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Abstract

We show that the problem of transforming a struc-
tured Markov decision process (MDP) into a Bounded
Interval MDP is coNPPP-hard. In particular, the test
for e-homogencity. a necessary part of verifying any
proposed partition, is co.\']"m’-cumplete. This indi-
cates that. without further assumptions on the sorts
uf partitioning allowed or the structure of the original
propositional MDP, this is not likely to be a practical
approach. We also analyze the complexity of finding
the minimal-size partition, and of the k-block parti-
tion existence problem. Finally, we show that the test
for homogeneity of an exact partition is complete for
coNPY=F which is the same class as coNPFY.

All of this analysis applics equally well to the process
of partitioning the state space via Structured Value
Iteration.

Introduction

Markov decision processes (MDPs, formally defined be-
low) are ubiquitous in Al and in the world of math-
cmatical modeling. Related research concerns learn-
ing models and/or policies for complex systems, and
developing algorithms and heuristics for planning and
intelligent control. Standard AI applications include
planning. robot control, medical systems, logistics, and
many others. MDDPs model controllable stochastic pro-
cesses: there is a set of states; a coutroller chooses
among some number of ections, cach of which has an
associated probability matrix of state transitions; as-
sociated with each state and action pair is a reward.
The basic goal, given such a model, is to find a strategy
or policy for choosing actions that maximizes the total
expected reward over some specified time horizon.
There are two reasons why finding good policies for
MDPs is computationally complex. The first is the un-
derlying complexity of finding optimal policies. The
second is the sheer size of most interesting models of
controlled stochastic systems, especially Al planning
problems, where one often considers a “size n” problem
to cousist of an 2(2™) state space described by n fluents
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or variables, and some appropriate data structure rep-
resenting the dependence relations of cach each fluent
to the states of some small number of fluents at the cur-
rent or previous stage. One can view this sort of model
as an attempt to reduce the sizes of the representations
of MDPs. Unfortunately, simply redicing the size of
the representation is not good enough. Although there
arc these factored (also called “structured™ or “propo-
sitional”) representations (Bayes' nets and others) of
size n that represent 2%-state MDPs, the problem of
deciding whether a good plan exists is correspondingly
expouentially harder than for the unfactored represen-
tations. (For details of this blow-up, see (Goldsmith &
Mundhenk 1998: Mundhenk et ol 1999).) These fac-
tored representations are used because they often model
human understanding of the system (as derived from a
domain expert), even if the compression of transition
tables to simpler or at least smaller forms does not au-
tomatically buy any computational speed-up.

One approach to further reducing the representa-
tion of a succinctly represented MDP is to group
states together into meta-states, where all elements
of a meta-state behave exactly or approximately the
same with respect to the reward function and all ac-
tions. These can be described as aggregate approx-
imate models. We use the terminology of Givan ct
al. (Decan, Givan, & Leach 1997; Dean & Givan 1997;
Givan, Leach, & Dean 1997; Givan & Dean 1997) of
Bounded Interval MDPs (BMDPs). These are MDP-
like models where the transition probabilities and re-
wards are replaced by intervals. Work on planning al-
gorithms for such systems by Givan el al. is reported
in (Givan, Leach. & Dean 1997) and by Harmanec
in (Harmanec 1999). Givan et al. pive an (exponen-
tial worst case) algorithm for partitioning a traditional
MDP state space into aggregate states to form a BMDP.

