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Abstract

Wp show that the l)robhun of transforming a struc-
tured Marker decision process (MDP) into Bounded
Interval MDP is coNppr’-hacd. In particular, the test
for e-homogvneitv, a ne(’essarv part of verifying mlv¯ . ̄ . . p’p ~ ’" . . :prol)osed part.Ilion, ts coNP -complete. Tlus mall-
catt,s thai., without furl,her assumptions on tile sorts
uf partil.ioning allowrd or the structure of the original
prt~positional MDP, this is not likely to be a prm:ticM
approach. I, Vo also anMyze the coniplexity of finding
tilt, ntinintal-size partition, and of the k-block parti-
tion existence problem. Finally, we show that tile test
fi)r homogeneity of an exact partition is complete for
coN P(’-P, which is the same class as coNPPp.

All of this mlalysis ,tpplies equally well to the process
of p~trtitioning the state space via Structured Value
Itoratitm.

Introduction
Marker decision processes (MDPs, formally defined be-
low) are. ubiquitous in AI and in the work| of math-
emati(’al modeling. R.elated resem’(’h concerns learn-
big models and/or policies for complex systems, and
deveh)ping Mgorit.hms ;rod heuristics for plmming and
intelligent control. Standard AI applications include
planning, robot control, medical systems, logistics, and
many others. MDPs model controllable stochastic pro-
(:esscs: there is a set of states; a controller chooses
anlong seine number of actions, each of which has an
associat.cd probability matrix of state transitions; as-
sociated with each state and action pair is a re.waT~L
The Im.~ic goal, given such a model, is to find a strategy
or pob:cy for choosing aztions that maximizes the total
expected reward over some specified time horizon.

There are two reasons why finding good policies for
MDPs is computationally complex. The first is the un-
derlying complexity of fin(ling optimal policies. The
second is the sheer size of most interesting models of
controlled stochastic systems, especially AI planning
prol)lenls, where one often considers a "size n" problem
to consist of all Q(2n) state space described by n fluents
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or variables, mid some appropriate data structure rep-
resenting tile de.pendence relations of each each thtt,nt
to the states of some small number of fluents at. t.he cur-
rent, or previous stage. One can view this sort of model
~Ls all attempt to redut’e thv sizes of the representat ions
of MDPs. Unfortuna.tely.. simply reducing tit(, size of
the rol)rescntation is not good enough. Alt.htmgh t.lmrv
are these factored (also called "structured:’ or "’propo-
sitional") representations (Bayes’ nets and others) 
size n that represent 2n-state M I)Ps, tim i)roblenl 
deciding whether a good plan exists is corr(,sl)ondingly
exponentially harder than for the unfactore(1 represen-
tations. (For details of this blow-up, see (Goldsmith 
Mundhenk 1998: Mundhenk et al. 1999).) These fac-
tored representations are used because they often model
human understanding of the system (as (terivrd from 
domMn expert), even if the compre.ssion of transition
tables to simple.r or at least, smMler forms does not ;lll-
tolnaticaily buy ally computational speed-up.

One approach to flirt.her reducing the representa-
tion of a succinctly represented MDP is to group
states toge.ther into recta-states, where ~dl elelnents
of a meta-st~te behave exa(:tly or apl)roximately the
santo with respect to the reward fun(’tion ;~tld M1 ac-
tions. These can be described as aggregate approx-
imate models. We use the terminology of Giwm et
al. (Dean, Givan, & Leach 1997; De.an & Givan 1997;
Givan, Leach, & Dean 1997; Givan & Dean 1997) of
Bounded Interval MDPs (BMDPs). These are MDP-
like models where the traamition probabilities and re-
wards are replaced t)y intervals. Work on plalming al-
gorithms for such systems by Givan et al. is rvported
in (Givan, Leach. & Dean 1997) a~ld by tIarmanec
in (Harmanec 1999). Givan et al. give an (exponen-
tim worst case) algorithm for partitioning a tradit iomfl
M DP state space into aggregate states to form a BMDP.

