end

where set(V,B) is the procedure assigning the boolean
B to Value(V) i.e.

procedure set(V,B)
begin

if typeof(V) =fact then
if B then require(V) else require-false(V)

else/* V is an action node */
if B then use(V) else exclude(V)

end

require, require-false, use and exclude are the pro-
cedures, which will be described in the next section,
responsible to change the value of a given node and
propagating this change through the planning graph.
backtrack is a procedure which undoes the changes per-
formed by the procedure set, thus restoring the situa-
tion before the execution of set.

When the algorithm ends with success then the solu-
tion is composed by those actions whose value is true.

The most important feature of this search procedure
is that decisions about the variable to be tried next can
be taken in any order without restrictions on the level at
which search can be performed and on the type of node
to choose (both facts and operators nodes are allowed
to be chosen). The choice is made by the procedure
choose, which will be described in section 4.

Graphplan search procedure is more rigid than our
system in that it first tries to satisfy all the possible
goals at some level before going the previous level.

The propagation rules
The basic propagation rules are described by means of
recursive procedures described below. For fact nodes
~e have the procedures assert, require, require-false and
deny, while for operator nodes we have the procedures
use and exclude.

These prooedures modify the value of the node which
is passed as their argument, and propagate, if necessary,
this change by calling some other procedures.

Propagating positive values
The following procedures give the variable attached to
their argument a positive value. They return without
effect if the node has already that positive value. They
return a result which is success when no contradiction
was found, or ]allure when if a contradiction has been
reached.

The direct way of obtaining a contradiction is when
the node has already a negative value, while an indirect
source is when at least one of the procedures called
inside fails at their turn.

Note that each of these procedures uses the mutexes
precomputed in generation graph phase, in that if a
node N, whether an operator or a fact, is set to a posi-
tive ~-alue, then every node which is mutually exclusive
with N must be set to a negative value.

The first procedure, use, gives aa operator node the
value true: in order to use an action its preconditions
must be true (so they becomes new subgoals in the pro-
cedure require), while its positive (negative) effects be-
comes a~serted (denied).

procedure use(O)
begin
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Value(O) :: true
for each p in PRECONDS(O) 

require(p)
for each e in ADD-LIST(O) 

assert(e)
for each e in DEL-I,IST(O) 

deny(e)
for each e in MUTEX(O) 

exclude(e)
end

The procedure assert gives a fact node the ,-alue as-
serted. Its main effect is to remove its argument from
the goals list, if it was a goal. It is called by the proce-
dure use.

procedure assert(F)
begin

if Value(F)---required then
remove F from the goals list.
Value(F) :=required-and-then-asserted

else
for ettch e in MUTEX(F) 

require-false(e)
Value(F) :=asserted

end

The procedure require gives a fact node the ~tlue re-
quired, i.e. the creation of a new sub-goai. It returns
without performing any action if the node value was
asserted.

procedure require(F)
begin

Value(F) :---- required
’add F to the goals list
for each e in MUTEX(F) 

require-false(e)
for each d such that F ¯ DEL-LIST(d) 

exclude(d)
end

It is worth noting that the deletion (call to procedure
require-false) of mutexes can be performed even if the
node is required to be true, but it is not already as-
serted by any action: this can cause early pruning in
the search space and can even fail, causing an anticipate
backtracking.

Another way of getting an early pruning is to inhibit
(through the procedure exclude) the execution of mxy
action that cml delete the node we require. It is un-
necessary to do the same operation in the procedure
assert because the action that adds F (rememver that
assert is called only by use) will be mutually exclusive
with any action which deletes F and therefore azly such
action will be already excluded.

Propagating negative values

The following procedures give the variable associated to
their argument a negative value. They return without
performing any operation i[ the node has already that
negative value. As we saw in previous section these

procedures return a resu[t which is success when no
contradiction was found, or failure when if a contra~lic-
tion has been reached, i.e. the node vaiue is "already a
positive ~lue, or one of the procedures called fails.