Givan and Dean have shown that, for factored MDP’s.
the problem of finding an optimal, that is, coarsest such
partition for a given interval diameter € is NP-hard (Gi-
van & Dean 1999). We show here that it is in fact much
harder (assuming that P # NPPP). It is not surpris-
ing that finding good exact or approximate partitions is
difticult. Finding an optimal policy for a finite-horizon
succinctly represented MDIP is PSPACE-hard (Mund-
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ary policies for succinctly represented MDPs is EXP-
hard (Lusena, Goldsmith, & Mundhenk 1999). This
means that if there is an algorithm that, on input of a
succinctly represented MDD, outputs a stationary pol-
icy with value », such that v minus the optimal station-
ary policy value for that MDP is less than £, then that
algorithm can be used to solve EXP-hard problems. In
particular, this guarantees that such an algorithm can-
not run in time polynomial in the size of the input.
Thcerefore, we cannot expect to find a polynomial-time
algorithm that yields significantly smaller representa-
tions of snuccinctly represented MDPs. On the other
hand, the results on asymptotic complexity do not rule
out particular instances or classes of instances for which
a fast and puaranteed good approximation algorithm
exists, nor doces it rule out fast instances for a gencral
algorithm.

A reclated approach to Givan et al’s, is given by
Boutilier, Dearden, et al. in (Boutilier, Dearden, &
Goldszmidt 1995; Boutilier & Dearden 1996; Boutilier,
Dearden, & Goldszinidt 1999), using structured policy
representations. The major contribution of that work
is to adapt Value Iteration (Bellman 1957) or Modi-
fied Policy Iteration (MDPI) (Puterman & Shin 1978) to
work on Dynamic Bayes net (2TBNs, defined bhelow)
policies represented as trees. A policy tree consists of a
set of Boolean formulas that partition the state space,
and for each clement of the partition, an action. This
means that when the specification of a state satisfies a
particular formula, the corresponding action is applied.

We arguc that the extension step in their algorithms
is exactly as hard as the stability tests for BMDPs.

In fact, we argue thatl any partition of the state space
of a factored or structured MDP into states that behave
“approximately the same” will lead to an NPP hard
stability test.

Definitions

A MDP describes a controlled stochastic system by its
states and the consequences of actions on the system.
It is denoted as a tuple M = (S, sg, A, £, 1), where

e & and A arc finite sets of states and actions,
e s¢ € S is the mitial state,

e T :8x AxS = [0,1] is the state transition func-
tion, where (s, a, s') is the probability to reach state
' from state s on action a (where T, cst(s,a,8') €
{0.1} for s € S.a € A),

o 1:8 x A Zis the reward function, where r(s,a)
is the reward gained by taking action a in state s.

2TBNs

There are many factored representations for MDPs
available. We use 2-Phase Temporal Bayes’ Networks
(2TBNs) as a convenient model for our examples.

A 2TBN consists of a set of variables, or fluents, a
set of actions, and a reward function. The effect of

by the states of a (usually small) subset of the fluents
at time ¢ and perhaps ¢ + 1. These dependencics are
modeled as a directed acyclic graph, where a directed
edge indicates dependence. (Although one could build
cyclic such graphs, the definitions rule out that case.)
The nodes of the graph consist of two sets. One set
represents the set of fluents at time ¢, and the other,
the fluents at time ¢ + 1. Edges can go from the first
set to the second (asynchronous), or within the second
set (synchronous).

In addition to this graph, for each time t 4+ 1 node
(intuitively, for cach fluent) and each action, there is
a data structure (formula, table, or tree, usually) that
represents the effects of that action on that fluent, as a
function of that node’s parent nodes.

If we assume that each fluent, is binary, then a 2TBN
with n fluents models a MDP with 2" states. (If a
fluent can have more settings, there can be even more
states.) When the dependencies specified by the 2TBN
are small enough, the size of the representation may be
polynomial in n instead of 2". These are the 2TBNs
of interest; most examples of 2IBNs in the planning
literature have such sparse dependencies. Mundhenk et
al. showed that the representational savings do not
lead to any computational savings, because there is
an exponential jump in worst-case complexity as vou
go from uncompressed to compressed representations.
However, modecls such as 2TBNs are certainly worth
using, both for their readability and for computational
rcasons. For instance, if the effects of actions are rep-
resented as arithmetic decision diagrams, this allows
use of commercial optimizing software and brings a cor-
responding increase in computational ability (Hoey et
al. 1999). (For a fuller discussion of Baycsian net-
works in planning, see (Boutilier, Dean, & Hanks 1999;
Blythe 1999).)