Givazl and Dean have shown that, for factored MDPs.
tile l)roblem of finding ,’m optimal, that is, coarsest such
partition for a given int erwll dimneter E is NP-hard (Gi-
van & Dean 1999). We show here that it is in fact nmch
haxder (assuming that P ¢ NPPP). It. is not surpris-
ing that finding good exact or approximat.c partit.ion,~ is
difficult. Finding an optimal policy for a finite-horizon
succinctly tel)resented MDP is PSPACE-hard (Mund-
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henk el al. 1999), (additive) approximation of station-
ary policies for succinctly represented MDPs is EXP-
hard (Lusena, Goldsmith, & Mundhcnk 1999). This
means that if there is mx algorithm that, on input of a.
succinctly represented MDP, outputs a stationary pol-
icy with value v.. such that v minus the optimal station-
ary policy value for that MDP is less than _% then that
algorithm carl be used to solw, EXP-hard problems. In
particular., this guarantees that such an algorithm c,m-
not run in time polynomial in tile size of the input.
Therefore, we cannot expect to find a polynomial-tinm
algorithm that yields significantly smalh,r representa-
tions of succinctly represented MDPs. On the other
hand, the results on asymptotic complexity do not rule
out l)articular instances or classes of instances for which
a fast and guaranteed good approximation algorithm
exists, nor does it rule out fast instances for a general
algorithm.

A related allproach to Given et al.’s, is given by
Boutilier, Deardem et al. in (Boutilier, Dearden, 
Goldszrnidt 1995; Boutilier & Dearden 1996; Boutilier,
Deardcn, & Goldszmidt 1999), using structured policy
representations. The major contribution of that work
is to adapt Value Iteration (Bellman 1957) or Modi-
fied Policy Iteration (MPI) (Puterman & Shin 1978) 
work on Dynamic Bayes net (2TBNs, dcfined below)
policies represented as trees. A poli(’y tree consists of 
set of Boolean fommlas that partition the state space,
and for each element of the partition, an action. This
means ttmt when the specification of a state satisfies a
particular formula, the corresponding action is applied.

We argue that the extension step in their algorithms
is exactly as hard as the stability tests for BMDPs.

In fact, we eu’guc that any partition of the state sl)ace
of a fact.ored or structured MDP into states that behave
"apl)roximately the same" will lead t.tl an NPm’-hard
stability test.

Definitions

A MDP describes a (’ontrolled stoch~mtic system by its
states and the consequences of actions on the system.
It is denoted as a tul)h: M = (S, so, A, t: r), wher(.

¯ S and ,4 are finite sets of states and actions,

¯ so E S is the initial state,

¯ 7" : S × A × S ~ [0, 1] is the state transition ~tnc-
(ion, where t(s, a, s’) is the probability to reach state
s’ from state s on action a (where E,,c-st(s,a, s’) 
{0,1} for s E S,a E A),

¯ r : S × A ~ Z is the reward function, where r(s, a)
is the reward g~fined by taking actkm a in state s.

2TBNs
There arc mmly fact(wed representations for MDPs
available. We use 2-Phase Temporal Bayes’ Networks
(2TBNs) as a convenient model for our examples.

A 2TBN consists of a se.t of wlriables, or fluents, a
set of actions, mid a reward function. The effect of

each action on each fluent at time t + 1 is determined
by the states of a (usually small) subset of the fluents
at tim(; t and perhaps t + 1. These dependencies are
modeled as a directed acyclic graph, where a directed
edge indicates dependence. (Although one could buiht
cyclic such graphs, the definitions rule out that case.)
Tile nodes of the graph consist of two sets. One set
represents the set of fluents at time t, and the other,
the fiuents at time t + 1. Edges can go from the first
set to the second (asynchronous), or within the second
set (synchronous).

In addition to this graph, for eax’h time t + 1 node
(intuitively, for each fluent) and eactl avtion, there 
a data structure (formula, table, or tree, usually) that
re.presents the effects of that action on that fluent, as a
function of that node’s parent nodes.

If wc assume that each fluent is binary, then a 2TBN
with n fluents models a MDP with 2n states. (If 
fluent can have more settings, there can he even more
states.) When the dependencies specified by the 2TBN
are small enough, the size of the representatioi1 may be
polynomial in n insteaxl of 2n. These are the 2TBNs
of interest; most examples of 2TBNs in the phuming
literature have such sparse dependencies. Mundhenk et
al. showed that the representational savings do not
lead to any computational savings, because there is
an ext)onential jump in worst-case complexity as you
go from uncompressed to c.omprcssed representations.
However, models such as 2TBNs are certainly worth
using, both for their readability and for computational
reasons. For instance, if the effects of actions are rep-
rcsented as arithmetic decision diagrams, this allows
use of conmmrcial optimizing software and brings a cor-
responding increase in computational ability (Hoey et
al. 1999). (For a fuller discussion of Bayesi~m net-
works in planning: see (Boutilier: Dean, & Hanks 1999;
Blythe 1999).)

