
Planning in Interplanetary Space: Theory and Practice∗

Ari K. Jónsson and Paul H. Morris and Nicola Muscettola and Kanna Rajan
NASA Ames Research Center, MS 269-2

Moffett Field, CA 94035-1000,
{jonsson,pmorris,mus,kanna}@ptolemy.arc.nasa.gov

Ben Smith
Jet Propulsion Laboratory
Pasadena, CA 91109-8099
smith@aig.jpl.nasa.gov

Abstract

On May 17th 1999, NASA activated for the first time
an AI-based planner/scheduler running on the flight
processor of a spacecraft. This was part of the Remote
Agent Experiment (RAX), a demonstration of closed-
loop planning and execution, and model-based state in-
ference and failure recovery. This paper describes the
RAX Planner/Scheduler (RAX-PS), both in terms of
the underlying planning framework and in terms of the
fielded planner. RAX-PS plans are networks of con-
straints, built incrementally by consulting a model of
the dynamics of the spacecraft. The RAX-PS plan-
ning procedure is formally well defined and can be
proved to be complete. RAX-PS generates plans that
are temporally flexible, allowing the execution system
to adjust to actual plan execution conditions without
breaking the plan. The practical aspect, developing a
mission critical application, required paying attention
to important engineering issues such as the design of
methods for programmable search control, knowledge
acquisition and planner validation. The result was a
system capable of building concurrent plans with over
a hundred tasks within the performance requirements
of operational, mission-critical software.

Introduction
During the week of May 17th 1999, the Remote Agent
became the first autonomous closed-loop software to
control a spacecraft during a mission. This was done
as part of a unique technology validation experiment,
during which the Remote Agent took control of NASA’s
New Millennium Deep Space One spacecraft (Muscet-
tola et al. 1998; Bernard et al. 1999a; 1999b). The
experiment successfully demonstrated the applicability
of closed-loop planning and execution, and the use of
model-based state inference and failure recovery.

As one of the components of the autonomous con-
trol system, the on-board Remote Agent Experiment

Copyright c© 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.
∗Authors in alphabetical order.

Planning
Experts

Search
Engine

Heuristics

Domain
Model

Plan Database
Goals

Initial state

Plan

Planning Engine

Knowledge base

Figure 1: The Planner/Scheduler architecture

Planner/Scheduler (RAX-PS) drove the high-level goal-
oriented commanding of the spacecraft. This involved
generating plans that could safely be executed on board
the spacecraft to achieve the specified high-level goals.
Such plans had to account for on-board activities hav-
ing different durations, requiring resources, and giving
rise to subgoal activities, all while satisfying complex
flight safety rules about activity interactions.

In this paper, we describe the Remote Agent Experi-
ment Planner/Scheduler from both the theoretical and
the practical perspectives. The architecture of the plan-
ning system is as shown in Figure 1. The domain model
describes the dynamics of the system to which the plan-
ner is being applied – in this case, the Deep Space One
spacecraft. A plan request, consisting of an initial state
and a set of goals, initializes the plan database. The
search engine then modifies the plan database to gen-
erate a complete valid plan, which is then sent to the
execution agent. The heuristics and planning experts
are not part of the core framework, but they are an in-
tegral part of the planning system that flew on board
Deep Space One. The heuristics provide guidance to
the search engine while the planning experts provide a
uniform interface to external systems, such as attitude
control systems, whose inputs the planner has to take
into account.

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Theory
The RAX-PS system is based on a well-defined frame-
work for planning and scheduling that, in many ways,
differs significantly from classical STRIPS planning.
For instance:

• Actions can occur concurrently and can have dif-
ferent durations.

• Goals can include time and maintenance condi-
tions.

In this section, we will describe the PS framework
from a theoretical perspective. We start out by describ-
ing how parallel activities are defined in the framework,
how domain rules are specified, and what candidate
plans are. We then go on to describe the semantics
of candidate plans, from the point of view of plan ex-
ecution, and derive a realistic definition of what is a
valid plan. Finally, we present the planning process for
this framework and prove that it is complete.