Model Reduction

We next present the approach of Givan ot al. (Dean,
Givan, & Leach 1997; Givan, Leach, & Dean 1997;
Givan & Dean 1997) for constructing bounded inter-
val MDPs (BMDPs) out of MDPs. This holds great
prornise for reducing the time needed to find an approxi-
matcly optimal policy for an MDP, for those MDPs that
vield significantly smaller BMDPs. Unfortunately, the
“model reduction techniques” that Givan et al. present
arc potentially quite slow.

A BMDP differs from an standard MDP in that re-
wards are cxpressed as a range of possible values, and
cach transition probability is an interval within [0, 1].
A BMDP can be interpreted as a family of MDPs such
that each MDP in the family has the same state set
and the same action set as the BMDP, and for cach
MDP, cach reward and transition falls within the range
given for the BMDP. Alternatively, each state of the
BMDP may rcpresent an aggregate state of some base
MDP. The advantage of a BMDP over an MDP arises
when the number of states of the BMDP is significantly
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The basic approach given in (Dean & Givan 1997) for
constructing a BMDP from an MDP is to first partition
the states of the MDP by reward, and then to iterate
the following: while there are aggregate states 4 and B
such that there is an action a and states s and s’ in 4
so that

ZT(s,u.,t) - ET(S',(E,L) >¢ (1)

1cB tcB

then split A into A;....1; so that for cach 4; and all «
and s in A;.

Z T(s,a,t) — ZT(S’,G, t)| <e.

tenB teB

We say that the initial aggregate state A is e-unstable
with respect to initial aggregate state B if inequality 1
holds for A and B: the opposite condition is called ¢-
stability. The goal is to produce a partition that is e-
homogeneous, that is, e-stable with respect to all pairs
A and B of aggregate states.

Givan and Dean show that the BMDP induced by
an e-partition is a “close enough” approximation to the
original MDP, namely that an appropriate version of
value iteration gives a policy for the BMDP that. defines
a reasonable approximation to the optimal policy for
the original MDP. (The closeness of the approximation
depends, of course, on €.) Unfortunately, they also show
that the test for whether there is a splittable aggregate
state A is NP-hard in the case of a factored (proposi-
tional) state space (Givan & Dean 1999). Thus, there is
no obvious polynomial-time stopping criterion for this
algorithm in the factored case. Qur work presents an
even more precise picture of this complexity.

On the one hand, we have exactly pinpointed the
complexity of the problem, which offers the opportunity
to apply heuristics designed for exactly such problems.
On the other hand, the complexity classes discussed are
conjectured to properly contain the class NP (as dis-
cussed below). Thus, we have shown that the problem
is even worse than NP-hard.

Representing Partitions We make some assump-
tions here about how partitions will be represented.
These are minimal assumptions necessary for there to
be any hope that factored representations can help. If
they are violated, then the MDP inherently has super-
polynomially many “very different” states that must be
treated separately. In practice, stronger assumptions
will typically be made (Givan 1999). Specifically, we
assume that every partition is given implicitly (rather
than as an enumeration of states into blocks) so that the
partition may be represented in size polynomial in the
size of the succinctly represented MDP. For instance,
if the MDP is rcpresented as a 2TBN, the blocks of
the partition could be represented as Boolean formulas
on the fluents. Furthermore, in order for there to be
an appreciable savings in complexity, we hope that the
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to the size of the state space.

If the representation of a partition has size (Q(2"), for
instance, where n is the muuber of fluents in the 2TBN,
then the algorithm for checking stability is linear in the
size of the input. namely the 2TBN plus the partition.
This does not, however, represent a win in complexity
terms.

Relevant Complexity Classes

For definitions of standard complexity classes. redie-
tions, and results from complexity theory we refer
to (Papadimitriou 1994). We use the notation 'l to
refer to functions computable in time polynomial in the
size of the input.