Model Reduction

We next present the approach of Given e.t al. (Dean,
Given, & Leach 1997; Giwm, Leach, & Deau 1997;
Given & Dean 1997) for constructing bounded inter-
val MDPs (BMDPs) out of MDPs. This holds great
prornise for reducing the time needed to find an approxi-
mately optimal policy for an MDP, for those MDPs that
yield significantly smaller BMDPs. Unfortunately: tile
"inodel reduction techniques" that Given et al. present
arc potentially quite slow.

A BMDP differs from an standard MDP in that re-
wards are expressed as a range of possible v’,flues, and
each transition probability is an interval within [0, 1].
A BMDP can be interpreted as a family of MDPs such
that each MDP in the family has the sarne state set
azld the same action set as the BMDP, ,and for each
MDP, each reward az~d transition falls within tile range
given for the BMDP. Alternatively, each state of the
BMDP may represent an aggregate state of some base
MDP. The advantage of a BMDP over an MDP arises
when the number of states of tile BMDP is significantly
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smaller than the number of states of tile MDP.
Tile basic approach given in (Dean & Giv;m 1997) for

constructing a BMDP from an MDP is to first partition
the states of the MDP by reward, and then to iterate
the following: while there are aggregate states A and B
such that there is an action a and states s mid s~ in A
so that

IZ. r(s. , a... t). - E T(s’, a.. t) > ,’_ (1)
itfiB tCB

then split /! into Al .... 4k so timt for each Ai and all s
and .d in Ai,

y~T(s,a, tJ- y~T(s’,a,t) <_e.
I.EH I~B

We say tllat the initial aggregate state A is e-unstable
with respect to initial aggregate state B if inequality 1
holds for A and B: the opposite condition is called e-
stability. The goal is to produce a partition that is e-
ho.mo.qeneous, that is, e-stable with respect to all pairs
.-I and B of aggregate states.

Giwm and Dean show that the BMDP induced by
an e-partition is a "’close enough" approximation to the
original MDP, namely that an appropriate version of
value iteration gives a policy for the BMDP that defines
a reasonable apiJroximation to the optimal policy for
the original MDP. (The closeness of the approximation
depends, of course, on e.) Unfortunately, they also show
that, the test for whether there is a splittable aggregate
state A is NP-hard in the case of a factored (proposi-
tional) state space (Givan & Dean 1999). Thus, there 
no obvious polynomial-time stopping criterion for this
algorithm in the factored case. Our work presents an
even more precise picture of this complexity.

On the one hand, we have exactly pinpointed the
complexity of the problem, which offers the opportunity
to al)ply heuristi(:s designed for exactly such problems.
On the other hand, the complexity classes discusse.d art;
(:onjectured to properly contain the class NP (as dis-
cussed below). Thus, we have shown that the problem
is even worse than NP-hard.

Representing Partitions We make some assump-
tions here about how partitions will be represented.
These are nfinimal assumptions necessary for there to
be any hope that factored representatkms can heiI). If
they are violated, then the MDP inherently has super-
polynomially many "very different" states that must be
treated separately. In practice, st~vn.qer assumptions
will tyifically bc made (Givan 1999). Specifically, 
assume that every partition is given implicitly (rather
than as an enumeration of states into blocks) so that the
partition may be represented in size polynomial in the
size of the succinctly represented MDP. For instance,
if the MDP is represented as a 2TBN, the blocks of
tile partition could be represented as Boolean formulas
oil the fluents. Furthermore, in order for there to be
an appreciable savings in complexity, we hope that th(:
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nmnber of blocks in tim partition is quite small r(,l;,t.iv(,
to the size of the state space.

If tile representation of a partition has size ~l(2" ), for
instan(’e, where n is tile numl)er of Ihmnt s in th,, 2TBN,
then Ill(’ algorithm fi)r cherking stabilily is linear in th(.
size of the input, nmtMy the 2TBN I.flus tim partition.
This does not, however, reprt,sent a win in c’Omlflvxit.v
ternls.

Relevant Complexity Classes
Fbr definitions of slandard (’,mlllh,xity ,’la~s(’s. retht,’-
t ions, and results from (’omph~xity theory w(. refer
to (Pat)a(limitricm 199.1). We use the notation 1"1’ 
refer to flmctions (’Omlmtable in tim(’ polyn, mdal in thr,
size of the input.