Tokens, Timelines and State Variables
To reason about concurrency and temporal extent, ac-
tion instances and states are described in terms of tem-
poral intervals that are linked by constraints. This ap-
proach has been called constraint-based interval plan-
ning (Smith, Frank, & Jónsson 2000), and has been
used by various planners, including INOVA (Tate 1996)
and IxTeT (Ghallab & Laruelle 1994). However, al-
though our approach builds on constraint-based inter-
val planning, there are significant differences. Among
those are:

• The use of timelines to model and reason about
concurrent activities

• The elimination of any distinction between ac-
tions and fluents

• The greater expressiveness of domain constraints

Humans find it natural to view the world in terms
of interacting objects and their attributes. In planning,
we are concerned with attributes whose states change
over time. Such attributes are called state variables.
The history of states for a state variable over a period
of time is called a timeline. Figure 2 shows Engine and
Attitude state variables, and portions of the associated
timelines for a spacecraft application (the attitude of a
spacecraft is its orientation in space). Between periods
of idleness, the engine is thrusting in a given direction
B. During this period, to achieve the correct thrust
vector, the spacecraft attitude must be maintained so
that it points in direction B. The turn actions change
the attitude of the spacecraft.

In classical planning (Fikes & Nilsson 1971;
McAllester & Rosenblit 1991), and earlier interval plan-
ning, there is a dichotomy between fluents and actions.
The former specify states, and the latter specify transi-
tions between them. In terms of interval planning, this
has resulted in intervals describing only actions, and
fluent values being implicit. However, this distinction
is not always clear, or even useful. For example, in a

Idle IdleThrust(B)

Engine

Turn(A,B) Point(B) Turn(B,C)

T
im

el
in

es

Time

Attitude

Figure 2: Plans as Parallel Timelines.

spacecraft domain, thrusting in a direction P can either
be regarded as a state that implies pointing towards P
or an action with pointing towards P as a precondition.
Moreover, during execution, the persistence of fluent
values over temporal intervals may be actively enforced
by maintaining and verifying the value. For these and
other reasons, we make no distinction between fluents
and actions in this planning approach, and use the same
construct to describe both fluents and actions.

From the point of view of execution, a state variable
represents a single thread in the execution of a concur-
rent system. At any given time, each thread can be
executing a single procedure P . A procedure P has nP
parameters (nP ≥ 0), each with a specified type. Each
state variable is also typed, i.e., there is a mapping
Procs : S → 2Π, where S is the set of state variables
and Π is the set of all possible procedures. Given a
state variable σ, Procs(σ) specifies the procedures that
can possibly be executed on σ.

Thus, a timeline consists of a sequence of intervals,
each of which involves a single procedure. We may think
of the interval and its procedure as being a structural
unit, called a token, that has been placed on the time-
line. Although each token resides on a definite timeline
in the final plan, the appropriate timeline for a token
may be undetermined for a while during planning. We
refer to a token that is not yet on a timeline as a floating
token.

A token describes a procedure invocation, the state
variables on which it can occur, the parameter values of
the procedure, and the time values defining the interval.
To allow the specification of multiple values, e.g, to ex-
press a range of possible start times, variables are used
to specify parameter, start and end time values for a
token. As a result, a token T is a tuple 〈v, P (~xP), s, e〉,
where v is a variable denoting a state variable, P is the
name of a procedure (satisfying P ∈ Procs(v)), the el-
ements of ~xP are variables that denote the parameters
of the procedure (restricted to their types), and s and e
are numeric variables indicating the start and end times
respectively (satisfying s ≤ e).

Each of the token variables, including the parame-
ter variables, has a domain of values assigned to it.
The variables may also participate in constraints that
specify which value combinations are valid. For exam-
ple, consider a token representing a camera taking a
picture, where one parameter indicates the brightness
level of the target object and another parameter spec-

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

ifies the choice of camera filter. Since the duration of
the picture-taking token depends on the brightness level
and the filter choice, a constraint links the start and end
times with these parameters.