Let A/ be a nondeterministic polynomial-time Turing,
machine, and let. Aeeas (2) be the muuber of aceepting
computations of AL on input . and Rejay () the num-
ber of rejecting computations. The class NP is the class
of all sets Eyy = {r: Aeea () 2 1} One can charace-
terize NP in terms of an existential quantifier: there ex-
ists an accepting computation of Af(r). The set SAT is
the canonical complete set for NP: Sar is in NP, and for
every set S in NP, there is a polynomial-tirne reduction
from S to SAT. We define NP :- T/’ and coNP = 111"
We can then build a hierarchy of classes S and their
complements, III = coZ!, by alternations of quanti-
fiers (3 and V). Equivalently, one can use a complete
set, Ay, for TF as an oracle to define L € f' | if and
only if there is a nondeterministic polynomial-titne or-
acle Turing machine M" such that » € L & M (r)
accepts. The Polynomial Hierarchy (PH) consists of all
classes ©F and TI{'. All these classes can be accepted by
polynomial space bounded Turing machines (and thus
by exponential time bounded Turing machines), so are
contained in PSPACE.

The class PP is the class of all sets Say = {r
Acear(#) > Rejar(r)}. Intuitively, Sas is the set of
inputs to Af that are more likely to be accepted than
rejected on any random choice of computation path.
We refer to PP computations as probablistic polynomaial-
time computations, or just probablistic computations.
This does not imply, however, that one can be very sure
of the answer one gets on a single or several computa-
tions. If one wants to increase confidence by repeating
trials, one must put stronger strictures on the proba-
bilities, for instance that more than 3/4 of the compu-
tations are correct. That defines a different. complexity
class, BPP, which is apparently less powerful than PP,
All PP functions are computable in polynomial space.
Furthermore, Toda showed that computing PP was at
least as hard computing any sct in the polynomial hi-
erarchy (Toda 1991). That is, PH C PPF C PSPACE.

The function class #P is the set of functions f such
that for some nondeterministic polynomial-time Tar-
ing machine A, f(z) = Aecear(x). One can sce that
knowing the precise number of accepting computations
would answer NP questions and PP questions. It is
less obvious, but true, that being able 1o ook up the



PERSISOARIDBGE 126 AEGRRLIRG SABRPHLIONEAN QM 2Bai org). A ghtgnégen%amo Ar...Ag so that for cach 4; and all 5

swer any membership question for the polynomial hier-
archy (Toda 1991).

One can express the Polynomial Hierarchy in terms of
3 and V quantifiers. One can dcfine a similar hierarchy
in terms of 3, V, and counting quantifiers, where for
any f € FP, the counting quantifier Cy is defined as
Cr@)Riz,y) & Iy : vl < py(lz)) A R(=, 1)} > F(J=)),
where py is some polynomial. The function f may be
implicit; the standard version of the quantifier is just
C. The hierarchy built up from the class P using these
three quantifiers is called the Counting Hierarchy, (CH)
and was first defined by Wagner (Wagner 1986). The
class CP is exactly the class PP, and NP*F is 3CP.

The class NPPY consists of sets for which onc can
guess a proof of membership and probabilistically check
its correctness. The class NPPT captures the com-
plexity of asking “Is there a good policy for this fac-
tored unobservable MDP?" (In other words, “Is there
a good linear plan?’) This was first shown in (Gold-
smith, Littman, & Mundhenk 1997). While a fast
deterministic algorithm for an NPFT-complete prob-
lem is almost certainly not going to exist, heuristic
algorithms have begun to be developed for such prob-
lems (Majercik & Littman 1998b; 1998a; Littman 1999;
Littman, Majercik, & Pitassi 2000).

To summarize,

P C NP C PH C P’ ¢ NP™" € CH C PSPACE.