Let M be a mmd¢.torministic lmlynomia.l-r.im,’ Tm’ing
tam’hint,, and h’t ,-lrc.~l (.r) I,, dw nmnber of a(’rt.l,ting
(’onlputations of M on input :r. and RcjM (x) tim tmm-
ber of rejecting computations. Tim class NP is th(, rlass
of all sets E,w = {.r : .4ce,u (.r) >_ 1. I- ()m’ rml ,’harac-
terize NP in terms of an existent ial (iuant liter: t h,,r(, (,x-
ists all accepting romputation of M(.r). The set SAT i.-.
the canonical coInph;te set for NP: S:vr is in NP, and for
,’very set S in NP, there is a polynoInial-t into r,,du¢’i i,n,
from S to SAT. We detine NP :- V~’ and coNP = II~’.
We can then tmihl a hierarchy ()f ,.’lassos E~’ and thrir
comi)lements, Ill ’ = t:oE~’, I)y alternations of (lUanti-

tiers (3 and V). Equivalently, one can use a rOml,lrl(’
set, .4k, for E~’ as an oracle t,) (h’fin(’ L E E~’. l if an,l
only if there is a n,m(h,t(,rministir l)olynomial-timr ox’-
acle Turing machine ,~,/fj such that x E L ¢* :l/’4"(x}
acc(:l)tS. Tile Polynomial Hierarrhy (PIt) consists of all
(:lasses E~’ and 1-I~.’. All these (’lassos can he at’celm,d 
t)olynonfial space bom,ded Turing machin(,s (ru,,I thus
by exponential time bounded Turing machines), .so ar(.
contained in PSPACE.

The class PP is the class of all srts SM = {a" :
.4c.cM(x) > Rejat(x)}. Intuitively, SM is tht’ so! t)f
inlmtS to :lI that are more lik(,ly t./) l., acr~,lm,d tha.n
rqiected Oil any randoln choir(, of COmlmtation pa.th.
We refo.r to PP (’omputations as probablistie poly.nomial-
time computations, or just probal)listic computati, ms.
This does not iinply, however, that one can b(’ very sure
of the answer one gets on a single (,r several coml)uta-
lions. If on(’ wants to increase ronfidenre by n:p,’;.iing
trials, one must put stronger strictures on the proba-
bilities, for instant:e that more than 3/,1 ,)f the ,’omtm-
rations are correct. That defines a different (’Oml)lexity
(’h~ss, BPP, which is apt)ar(’nt ly h:ss powerfifl than 
All PP flmctions are romputable in polynomial space.
Fnrthernmre, Toda showed that comptttitlg PP was at.
least as hard conqmting ali X." sot in the polynomial hi-
erarchy (Toda 1991). That is, PH C_ PPP C_ PSPACE.

The function class #P is the set t)f fmlrt.ions f such
that fox" some nondeterministic lmlynomial-time Tur-
ing machine M, f(x) = Aeei(x). One can see 
knowing the precis(’ number of accepting comimtations
would attswer NP questions aal(l PP questions. It. is
less obvious, but true, that being abh’ to look up the
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precise number of accepting computations would an-
swer ~my membership question for the polynomial hier-
archy (Toda 1991).

One can express the Polynomial Hierarchy in terms of
3 and V quantific’rs. One can define a similar hierarchy
in terms of 3.. V, and counting quantifiers, where for
any f E FP, the counting quantifier Cf is defined as
c (y)Rcx, y) I{y : Iyl < pi(Ixl) >_ fCI;rl),
where pf is some polynomial. The function f may lye
implicit; the sta~dard version of the quantifier is just
C. The hierarchy built up from the class P using these
three quantifiers is called the Counting Hieturchy, (CH)
and was first defined by Wagner (Wagner 1986). The
class CP is exactly the class PP, and NPPP is 3CP.

The class NPm’ consists of sets for which one can
guess a proof of membership and probabilistically check
its correctness. The (:lass NPPP captures the com-
plexity of asking "’Is there a good policy for this fac-
tored unobservable MDP?" (In other words, "Is there
a good linear plan?") This w~ first shown in (Gold-
smith, Littman, & Mundhenk 1997). While a fast
deterministic algorithm for an NPPP-complete prob-
lem is ,’flmost certainly not going to exist, heuristic
algorithms have begun to be developed for such proll-
lems (Majercik & Littman 1998b; 1998a; Littman 1999;
Littman, Majercik, & Pitassi 2000).