A more general notion of token was used in the RAX-
PS for certain specialized purposes. This more general
form, called a constraint token, is associated with more
than a single procedure: it corresponds to a sequence
of invocations, where each invocation is drawn from a
specified set of procedures. The actual invocation se-
quence is determined during execution. Constraint to-
kens can be allowed to overlap as long as each overlap
permits at least one valid procedure invocation. With
this generalization, timelines can be used to represent
resource usage. Each constraint token represents a re-
source demand. The combinations of overlapping de-
mands must not exceed the available resource. Each
intersected region of overlapping demand determines a
procedure that assigns the resource, and checks that
availability is not exceeded. This approach was used
to model and keep track of power usage in the Remote
Agent Experiment. Unfortunately, limited space pre-
vents us from covering this generalization in detail in
this article.

Domain Constraints
In a complex system, procedures cannot be invoked ar-
bitrarily. A procedure call might work only after an-
other procedure has completed, or it might need to
be executed in parallel with a procedure on a differ-
ent thread. For example, a procedure to turn from A
to B can only occur after a procedure that has main-
tained the attitude at A, and it should precede a pro-
cedure that maintains the attitude at B. Similarly, a
thrusting procedure can only be executed while another
procedure maintains the correct spacecraft attitude.

To specify such constraints, each ground token,
T = 〈v, P (~xP), s, e〉, has a configuration constraint
GT (v, ~xP , s, e), which we call a compatibility. It deter-
mines the necessary correlation with other procedure
invocations in a legal plan, i.e., which procedures must
precede, follow, be co-temporal, etc. Since a given pro-
cedure invocation may be supported by different config-
urations, a compatibility is a disjunction of constraints.
Therefore, we define GT (v, ~xP , s, e) in terms of pairwise
constraints between tokens, organized into a disjunctive
normal form:

GT (v, ~xP , s, e) = ΓT1 ∨ · · · ∨ ΓTn

Compatibilities also specify which procedure invoca-
tions are permitted; if the disjunction is empty, the
procedure invocation is not valid in any configuration.

Each ΓTi is a conjunction of subgoals ∧jΓTi,j with the
following form.

ΓTi,j = ∃TjγTi,j(v, ~xP , s, e, vj , ~zPj , sj, ej)

where Tj is a token 〈vj , Pj(~zPj), sj , ej〉 and γTi,j is a con-
straint on the values of the variables of the two tokens
involved.

In general γTi,j may take any form that appropriately
specifies the relation between the two tokens. In prac-
tice, γTi,j is structured to limit its expressiveness and
make planning and constraint propagation computa-
tionally efficient. In the RAX-PS framework, γTi,j is
limited to conjunctions of:

• Equality (codesignation) constraints between pa-
rameter variables of different tokens.

• Simple temporal constraints on the start and
end variables. These are specified in terms
of metric versions of Allen’s temporal algebra
relations (Allen 1984); before, after, meets,
met-by, etc. Each relation gives rise to a bound
on the distance between two temporal variables.
This bound can be expressed as a function of the
start and end variables of T and Tj .

Subgoal constraints must guarantee that each state
variable is always either executing a procedure or
instantaneously switching between procedure invoca-
tions. This means that each ΓTi contains a predecessor,
i.e., a requirement for a Tj on the same state variable
as T , such that T met by Tj. Similarly, each ΓTi must
specify a successor.

The concept of subgoals generalizes the notion of pre-
conditions and effects in classical planning. For exam-
ple, add effects can be enforced by using meets sub-
goals while deleted preconditions correspond to met by
subgoals. Preconditions that are not affected by the
action can be represented by contained by subgoals.

In principle, a different compatibility may apply to
each ground procedure invocation. In practice, a large
number of invocations share the same constraints. For
example, the process of executing an attitude turn is the
same irrespective of where and when the turn starts or
ends. Moreover, determining the set of applicable com-
patibilities must be done efficiently during the planning
process. Since RAX-PS can reason about flexible tokens
where variables have not been assigned single values,
this is accomplished by indexing compatibilities hierar-
chically. The mechanism that is illustrated in Figure 3.