The procedure deny gives a fact node F the ~alue de-
nied. As a conseqtmnce, any actiov which ’adds F must
be excluded, because if it were true F would be true
too, and also any action which has F as a precondition
must be excluded, because it ctmnot be executed.

procedure deny(F)
begin

if Value(F)=required-false then
Value(F) := required-false-and-then-denied
delete --.F from the goal lists

else
Value(F) := denied
for each p such that F ¯ ADD-LIST(p) 

exclude(p)
for each c such that F ¯ PrtECONDS(c) 

exclude(c)
end

The procedure require--false gives a fact node F the
vaiue required-false. It is the dual of the procedure
require, in that it ’adds -,F to the goals list. Moreover
it performs the same propagation as in the procedure
deny.

procedure require-false(F)
begin

Value(F) := required-false
ttdd ~F to the goals list
for each p such that F ¯ ADD-LIST(p) 

exclude(p)
for each c such that F ¯ PR.ECONDS(c) 

exclude(c)
end

The procedure exclude gives an operator node O t.he
value false. For a given fact F, we say that an operator
O is a possible adder of F if F belongs to the add-lisz
of O gad 0 has ~-alue undefined. Similarly we say an
operator O is a possible deleter of F if F belongs to the
del-list of O gad O has ~due undefined.

If tun operator O will not be executed then some facts
F cammt be reached (if O was their last possible adder).
A more involuted consequence is that if a goal G is in
the add-list of O and there is only one more possible
adder for G, then that operator must be used, otherwise
G would not be reachable. More complex propagations
are done for facts which could be deleted by O:

¯ if a fact F at time t is a negative goal then

- if it has no more possible deleters then F must be
false at t - t

- if has no still one possible deleter and F has a pos-
itive value at t - 1 then there is only one chance to
delete this goal: apply the last possible deleter of
F
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¯ if a fact F at time t is undefined, has no more possible
deleters and F has a positive value at t - 1 then F
must be true at time t

Note that this asymmetry in handling facts added
and deleted arise from the existence of NO-OP, which is
always a possible adder to a positive fact and pushes the
goal at the previous time (through the precondition),
while this is not a~-ailable for negative facts.

procedure exclude(O)
begin

Value(O) := false
for each f in ADD-LIST(O) 

/* No Adder Rule */
if number-of-possible-adders (f) 
then require-false(f)
/* Unique Adder Rule */
if Value(f)=reqnired and

number-of-possible-adders (f) = 
then

0’=last-possible-adder(f)
use(O’)

for each f in DEL-LIST(O) 
f-prey := copy-at-previous-time(f)
if number-of-possible-deleters(f)=0 then

/* No Deleter Rule 1"/
if Value(f )=undefined and

is _positive (Value (f-prey))
then require(f)
/* No Deleter Rule 2*/
if Value(f )=required-false then

delete -~f from the goal lists
require-false(f-prey)

/* Unique Deleter Rule */
if number-of-possible-deleters(f)=l and

is _positi~e (Value(f-prev))
then

O’ =last-poseible-deleter (f)
use(O’)

end

Note that the rule No Adder can lead to a backtrack-
ing if it is applied to a positive goal, because it means
that this goal has no possibility of being achieved. A
backtracking can also be generated by the rule No
deleter rule if the fact at the previous time cannot be
falsified.

The rules No Adder and Unique Adder may be
checked in the procedure require in order to have a pos-
sibly earlier pruning of the search tree. And similarly
the rules No Deleter 1, No Deleter 2 and Unique Adder
may be checked in the procedure require-false.

Necessary Truth and Falsity

The following rules directly derive from the frame ax-
qoms. They can be added to the procedures described
above even if they are not strictly necessary (because
of the NO-OP actions) during search phase:

Persistence of Truth Rule "When a fact F has a
positive value true at time t and every action that can
delete F is false then the fact F must be true (required)
also at time t + 1."

Its dual is:

Persistence of Falsity Rule "When a fac~ F is
false at some time t and every its possible adder is false
then the fact F must be false required-false ’also at time
t+ 1."