To sumnlarize,

P _C NP _C PH C PPP C_ NPm’ C_ CH C_ PSPACE.

The class C=P is the class of languages L such that
there exists functions f E #P and t E FP such that for
all x, x e L ¢:~ f(x) --- t(x) (Wagner 1986). (In 
words, there is some polynomial-time nondeterministic
TM M such that M(x) accepts on exactly t(x) compu-
tations.) One can view ~ as an operator, similar to the.
C quantifier, and define classes in azl extended counting
hierm’chy using this operator. The proper Counting Hi-
erarchy is contained in this extended hierarchy, which
is in turn contained in PSPACE. While it is not ap-
parently relevant to this work, it is interesting to note
that the class coC=P is equal to the nondeterminis-
tic quantum complexity class NQPc (Fenner et al. ;
1999).

To the best of our knowledge, the class C=P has not
come Ul) in the complexity analysis of planning prob-
lems up to now.

Hardness of Approximate Stability
Testing

As mentioned before, the approach given in (Dean 
Givan 1997) for constructing a BMDP from an MDP is
to first partition the states of the MDP by rew~d, and
then to iterate the following: while there are aggregate
states A and B such that there is an action a and states
s and s’ in A so that

I >fEB fEB

then split A into A~...Ak so that for each Ai and all s
and s’ in Ai,

l~euT(s,a,t) -- ~T(s’,a,t) < e.
LEB I

Let us formally define the problem I:’ACTOREI) MDP
~’-HOMEGENEITY as follows:

Instance: A fax:tored MDP and a partition of its state
spa~:e, and a rational number 0 < e- < 1.

Question: Is the partition c-homogeneous?

Theorem 1 The FACTORED MDP e’-IIO.MOGENEITY
problem is coNPPP-hard.

Proof. We give a reduction from EMAJ3SAT, a
known NPPP-complete problem (Littman, Goldsmith.
& Mundherlk 1998). An instance of EMAJ3SAT con-
sists of a formula ¢ in 3CNF with m clauses ov(,r 
Boolean vm’iables, xl,..., x,, and an additional param-
eter k such that 1 < k < n.. The question is whether
there is sonm assignment to x~ .... , xk such that for that
assignment, a majority of assigmnents to xk ~, .... x,
satisfy ¢.

Given an instance of EMAJ3SAT, we create the fol-
lowing factored MDP M. There are m + n + 2 fluents,
cl, .... cm, xl, ¯ ¯., xn, and v0, vl ¯ Tile description of
:~I will be a little easier to follow if we think of vo and
vl t)eing rei)laced by a single wtriable v that takes on
the values 0, 1, 2.. and 3.

There is a single action, a. If v is 0 or 1, then a
maintains the current values of xl,...,x.k, and sets
xk+l ..... :r.,, randomly. If v is 2 or 3, then a sets all
n of the xis at random. Each ci corresponds to one of
the clauses, and a sets each cj to be true if and only
if the new values of the three xis corresponding to cj’s
literals would cause tile corresponding clause to be true.
Finally, a changes v as follows: 0 b(.comes 2, I becomes
3, and 2 and 3 both become O or 1, each with prol)ability
1/2.

The reward function assigns reward 100 to any state
with v = 2 and allcj = 1. Any state with.(, = {)or
v = 1 has reward 50; "all other states have reward 0.

Finally, we set _~ = 1/2.
F~)r any e _< 1 (and in fact any e < 25), the rcwar(l

function induces an initial partition into three blocks.
Let block A be the block where v = 0 or 1 (reward 50),
block B be the block where v = 2 an(t all cj = 1 (r(,ward
100), and blo(~ C be all other states (reward t)).

For our MDP, blocks B and C in the initial parti-
tion are both 0-stable with respect to each other block.
Now consider the effect of action a on state s in A.
If state s has t: = 1, then a will change v to 3, and
send s to a state in C with probability 1. Therefore
E.-eBT(s, a, z) = 0. However, suppose that s has c = 0
and for that setting of Xl....., xk, nmre than half of the
settings of xk+l .... xn satisfy, ¢ (i.e., ¢ E EMAJ3SAr).
so Z:enT(s, a, z) > 1/2.
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In other words, if ~ E EMAJ3SAT, there arc s and r
in A such that

T(s, a, t) -.- ~ T(r, a, t) > 1/2.