The basic idea is to associate compatibilities with sets
that can be described as the Cartesian product of to-
ken variable domain subsets. This allows the planner
to map from tokens to relevant compatibilities, by pair-
wise comparing domains. Procedure invocations that
do not fall within one of the specified sets are not per-
mitted. As an example, one set of constraints would be
associated with minor attitude turns, while another set
would be associated with large-scale attitude changes
that require thrusters. Procedure invocations using the
thrusters for small adjustments would therefore be ex-
cluded. In Figure 3, the round boxes (marked Vi → Gi)
represent compatibility associations. The compatibility
Gi is applied to any token that falls within a set Vi.
To see how this comes together, consider the straight
boxes, marked T1 and T2, which represent tokens. It
is easy to see and determine that T1 must be restricted
to be within V3 and that the compatibility G3 is appli-

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

L2

T1

T2

X1

X2

G2V2
V3

V1

L3

L1

G3

G1

Figure 3: An illustration of the hierarchical indexing
mechanism used in RAX-PS compatibilities.

cable to T1. The token T2 is too general to determine
a single compatibility.

The use of Cartesian products, however, is too coarse-
grained to specify valid procedure invocations. For
example, the sets of possible origin and destination
attitudes will relate to the sets of possible start and
end times. Therefore, an additional constraint, the lo-
cal constraint LVi(v, ~xP , s, e), is associated to each set
Vi

1. The LVi are specified in terms of procedural con-
straints (Jónsson et al. 1999), which are an effective
way to specify and enforce arbitrary constraints.

When a partially instantiated token intersects with
only a single compatibility box, the instance of the cor-
responding local constraint LP is automatically posted
in the database and the compatibility associated with
the box is made available for the planner to start satis-
fying appropriate sets of subgoals.

Plan Database

Having laid out the representation of the planning do-
main, we can now turn our attention to what the plan-
ner represents and reasons about. In RAX-PS, this is
a data structure called the plan database. At the most
basic level, the plan database represents 1) a current
candidate plan, which is essentially a set of timelines
containing interrelated tokens, and 2) a current set of
decisions that need to be made.

In formal terms, a candidate plan consists of the fol-
lowing:

• a horizon (hs, he), which is a pair of temporal
values satisfying −∞ ≤ hs < he ≤ ∞

• a timeline Tσ = (Tσ1 , . . . , Tσk), for each state
variable, with tokens Ti = 〈v, Pσi (~x), s, e〉, such
that each Pσi ∈ Procs(σ)

• ordering constraints {O1, . . . , OK}, enforcing

1This constraint is also used to limit the token variable
domains to the set Vi

hs ≤ e(Tσ1) ≤ s(Tσ2) ≤ · · · ≤ e(Tσk−1
) ≤

s(Tσk) ≤ he for each timeline Tσ
• a set of constraints {C1, C2, . . . , CN}, each relat-

ing sets of variables from one or more tokens; this
includes temporal, equality and local procedural
constraints

The constraints in a candidate plan give rise to a
constraint network, consisting of the variables in the
tokens and the constraints that link token variables in
different ways. This network determines the set of all
legal instantiations of the given tokens. As a result,
any candidate plan that has an inconsistent underlying
constraint network cannot be part of a valid plan.

An important aspect of the underlying constraint net-
work is that it may be used to infer restrictions on pos-
sible values for token variables. This is done by con-
straint propagation (Mackworth & Freuder 1985) which
is a method for eliminating values that can be proven
not to appear in any solution to the constraint network.
As a side-effect of removing values, the constraint prop-
agation may also prove that no solution exists, by elim-
inating all values for some variable. Doing so implies
that the candidate plan is invalid2.