The class C=P is the class of languages L such that
there exists functions f € #P and t € FP such that for
all z, r € L & f(z) = t(xr) (Wagner 1986). (In other
vords there is some polynomial-time nondoterministic
TM Af such that M (z) accepts on exactly t(x) compu-
tations.) One can view C— as an operator, similar to the
C quantifier, and define classes in an extended counting
hierarchy using this operator. The proper Counting Hi-
erarchy is contained in this extended hierarchy, which
is in turn contained in PSPACE. While it is not ap-
parently relevant to this work, it is interesting to note
that the class coC_P is equal to the nondeterminis-
tic quantum complexity class NQP, (Fenncr et al.
1999).

To the best of our knowledge, the class C=P has not
come up in the complexity analysis of planning prob-
lems up to now.

Hardness of Approximate Stability
Testing

As mentioned before, the approach given in (Dean &
Givan 1997) for constructing a BMDP from an MDP is
to first partition the states of the MDP by reward, and
then to iterate the following: while there are aggregate
states A and B such that there is an action a and states
s and s’ in 4 so that

D> T(s,a,t) =D T(s',a,t)| > ¢

teR teB

8 1

ZT(s,a t) — ZT(s a, t)‘

teEB wen

Let us formally define the problem FAcTorRED MDD
£-HOMEGENEITY as follows:

Instance: A factored MDP and a partition of its state
space, and a rational number 0 < e < 1.

Question: Is the partition e-homogeneous?

Theorem 1 I‘he FA(‘TOR] D MDP =-HOMOGENFEITY
problem is coNPVY -hard.

Proof. We give a reduction from EMAI3SAT, a
known NPPP-complete problem (Littman, Goldsmith.
& Mundhenk 1998). An instance of EMAJ3SAT con-
sists of a formula ¢ in 3CNF with m clauses over n
Boolean variables, x;. ..., ¥, and an additional param-
eter k such that 1 € k < n. The question is whether
therc is some assignment to x1, .. ., zx such that for that
assignment, a majority of assignments to &g 1,....2,
satisfy o.

Given an instance of EMAJ3SAT, we create the fol-
lowing factored MDP A . There are m + n + 2 fluents,
€lye -:Cmy T, .. 80, and v, ¥1. The description of
Al will be a little easier to follow if we think of »y and
1y being replaced by a single variable v that takes on
the values 0, 1, 2, and 3.

There is a single action, a. If ¢ is 0 or 1, then a
maintains the current values of z,,...,r;, and sects
Ligl:-... &, randomly. If 2 is 2 or 3, then a sets all
71 of the z;s at random. Each ¢; corresponds to one of
the clauses, and a sets each ¢; to be true if and only
if the new values of the three ;5 corresponding to ¢;'s
literals would causc the corresponding clause to be frue.
Finally, a changes v as follows: 0 becomes 2, 1 becomes
3, and 2 and 3 both become 0 or 1, each with probability
1/2.

The reward function assigns reward 100 to any state
with v = 2 and all ¢; = 1. Any state with v = 0 or
v = 1 has reward 50; all other states have roward ().

Finally, we set ¢ = 1/2.

For any ¢ < 1 (and in fact any £ < 25), the reward
function induces an initial prmrtmon into three blocks.
Let block A be the block where v = 0 or 1 (reward 50),
block B be the block where v = 2 and all ¢; = 1 (reward
100), and block C be all other states (reward 0).

For our MDP, blocks B and C in the initial parti-
tion are both 0-stable with respect to each other block.
Now consider the effect of action a on state s in A
If state s has v = 1, then a will change v to 3, and
send s to a state in C with probability 1. Therefore
L.:enT(s,a,z) = 0. However, suppose that s has ¢ =0
and for that setting of 2;,...,z,, more than half of the
settings of Tgyq,... 2, satisfy ¢ (i.e., ¢ € EMAJ3SaT).
80 X.epT(s,a,2) > 1/2.
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i A such

I
Z T(s,a,t) - ZT(r, a,t)| > 1/2.

e B 1eB

Thus, if ¢ € EMAJ3SaT, then A is not 1/2-stable with
respect to B, If ¢ € EMAJ3SAT, then A is 1/2-stable
with respect to both B and €, and thus the partition
into A, Band C'is ¢ homogeneous 0O

Remark: Notice that the constructed MDP A is a
plausible factored MDP. There arc two classes of reward
states, each with a succinet description in terms of the
fuents. The 2TBNs that describe the transitions arc
also nicely factored. In the 2TBN cach node has at
most three parents (three synchronous parents for the
¢;s. three asynchronous parents for the s, those being
x;. to. and v1, and two asynchronous parents for vp and
7). Also no node in the 2TBN has depth greater than
2.