Thus, if ~ E EMA.13SA’r, then .4 is not I./2-stable with
rospect to B. If 4~ ~ EMAJ3SA’r, the.n A is 1/2-stable
with respect to both B eald C, and thus the partition
into .4, B and C is e-homogeneous. []

Remark: Notice that the constructed MDP M is a
phulsible factored MDP. There are two classes of reward
stal.es, each with a succinct description in terms of the
fiuents. The 2TBNs that describe the transitions are
also nicely fat’tored. In t.ho 2TBN (,~mtl node has at
most three parents (three synchronous parents for the
cjs. three asynchronous parents for the xis, those being
x.i, "vo. and l’t, ,’rod two asyn(’hronous parent s for v0 and
vl). Also no node in the 2TBN has depth greater than
2.

Corollary 2 The p~vblem of finding an e-stable par-
tition of a factored MDP with a minimum number of
aggregate states is eoNPPP-ha~rL

Proof. This is shown by the (’onstruction for The-
orem 1. TILe constructed MDP M in rhat proof has
a 1/2-stabh, partition with three blocks if and only if
the formula .o ¢ EMA.13SAT. If (p E EMAJ3SAT, then
the coarsest 1/2-stable partition nmst have more than
three blocks. []

Note that we continue to assume that the partitions
can be specified using "snmll" descrit)tions. If we wemt
to show that the MINIMUM PARTITION PR.OBLEM is in

a particular class, then the input to the problem nmst
spe(rify not only the MDP and e, but also hounds on
the size of the specification of the. partition.

Let us formally define the problem k-PARTITION EX-
ISTENCE I~ROBLEM as follows:

Instance: A factored MDP mid a rational number
0 ..<. ~. _< 1, an integer k, and a string ic.

Question: Is there an ~-homogent,ous partition with
< k blocks that can be specified in .< c bits?

Proposition 3 The k-Partition Existence Problem for
factored MDPs is in 3VCP.

Note that VCP .= coNP(’:=P, and that qVCP is in
the Counting Hierarchy. Because of the probabilistic
quantifier, it is at least a,s hard as any of the classes in
the Polynomial Hierarchy (i.e... PH .C VCP), but is still
contained in PSPACE.

An Easy Case to Test Stability
There are probably a variety of conditions one can lint
on the transition flmctions of the MDP and the type of
partitions allowed that would restrict the complexity of
the stability-testing problern. Here we outline one such
set of restrictions. We do not necessarily consider it a
rcasonal)le set, but simply one that brings the complex-
ity of the prolflem down to a tractable level.

Theorem 4 The FACTORED MDP f-HOMON(;ENEITY
problem for a factored MDP is in P if there aT~ con-
stants % and cr such that the following hohls:

1. Each block is always described by a formula on the
fluents that mentions onbj % fluents.

2. The probability transition/unction is represented by a
2TBN containing no sFnehtvnous a~:s, and at most
cT asynchronous arcs coming into any time t + 1 flv-
ent fi’om time t.
Note that Littman showed that a 2TBN with syn-

chronous arcs can be modeled I)y a similar-sizvd 2TBN
with no synchronous arcs. However, t.h,, transforma-
tion given in (Littman 1997) increases the in-degrees
of those fluents that depended on synchronous Ihtents,
thus affe(:ting the hint condition of the Theorem.

Proof. It is sufficient to give a polynomial-time algo-
rithm t o dett:rmine whether part it.ion block ,-1 is e-s! ahh,
with respect to partition block B.

Let Q, be tile ¢’onst ant bounding the nulnber of flueuts
in tile formula describing a partition block, mid let c’r
be the constant bounding the number of predecessors of
a fluent in a 2TBN. For every action a, we potentially
neecl to calculate

y~ T(s, o.. t) (2)
I(: 

for every s E A. I, br simplicity of notation, assm,w
that the formula e)n describing block B is on fluenrs
xl .... , x%. So, for tixed s, tile sum giw,n in (2) is cal-
culate, l from tile prolmbility of trm,sirions fl’om s to
states satisfying en. That probability cmt be ,’ah:u-
lated as follows. Consider each of the T’, assignments
cr to tile rel(,vant % thtents. (So a is ml assignim,nt
to % fluents, and a partial a,~sigmnent to the emir,, n.
fluents.) If a does not satisfy eta, then discard il.. If
a does satisL, OB, then we cMculate the probability of
a transition from s to any state with partia.l assign-
ment a. That probal)ility dep,uMs on the setting of at
most c.r% varialfles in state s. The fetal contrilmtion
to the sum (1) from partiM assignment a is equal 
2" % times the probability of a trmtsition front s to all
arbitrary state obeying partial assignment a.