In addition to a candidate plan, the plan database
may also contain a set of decisions that need to be made.
A decision corresponds to a flaw in a candidate plan,
an aspect of the candidate that may prevent it from
being a complete and valid plan. In this framework,
there are four types of flaws: uninstantiated variables,
floating tokens, open disjunctions of compatibilities, and
unsatisfied compatibility subgoals. Each flaw in the plan
database gives rise to choices for how that flaw can be
resolved. Resolving a flaw is a reasoning step that maps
the given database to another database. Categorized by
the types of flaws, the following is a list of the possible
choices for resolving a flaw and the effect that this has
on the plan database:

1. Variable restriction flaws are resolved by selecting a
non-empty subset of the variable domain and restrict
the variable to that domain. Effects:

• If the restriction results in a token matching a
unique compatibility specification, a new open
disjunction flaw is added.

• If the chosen domain is a singleton, the flaw is
removed.

2. Floating token flaws are resolved by selecting two ad-
jacent tokens on a timeline and inserting the floating
token between them. Effects:

• The floating token flaw is removed.

• The ordering constraints implied by the inser-
tion are added.

3. Open disjunction flaws are resolved by selecting one

2The converse is not necessarily true, as failing to find
an empty domain does not guarantee the existence of a
solution.

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

item in the disjunction and require that it be made
true. Effects:

• The open disjunction flaw is removed.

• A set of unsatisfied subgoal flaws is added.

• Any implied constraints are added to the con-
straint set.

4. Unsatisfied subgoal flaws are resolved by either find-
ing an existing token and using that to satisfy the
subgoal, or by adding a new token to satisfy the sub-
goal. Effects:

• The unsatisfied subgoal flaw is removed.

• Resulting constraints are added.

• Implied ordering constraints are added, if a
new token is generated.

It is important to note that it is not necessary to re-
solve all flaws in order to have a plan. For example, a
valid plan might permit certain flexibility in token start
and end times, which in turn means that some variable
domains are not singletons. In most cases, however, we
require that each token satisfy the applicable compati-
bility specification, i.e, that the subgoals from at least
one of the disjunctions are satisfied. In that case, we
say that the token is fully supported.

Plans and system behaviors

Based on the notions we have introduced here, we can
now turn our attention to the semantics of a candidate
plan, and the task of developing a formal definition of
what a valid plan is. Traditionally, valid plans have
been defined in abstract terms, based only on the can-
didate plan and the domain model. However, this ap-
proach is not realistic, as the validity of a plan in the
real world is inherently tied to the mechanism that ex-
ecutes it. To address this, we start by discussing the
basics of plan execution and then go on to derive a re-
alistic definition of what constitutes a valid plan.

From the point of the executing agent (called the ex-
ecutive or EXEC) a plan is a concurrent program that
is to be interpreted and executed in a dynamic system.
Recall that the plan contains variables that specify how
and under which circumstances procedures are to be
instantiated. For variables that correspond to system
values, such as the current time, the EXEC will sense
actual system values, compare them with the values
specified in the plan, and then determine which pro-
cedure should be executed next. If the EXEC fails to
match sensed values with the values in the plan, the
EXEC triggers a fault-protection response (e.g., put
the system in a safe state and start taking recovery
actions). The question of whether the EXEC succeeds
in matching values and selecting a procedure invocation
depends in part on how much reasoning the EXEC can
perform for this purpose. That, in turn, depends both
on how much reasoning the EXEC is capable of and
how much time it has before the next invocation must
be activated.

If an EXEC has no reasoning capabilities or is not
permitted any time for deliberation, the execution pro-
cess must be as simple as possible. For that purpose,
the plan must be the simplest possible to interpret, i.e,
all procedure calls should be fully specified and all invo-
cation variables should be completely determined. Of
course, this is the most brittle plan, since it provides
only one possible match for each sensed values.

The simplest plans correspond exactly to single pos-
sible evolutions of the system. We will refer to them as
potential behaviors of the system. Formally:

Definition 1 A candidate plan is a potential behavior
of the system if: (1) each token on each timeline is fully
supported3; (2) all timelines fully cover the scheduling
horizon [hs, he]; and (3) all timeline token variables are
bound to a single value.