Corollary 2 The problem of finding an z-stable par-
tition of a factored MDP with o minimmum number of
aggreqate states is coNPYF -hard.

Proof. This is shown by the construction for The-
orem 1. The constructed MDP Af in that proof has
a 1/2-stable partition with three blocks if and only if
the formula ¢ € EMaJ3SAT. If ¢ € EMAI3SAT, then
the coarsest. 1/2-stable partition must have more than
three blocks. O

Note that we continue to assume that the partitions
can be specified using “small” deseriptions. If we want
to show that the MiNIMUM PARTITION PROBLEM is in
a particnlar class, then the input to the problem must
specify not only the MDP and =, but also bounds on
the size of the specification of the partition.

Let us formally define the problem k-PARTITION Ex-
ISTENCE PROBLEM as follows:

Instance: A factored MDP and a rational number
0 <z <1, an integer k, and a string 1¢.

Question: Is there an e-homogeneous partition with
< k blocks that can be specified in < ¢ bits?

Proposition 3 The k-Partition Existence Problem for
factored MDPs is in 3VCP.

Note that YCP = coNP“=", and that IVCP is in
the Counting Hierarchy. Because of the probabilistic
quantifier, it is at least as hard as any of the classes in
the Polynomial Hierarchy (i.e., PH C VCP), but is still
contained in PSPACE.

An Easy Case to Test Stability
There are probably a variety of conditions one can put
on the transition functions of the MDP and the type of
partitions allowed that would restrict the complexity of
the stability-testing problem. Here we outline one such
set. of restrictions. We do not necessarily consider it a
reasonable sct, but simply one that brings the complex-
ity of the problem down to a tractable level.
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erv?ar a factored MDP is in P if there arc con-
stants ¢, and cy such that the following holds:

1. Each block is always described by a formula on the
fluents that mentions only ¢, fluents.

2. The probability trunsition function is represented by a
2TBN containing no synchronous arcs, and at most
o asynchronous ares coming into any time t +1 flu-
ent from time t.

Note that Littman showed that a 2TBN with syn-
chronous arcs can be modeled by a similar-sized 2TBN
with no synchronous arcs. However, the transforma-
tion given in (Littman 1997) increases the in-degrees
of those fluents that depended on synchronous fluents,
thus affecting the last condition of the Theorem.

Proof. 1t is sufficient to give a polynomial-time algo-
rithm to determine whether partition block A is e-stable
with respeet to partition block B,

Let e, be the constant. bounding the number of fluents
in the formula describing a partition block. and let ¢
be the constant bounding the number of predecessors of
a fluene in a 2TBN. For every action a, we potentially

need to calculate
> T(s,a.t) (2)

for every s € A. For simplicity of notation, assume
that the forinula &g describing block B is on fluents
Llye..Ee,. S0, for fixed s, the sum given in (2) is cal-
culated from the probability of transitions from s to
states satisfying ¢p. That probability can be calcu-
lated as follows. Consider cach of the 2¢7 assignments
o to the relevant ¢, fluents. (So ¢ is an assignment
to ¢, fluents, and a partial assignient. to the entire n
fluents.) If o does not satisfy ¢y, then discard . If
o doces satisfy ¢p. then we calculate the probability of
a transition from s to any state with partial assign-
ment ¢. That probability depends on the setting of at
most epep variables in state s. The total contribution
to the sun (1) from partial assignment o is equal to
2 v times the probability of a transition from s to an
arbitrary state obeying partial assignment o.