So we have shown how t.o ¢:ah:ulate (2) in O(ct Q,2",’)
time for a fixed s G A. Since c,r and % are (’onsta.nt.
that is a constant factor. Our real lwoblem is 1.o de-
termine the vahte of (2), which requires (’Mt’ulating fi~r
all s E A. More precisely, we need t.o calculate tile
maximum variation ill this stun for mW two states in .4.
As above, we need only do Sel)aratc calculations for the
assignments to the fluents mentioned in 0.4 and their
predecessors, so there are really only 2e~’:r partial as-
signments that need be (’onsidered. We can cah’ulate
the value of our SlIlll for each one and multit)ly by. the
al)propriatc power of 2 to compute each sum. Since
there are only constantly many sums in question, find-
ing the maximum wtrianee is in P. 1:3.

This theorem does not cent radict the hardness l)roofs
above. In particular, in tim proof of Theorem 1, the fac-
tored MDP that is constructed has the property that
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ew:ry fluent depends on at most five previous fluents
(two bits of v, plus perhaps the three vaxiables corre-
sponding to that clause). However, some of the de-
pendences are synchronous. Furthermore, the partition
is dcfined by a formula oil a large number (m + 2) 
the fluents. Therefore, it does not fit. the hypotheses of
Theorem 4.

Note that the restrictions ill Theorem 4 severely
lindt both the number of possible partitions for a given
2TBN, and the tyl)e of possible 2TBNs. The first re-
striction seems unreasonable at first glance, in paxt be-
cause it limits the numl)er of possible refinements for
each block in a partition. A natural question is whether
there are reasonable clmra~’terizations of 2TBNs that
actually have small e-homogeneous partitions. Is such
a "iocahmss" condition (each fluent depending on a very
small mlmber of others) either necessary or sufficient for
small partitions?

Hardness of Exact Stability Testing
A complete set for C=P is the set of Booleml formula.~
where exactly half the &ssignments satisfy the formula.
The proof of Theorem 5 follows thc proof of the anah)-
gous theorem for approximate stability testing.

Theorem 5 The problem. "Is

Z T(s,a,t)- T(,4,a,t) = e’ .).’’
1611

is complete for" the class C=P.

Corollary 6 The: exact stability testing problem (~ = 
in Theorem 5) is complete for the class C=P.

One can easily modify the construction that shows
that the e-stability question is coNPPP-hard to show
that tl,e stability question fi)r exact partitioni,,g is
(’oNPC-’r’-hard. The (pmstion reumins, what is the class
coNPC’=P.

Tor&1 showed (Tol’~n 1988; Tor&l 1991) that pl, =
3C’.P = 3C=.P = NPc’P. He has also shown directly
that coNPPp = coNPc=P (Tor~n 1999). This shows
that the complexity of exact homogeneity testing is ex-
actly the stone as the conq)lexity of e-homogeneity test-
ing.

Structured Value Iteration
In the work on BMDPs, tlle basic idea is to first a.g-
gregate states of a 2TBN. and then apply a suital)le
policy-finding algorithm. Boutilier, Dearden, et al., ~flso
CO~lStruct aggregate MDPs from 2TBNs, but they do so
in the course of constructing a policy (Boutilier, Dear-
den, & Goldszmidt 1995: Boutilier & Dearden 1996;
Boutilier, Dearden, & Goldszmidt 1999). The policies
constructed are themselves represented as trees. These
trees ,axe described by a set of Boolean formulas that
partition the state space, and for each element of the

partition, an action. This meazm that when the spec-
ification of a state satisfies a particular formula, the
corresponding action is applied.

Renmmber that 2TBN states are described by assign-
nmnts of the state variables. For simplicity, they assume
that the variables are Boolean. They further assume
that the 2TBNs cast be described with no synchronous
arcs. We can modify the example from the proof of
Theorem 1 to meet these criteria arid still show that
their underlying algorithm must be able to solve NPPP-

hard problems. We can remove the synchronous arcs t)y
adding another fluent that controls "time," breaking the
process up into two phases, depending on the state of
tile new variable: assign the xis, then set the cjs. How-
ever, the reward criterion depends on a large mimber of
fluents, namely, all the cjs. violating the first condition
of Theorem 4. Tills complexity does not come as an
enormous surprise, since Boutilier, Dearden, and Gold-
szmidt give an exmnple where the reward function is
based on the parity of the binary string identi~’ing the
state, and thus is exponentially larger than the num-
ber of flucnts. They do not (.laim that their work is 
panacea for the curse of dimensionality.