Extended Propagation Rules

We also found some propagation rules that can be ap-
plied in order to prune the search space. These prop-
agation rules do not belong to the class of propaga-
tion rules seen before because they do not follow from
classical planning reasoning but they arise from some
domain-independent considerations about efficiency of
solutions.

We empirically found that their application can in
some planning problems dramatically reduce the search
space, while in some other cases their effects is not so
relevant.

Avoid repeated consecutive actions Rule The
following rule is based on the consideration that it is
never useful to use the same instance of some actions
in two consecutive levels:

"When an "action is true at time t exclude its possi-
ble copy (i.e. the same operator applied to the same
arguments) at times t - 1 and t + I".

Avoid consecutive inverse actions Rule The fol-
lowing rule can help in domains where some actions
a has its own inverse a-I , i.e. the action which re-
stores the situation before the execution of a. For
instance in the logistics domain the couple LOAD
and UNLOAD applied to the same arguments (e.g.
LOAD(objl,truck2) and UNLOAD(objl,truck2)) 
the inverse of each other.

It is quite obvious that the consecutive execution of
a and a-I is useless and should be avoided.

In general a and a-t can have different arguments,
but only in the order: for instance the inverse of
MOVE(o,x,y), which moves the object o from place
x to place y, is MOVE(o, y, x).

The strategy is "When an action at time t is true
exclude its possible inverse at time t - 1 and t + 1"

Exclude useless actions Rule Another rule that
can reduce the number of branching points by finding
useless actions, i.e. actions whose execution would not
produce any change in the state.
"If an undefined operator O is useless, i.e. its positive
effects are already true (and produced) and its negative
eifects are already false, then exclude 0".

Strategy rules
One of most critical points in our algorithm, similarly
to other algorithms based on Davis-Putnam procedure,
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is the choice of the undefined node variable and the
boolean value to try. A good choice in this stage can
affect the rest of search leading easily to a solution or
to a dead end.

A strategy in DPPIan is a function, like choose in the
procedure search, returning an undefined node variable
and a boolean value to try first.

All the strategies we have implemented try the value
TRUE before the value FALSE, so in their description
we do not mention the boolean value returned.

For example a trivial, but valid, strategy is the choice
of the first undefined node variable. In the first version
of DPPlan we have implemented various strategy rules
which reflects common planning heuristic.

Almost all the following strategy rules try to imple-
ment the principle "try in some way to reduce the num-
ber of goals to be achieved". In the rest of section we
will call an action O achiever of a fact F if F belongs
to the add-list of O and F is a positi~e fact, or if F is
equal to --G and G belongs to the del-list of O. More-
over a possible achiever of a fact F will metal an achiever
whose value is undefined.

Use Any Achiever Strategy

The simplest strategy to implement a strategy that en-
sure that at least a goal will be achieved is to use an
action which adds a positive goal or deletes a negative
goal :
"Choose a goal G (either positive or negative) and re-
turn a possible achiever of G".

A quick and easy way to implement tim Use-Any-
Achiever strategy is choosing the first goal G in the goal
list and selecting the first available adder or deleter. A
randomized version, which cml avoid problems derived
from having a fixed order of tries consists in choosing
randomly goal G and returning a randomly selected
possible ’achiever of G.

Most convenient action Strategy
This strategy is a modification of the previous one and
take into account of the number of further sub-goals
that an achiever can require:

"Return the operator node 0 which has the maxi-
mum difference between the number of goals which 0
can achieve and the number of goals which O requires.
Break ties deterministic~dly or randomly".

Forward Strategy
The following strategy is almost equivalent to perform-
ing planning in a forward way, i.e. from initial state
to goals. At the beginning of the search the only exe-
cutable actions are actions belonging to the first level
and therefore the first action to be tried is surely at the
first level :

"Return either deterministic’ally or randomly an unde-
fined variable corresponding to an action which is exe-
cutable, i.e. whose preconditions have value asserted".