So we have shown how 1o calenlate (2) in O(cy ep2'r)
time for a fired s € A. Since ¢r and o, are constant.
that is a constant factor. Qur real problem is to de-
termine the value of (2), which requires caleulating for
all s € A. More precisely, we need to calculate the
maximum variation in this sum for any two states in A.
As above, we need only do separate caleulations for the
assignments to the fluents mentioned in ¢4 and their
predecessors, so there are really only 2°¢°7 partial as-
signments that need be considered. We can caleulate
the value of our sum for cach one and multiply by the
appropriate power of 2 to compute cach sum. Since
there are only constantly many sums in guestion. find-
ing the maximum variance is in P. O

This theorem does not. contradict, the hardness proofs
above. In particular, in the proof of Theorem 1, the fac-
tored MDD that is constructed has the property that
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(two bits of v, plus perhaps the three variables corre-
sponding to that clause). However, some of the de-
pendences are synchronous. Furthermore, the partition
is defined by a formula on a large number (m + 2) of
the fluents. Therefore, it does not fit the hypotheses of
Theorem 4.

Note that the restrictions in Theorem 4 severcly
limit both the number of possible partitions for a given
2TBN, and the type of possible 2TBNs. The first re-
striction scems unrcasonable at first glance, in part be-
cause it limits the number of possible refinements for
each block in a partition. A natural question is whether
there are rcasonable characterizations of 2TBNs that
actually have small e-homogeneous partitions. Is such
a “localness™ condition (each fluent depending on a very
small number of others) either necessary or sufficient for
small partitions?

Hardness of Exact Stability Testing

A complete set for C_P is the set of Boolean formulas
where ezartly half the assignments satisfy the formula.
The proof of Theorem 5 follows the proof of the analo-
gous theorem for approximate stability testing.

Theorem 5 The problemn. “Is

Z T(s.a.t)— ZT(s',a,t) =g

1eB 1en
is complete for the class C=P.

Corollary 6 The exact stabilily testing problem (£ =0
in Theorem 5) is complete for the class C..P.

Onc can casily modify the construction that shows
that the e-stability question is coNPFF-hard to show
that the stability question for exact partitioning is
coNPYF_hard. The question remains, what is the class
coNP©=P,

Torén showed (Toran 1988; Toran 1991) that NPPV =,

3CP = 3C_P = NP“=". He has also shown directly
that coNPFP == coNP®=F (Toran 1999). This shows
that the complexity of exact homogencity testing is ox-
actly the same as the complexity of e-homogeneity test-
ing.

Structured Value Iteration

In the work on BMDPs, the basic idea is to first ag-
gregate states of a 2TBN. and then apply a suitable
policy-finding algorithm. Boutilicr, Dearden, et al., also
construct aggregate MDPs from 2TBNs, but they do so
in the course of constructing a policy (Boutilier, Dear-
den, & Goldszmidt 1995: Boutilicr & Dearden 1996;
Boutilier, Dearden, & Goldszmidt 1999). The policies
constructed are themselves represented as trees. These
trees are described by a set of Boolean formulas that
partition the state space, and for each element of the

ification of a state satisfies a particular formula, the
corresponding action is applied.

Remember that 2TBN states are described by assign-
ments of the state variables. For simplicity, they assume
that the variables are Boolean. They further assume
that the 2TBNs can be described with no synchronous
arcs. We can modify the example from the proof of
Theorem 1 to meet these criteria and still show that
their underlying algorithm must be able to solve NPPP-
hard problems. We can remove the synchronous arcs by
adding another fluent that controls “time,” breaking the
process up into two phases, depending on the state of
the new variable: assign the z;s, then set the r;s. How-
ever, the reward criterion depends on a large number of
fluents, namely, all the ¢;s. violating the first condition
of Theorem 4. This complexity does not come as an
cnormous surprise, since Boutilier, Dearden, and Gold-
szmidt give an example where the reward function is
based on the parity of the binary string identifyving the
state. and thus is exponentially larger than the num-
ber of Huents. They do not claim that their work is a
panacea for the curse of dimensionality.