Their algorithms takc. as input, a structured policy,
and us(; a form of policy or value iteration to improve
the evaluations of each "region" of the state space spec-
ified as a le’,ff of the policy tree, a partial assignment, or
a Boolean formula. Based oll these values, some or ,all
of the regions may split, and each new region is assigned
~ul action, creating a new tree. In order to compute the
policy, azmtlmr tree, the value tree, is constructed. At
each iteration, the value tree is regressed using some
variaut of value iteration.

The authors then go on to define value trees over
value intervals, to "collapse" subtrees with similar val-
ues down to leaves whose vahles are represented as in-
tervals. The stability question for these, value trees is
as computationally complex as is the stal)ility question
for Glean et al.’s partitions; the construction given ill
the proof of Theorem 1 carries over ahnost directly. In
order to remove synchronous arcs, we a~td a new fluent:
.w, so that when w = 0, the action a acts as before on
the x~s but preserves v and sets the cis to 0 mid w to
1. When w -- 1, action a sets the xis to 0 but sets the
cI according to the values of the appropriate literals at
the previous step, sets v ms in the previous construc-
tion, aald flips w. Thus, the previous transitions are
stretched over two steps.

The reward function assigns reward 100 to any state
witll v = 2 and all e:j = 1 (,’rod thus u.’ = 0). Any state
with (v -- (} or v = 1) and w =- 1 h&s reward 50; 
other states have reward ().

The initial value tree. branches on v. On the v = 0
and v = 1 branches, it braa~ches on w; on the v = 2
subtree, it bremches on each cj in turn, either to reward
0 or to the next cj, and finally, if "all the c~ = 1, to
reward 100.

The question is, whether the v = 0 and w = 0 branch
splits when value iteration is applied. This is equivalent
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to asking whether the partition is stable, and thus is
C=P-hard in the exact (’as(,, and coNpl’P-hard in ttle
apl)roximato case.

Other Approaches

One way that researchers have further reduced the size
of succinctly repr(:sented MDPs is a technique called
fi:ature selection. In such reductions, a domain expert
chooses certain fi’at.ures of the state space that are ex-
pected to lie the primary contributors to the transition
probabilities and simply ignores any additional refor-
mation. Tsit.siklis and Van Rx)y (Tsitsiklis & R,~W 1996)
give a careful analysis of dynanfic progranuning algo-
rittans based on feature selection. They do not give any
complexity analysis, but they show that such peltry-
finding algorithms will corlver’ge, and will find a,- g’c,od
a policy as is possible, given the choice of fi~at.ures, llow-
ever. this means that their methods still rely on a hu-
nmn or other expert guessing or recognizing the appro-
priate features, and in fact on there being a fc.w such
dominant feat ures. This brings us no closer to a general
solution than the existential quantifier ("there exists 
partition...") in Givan et. al.’s work. However, there are
definitely eases when fi,ature selection works extrem(,ly
well.

Wha.t our ~mlysis shows is that testing a partition
of states for e-homogeneity is hard, no matter how the
partition was derived. When there is outside knowledge
of the system being partitioned, there may he times
when the testing can be avoided altogether, or replaced
by some sort of sampling (proi)abilistic verification).

Another approarh is to dynamic~dly construcl, the
partition in the course of the policy-finding algorithm.
This is a purely heuristic approach, but can levi to
signifirant speed-ups in certain c‘ases, such ,as those
relmrtod in (Boutilier, De~den, & Goldszmidt 1999;
IIoey et al. 1999). Naturally, such a heuristic may
le’axt l,o an approximation of tim optimal solution ....
depending I)oth on the aggregation scheme employed
and the poli(ry-finding algorithtn-.., with no guarantee oil
the quality of the approximation or the running time of
the process.

As we nmntioned, al)proximate or exact partition al-
gorithms would potentially yield faster exact or approx-
imate algorithms--implying the collapse of complexity
el‘asses we believe or know to be distinct. Therefore, we
cannot expect to find a I)olynomial-time algorithm that
yields significantly smaller representations of succinctly
represented MDPs.

Therefore, we cannot expect t.o find a polynomial-
time algorithm that yields significantly smaller repre-
sentations of succinctly represente(l MDPs.
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