18 AIPS-2000

Achieve the hardest goal Strategy

This strategy is similar to a principle found also in con-
straint satisfaction algorithms, that is, try to assign the
value to the variable which has the smallest number of
ammissible values. Here the more "constrained" goals
are those which have the smallest number of ways to
achieve them:

"Take the hardest goal G, i.e. the goal with the mini-
mum number of possible "achievers and return one of its
achievers of G (deterministically or randomly selected).
Break ties deterministic’ally or randomly".

Backward Strategy

This strategy is somehow similar to Graphplan search
method in that it tries to satisfy all the goals at some
level before trying to attach the goals at a previous
level.

"Take the latest goal G, i.e. the goal at the maximum
level and return one of its achievers (deterministically
or randomly selected). Break ties deterministically or
randomly".

Mixed and Randomized Strategies

It is also possible to build new strategies by mixing
some of them. A randomized mixed strategy takes two
or more strategies, randomly choose one of them and
apply it.

An importmlt feature in the design of a mixed strat-
egy is to be able to apply a component strategy on the
contexts on which it gives the best results. For instance
we found empirically that Use any achiever strategy
performs better than Achieve the hardest goal when the
goals number is large.

The understanding of search strategies for DPPlan is
fairly preliminary and needs further investigatious, with
special regards to the effect of randomiz~ttion (Gomes
et al. 1998).

Implementation Issues and
Experimental Results

DPPlan has been developed by modifying Graphplan
(Blum and Furst 1995). Special modules implement
propagation rules and the search strategies, while the
planning graph generation code is directly taken from
Graphplan except for extensions in the node structure.

The propagation rules are implemented through re-
cursive procedures that call in their turn other propa-
gation procedures.

Each procedure uses the information stored in the
planning graph. For instance the procedure use
explores the preconditions and effects of its argu-
ment through the scansion of lists in_edges, out_edges,
del_edges.
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The current version of DPPIan allows the optional
activation of additional propagation rules and the se-
lection of the search strategy.

The following preliminary experimental tests have
been held on a 500 MHz Pentium PC with 512 MB
RAM and time are expressed in seconds. In order to
compare the time of pure solution extraction phase,
the times do not include problem parsing and planning
graph generation time. Due to large memory require-
ments of Blackbox, the time for the largest problem
can be influenced by memory swapping overhead. The
times in the table are given as average time on 50 tri-
Ms per problem. Blackbox has been run with default
parameters which uses the SATZ-Rand solver, while
DPPIan has been executed with the Achieve the Hard-
est Goal systematic strategy without activating the ex-
tended propagation rules.

Problem Levels Blackbox DPPlan
logistics.a 11 1.42 0.47

--~s.b 13 2.16 0.48
logistics.c 13 5.60 0.68
bwJarge.a 12 24 0.66
bw_large.b 18 37.5 46.82

rocket_ext.a 7 2.56 0.22
rocket_ext.b 7 3.47 0.02

phil_8 6 0.440 0.08
phil_16 6 3.070 0.17
phil_32 6 8.920 0.40
phil_64 6 23.930 1.07

The phiL8, phiL16, phil_32, phil-64 are a set of plan-
ning problems which model the classical concurrent au-
tomata problems for the n ---- 8,16, 32, 64 dining philoso-
phers (the automaton behaviour is encoded following
(Baioletti, Milani 1999)).

The results for DPPIan confirm that the extensive
application of propagation rules to the planning graph
generally outperforms Graphplan on solution extrac-
tion, for example DPPlan solves logistics.c which can-
not be solved by Graphplan after a 10 hrs run. The
positive results, i.e. rocket and logistics domain, can
be explained by the structure of the planning graph
that makes an extensive use of pointers, which allow to
implement an efficient propagation of the nodes vari-
ables updates. The dramatic increment of time be-
tween bw_large.a and bw_large.b, and the anomaly of
rocket_ext.b (which is generally assumed to be harder
than rocket_ext.a) are probably due to the simplicity
of our current search strategies. These preliminary re-
sults are encouraging even if DPPIan has a lower per-
formance for some problems with respect to Blackbox.