Their algorithms take. as input, a structured policy,
and use a form of policy or value iteration to improve
the evaluations of each “region™ of the state space spec-
ified as a leaf of the policy tree, a partial assignment, or
a Boolean formula. Based on these values, somne or all
of the regions may split, and each new region is assigned
an action, creating a new tree. In order to compute the
policy, another tree, the value tree, is constructed. At
cach iteration, the value tree is regressed using some
variant of value iteration.

The authors then go on to define value trees over
value intervals, to “collapse™ subtrees with similar val-
ues down to leaves whose values are represented as in-
tervals. The stability question for these value trees is
as computationally complex as is the stability question
for Givan et al.’s partitions; the construction given in
the proof of Theorem 1 carries over almost directly. In
order to remove synchronous arcs, we add a new fluent,
w, so that when w = 0, the action a acts as before on
the ;s but preserves v and sets the ¢;s to 0 and w to
1. When w = 1, action a sets the ;s to 0 but scts the
¢j according to the values of the appropriate literals at
the previous step, sets v as in the previous construe-
tion, and flips w. Thus, the previous transitions arc
stretched over two steps.

The reward function assigns reward 100 to any state
with v = 2 and all ¢; = 1 (and thus w = 0). Any state
with (v = 0 or v = 1) and v = 1 has reward 50; all
other states have reward (.

The initial value tree brauches on . On the v = 0
and v = 1 branches, it branches on w; on the v = 2
subtree, it branches on each ¢; in turn, either to reward
0 or to the next ¢;, and finally, if all the ¢, = 1, to
reward 100.

The question is, whether the © = 0 and w = 0 branch
splits when value iteration is applicd. This is equivalent
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C_P-hard in the exact case, and coNP"“-hard in the
approximate case.

Other Approaches

One way that researchers have further reduced the size
of succinctly represented MDPs is a technique called
feature selection. In such reductions, a domain expert,
chooses certain features of the state space that are ex-
pected to be the primary contributors to the transition
probabilities and simply ignores any additional infor-
mation. Tsitsiklis and Van Roy (Tsitsiklis & Roy 1996)
give a careful analysis of dynamic programming algo-
rithms based on feature selection. They do not give any
complexity analysis, but they show that such policy-
finding algorithms will converge, and will find as good
a policy as is possible, given the choice of features. How-
ever, this means that their methods still rely on a hu-
man or other expert guessing or recognizing the appro-
priate featurcs, and in fact on there heing a few such
dominant features. This brings us no closer to a general
solution than the existential quantifier (*there exists a
partition...”) in Givan et al.’s work. However, there are
definitely cases when feature selection works extremely
well. '

What our analysis shows is that festing a partition
of states for e-homogeneity is hard, no matter how the
partition was derived. When there is outside knowledge
of the system being partitioned, there may be times
when the testing can be avoided altogether. or replaced
by some sort of sampling (probabilistic verification).

Another approach is to dynamically construct. the
partition in the course of the policy-finding algorithm.
This is a purely heuristic approach, but can lead to
significant speed-ups in cortain cases, such as those
reported in (Boutilier, Dearden, & Goldszmide 1999:
Hoey et al. 1999). Naturally, such a heuristic may
lead to an approximation of the optimal solution--
depending both on the aggregation scheme employed
and the policy-finding algorithm-- with no guarantee on
the quality of the approximation or the running time of
the process.

As we mentioned. approximate or exact, partition al-
gorithms would potentially yicld faster exact. or approx-
imate algorithinis—implying the collapse of complexity
classes we believe or know to be distinct. Therefore, we
cannot expect to find a polynomial-time algorithmn that
vields significantly smaller representations of succinctly
represented MDPs.

Therefore. we cannot expect to find a polynomial-
time algorithm that yields significantly smaller repre-
sentations of succinctly represented MDPs.
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