DPPlan has not the huge memory requirements of
SAT solvers. The only memory structure needed by
DPPlan is the planning graph, the nodes contains few
additional information with respect to Graphplan struc-
tures. As a comparison Blackbox (Kautz and Selman
1998) first generates the planning graph and it then al-

locates memory for encoding it as a SAT problem. The
space scalability of SAT solvers is a problem connected
with the increasing number of clauses.

Comparison with previous work and
formal issues

It is worth to compare and discuss DPPIan with respect
to Graphplan, Blackbox and the approach in (Rintanen
1998).

The backward search algorithm of Graphplan is ba-
sically characteriT~d by four steps:

¯ goals achievement, which consists on selecting only
operators nodes which reach a needed fact node;

¯ mutual exclusive propagation of the selected node,
which consists on pruning the search space of all
nodes which are in mutual exclusion with the selected
one.

¯ propagation of effects and their exclusive nodes to
the next level.

¯ backtracking and memoizing on failure.

The main improvement that DPPlan adds is that:

¯ any undefined node can become a candidate member
of the current solution, thus the search algorithm is
not committed to be directional;

¯ negative choices are propagated and can produce pos-
itive impac~ on the planning graph;

¯ mutual exclusive nodes and effects propagation rules
are greatly enhanced (see section 3)

The advantage of DPPlan approach is that the prun-
ing effect is dramatically increased by propagation rules
and by Davis-Putnam principle: if a choice of p is not
possible, choose ~p.

Negative choices were not considered in Graphplan
therefore they could not produce any pruning effect: if
the choice of an operator node leads to failure, Graph-
plan algorithm simply backtracks to another candidate
operator choice without taking advantage of the infor-
mation provided by the failure propagation (except for
the memoization phase). On the other hand no memo-
ization is currently done by DPPlan.

As noted in (Kautz and Selman 1996), a planning
graph is quite similar to a propositional formula, there-
fore a main difference with Blackbox is that no encod-
ing is required in DPPlan and searching and propaga-
tion are made directly on the planning graph, more-
over a dditional propagation rules have been easily im-
plemented in DPPlan with no additional structures or
memory overhead.

It is certainly possible to find a correspondence with
techniques used by SAT solvers and constraint propa-
gation rules used in DPPIan.

For instance the Unique Adder Rule, which forces
to use an operator O~ if it produces a needed fact
and any other adder is negated, roughly corresponds to
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simplification of single literal clause, because the clause
corresponding to action/effects axioms for ~" that is

¯ -~" v O~ V 02 V ... v On

would be reduced to the single literal O~ which will be
forced to be true.

In addition DPPlan implements propagation rules
which are not implemented in Blackbox, for example
the Avoid Repeated Consecutive Actions R.ule or Per-
sistence of Truth Rule are not encoded in Blackbox, in
particular the notion that action deletes an effect is not
explicit in the usual SAT encodings.

It could be possible to encode these new rules as a
SAT formula, i.e. the first rule could be encoded as
"-,0 t V -,O t-t-1 for each O and t, thus requiring one ’ad-
ditional binary clause for each operator.

Moreover the work described in (Rintanen 1998) 
much closely related to DPPlan: in this work the
non directional search proceeds by emulating the ap-
plication of planning axioms and failed literals de-
tection techniques, which come from problem encod-
ing and solution searching in planning as ~tisfiabilit~:
While strictly related to SAT approach (Rintanen 1998)
avoids, as DPPlan, the generation of an explicit encod-
ing.

One of the remarkable differences is that our planning
algorithm directly works on the planning graph and ex-
ploits the constraints embedded in it (such as mutex re-
lations) during constraints propagation. The use of the
plaJming graph structure has several advantages: the
pre-computation of mutex relations avoids additional
overhead during search on visited nodes, planning graph
pre-pruning techniques can be applied (i.e. removing
unneeded nodes), finally the presence of nonmutex fi-
nal goals can be used to determine a lower bound to
the solution plan lenght, as in standard Graphplan ’al-
gorithm.

Completeness and Soundness

The ’algorithm implemented in the current version of
DPPlan is complete in that if a solution exists within
a fixed time level of the planning graph it is able to
find it, otherwise it will produce a negative answer. To
see why this is true consider that the main procedure,
search, performs a Davis-Putnam-like search by trying
to assign both boolean values to each undefined vari-
able. Since the propagation rules assign values only to
those variables for which there axe no other possibilities,
the search is systematic and every possible assignment
will be taken into account.

Our algorithm is also sound, in that if it halts with
success, the plan returned is a solution of the planning
problem. The proof is related to the fa~ that DP-
Phm can stop with success only when all the goals are
achieved. Since in the goals list all the user goals and
the preconditions of all used a~ions will be present and
a fact is removed from the goals list only when it is
achieved, it is straightforward that in a plan produced

by DPPlan ’all the user goals are true in the final situ-
ation and all the actions are executable.

Termination

Termination of a planner on planning graph can be de-
fined as the following problem: if there is no solution in
planning graph with n levels, would it be useful to add
the n + 1-th level to the graph, i.e. is there a maximum
number of levels, after which no solution can be found
?

Graphplan algorithm use a termination criterion
which combines the concept of memoization and the
concept of "level off" (Blum and Furst 1995). The
planning graph is said to "level off" at level n when
the number of action and fact nodes and the number of
mutual exclusive nodes in this level are the same as the
next level n + 1. When in two consecutive stages t - 1
and t, ’after that the level off situation has been reached
at level n, the number of unsolvable goals at level n is
constant then, as shown in (Blum and Furst 1995), the
problem is unsolvable.

Since DPPlan is not currently performing any memo-
ization and since the search for the solution is not done
in a backward wa~; then the Graphplan termination
criterion cannot apply to DPPlan.

SAT based algorithms have a similar problem for de-
termining the unsolvability. They can use cutoffs on
CPU time, cutoff on the number of trials, or cutoff on
time level in order to decide when do not generate the
next time level and terminating with failure. Therefore
the planner is incomplete because it is unable to find a
solution at greater time levels.

Currently the only complete termination criterion
available for DPPlan is that no solution can ever ex-
ist if the graph has leveled off at level n and a stage
n + a has passed without finding a solution, where a is
the number of actions at level n.

This sufficient condition provides an unpractk:al up-
per bound, therefore further investigations are needed.

Conclusions and future work
DPPlan is a systematic planner based on the propaga-
tion of search decision through the planning graph.

The outperforming improvements with respect to
Graphplan demonstrate the effectiveness of algorithms
based on constraints propagation which are searching
directly on the planning graph.

Further investigations are needed in order to demon-
strate that the approach is really competitive and scal-
able with respect to the SAT based approach, but the
preliminary experimental results are encouraging.

An important feature of DPPIan is the memory re-
quirement, which is much smaller than SAT approach.
Moreover, any search algorithm, in DPP|an framework,
is not committed to a particular direction of search in
that the propagation of a choice at a certain time level
can produce useful consequences in any direction, or
level, of the graph. The easy extendibility of search
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strategies is "also an important feature of DPPIan: we
have experimented systematic forward and backward
search algorithms, as well as systematic randomized al-
gorithms. An easy extension of our planning system
is to allow the user to express negative goals and pre-
conditions: the machinery needed for handling negative
subgoals is already available in the algorithm. Future
work will experiment the effects of introducing in DP-
Plan framework some typical SAT techniques such as
stochastic and incomplete strategies.
Another direction for future extensions is the integra-
tion in DPPlan context of other planning graph based
algorithms which take into account of costs or resources
consumption associated to operator nodes such as in
( Koehler 1998)
Work needs to be done also on the formal side: firstly,
the definition of an effective termination cTiteria is
needed; then, the investigation of new planning depen-
dent propagation rules which can simplify the search
space, and the definition of forms of memoizing within
the DPPlan framework.
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