Consider now a candidate plan. In general there may
be any number of gaps between timeline tokens, to-
kens may not be fully supported, and variables may
be uninstantiated. In order to instantiate a single be-
havior, each flaw must be resolved successfully. For
an execution agent with sufficient time and reasoning
capabilities, such an under-specified plan might be a vi-
able plan. In fact, the lack of commitment would allow
the execution agent to choose the flaw resolutions that
best fit the actual conditions during execution. The
Remote Agent system took advantage of this by letting
the EXEC map high-level tasks into low-level proce-
dures, during execution. This freed the planner from
generating low-level procedure calls, and allowed the
executive to choose the low-level procedures that best
fit the actual execution.

In general, executability depends on the execution
agent in question. It depends primarily on two aspects;
how flexible the candidate plan must be to cover possi-
ble system variations, and how restricted the candidate
plan must be for the executive to identify whether it
is executable. The latter is an important issue to con-
sider, as making this determination can be as expensive
as solving a planning problem.

To represent the abilities of a particular executive
agent, we use a plan identification function fI that iden-
tifies executable candidate plans, by mapping each pos-
sible candidate plan to one of the values of {T, F, ?}.
The intent is that if a candidate P can be recognized as
being executable, then fI(P) = T ; if a candidate is rec-
ognized as not being executable, then fI(P) = F ; and
if executability cannot be determined, then fI(P) =?.

We permit a great deal of variation in how different
executives respond to different candidate plans, but we
do require that a plan identification function behaves
consistently with respect to the two aspects mentioned
above. For example, the function should not reject one

3In practice, we will always plan over a finite horizon.
Therefore, this requirement is modified slightly for the start
and end token of each timeline. In particular, the predeces-
sor subgoals of Tσ1 are ignored, while the same applies to
the successor subgoals of Tσk .

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

candidate on the basis of being too restrictive and then
accept a restriction of that candidate. This leads us to
the following formalization of what constitutes a plan
identification function:

Definition 2 A plan identification function fI for a
given execution agent is a function that maps the set of
candidate plans to the extended truth value set {T, F, ?},
such that for any candidate plan P and any candidate
plan Q that extends the candidate P, we have:

• if fI(P) = F then fI(Q) = F

• if fI(P) = T , then fI(Q) ∈ {T, F}

• if a token in P is not supported, then fI(P) =?

The last condition is not strictly necessary, as some ex-
ecutives are capable of solving planning problems, but
in the interest of clarity, we will limit the execution
agents to solving constraint satisfaction problems.

Using this notion of plan identification functions, we
can now provide a realistic, formal definition of what
constitutes a plan, namely:

Definition 3 For a given executive, represented by a
plan identification function fI , a candidate plan P is a
plan if and only if fI(P) = T .

Planning process

We can now turn our attention to the plan generation
process itself. The input to the planning process is an
initial candidate plan, which includes an initialization
token for each timeline, a set of floating tokens, and a
set of constraints on the tokens in question. Together,
these elements give rise to an initial plan database. The
goal of the planning process is then to extend the given
initial candidate to a complete valid plan. From the
point of view of traditional planning, the initial plan
database specifies both the initial state and the goals.
In fact, our approach permits a much more expressive
specification of goals. For example, we can request a
spacecraft to take a specified sequences of pictures in
parallel with providing a certain level of thrust.

The planning process we define is a framework that
can be instantiated with different methods for control-
ling the search, selecting flaws, propagating constraints,
etc. The planning process is a recursive function that
non-deterministically selects a resolution for a flaw in
the current plan database. An outline of the process is
shown in Figure 4.

This planning process is clearly sound, as any result-
ing plan satisfies the given plan identification function.
The planning process is also complete in the sense that
if there is a plan, then a plan can be found. Further-
more, if a given initial candidate plan can be extended
to some valid plan P (satisfying fI), then the planning
process can find some other valid plan (satisfying fI)
that can be extended to P . A still stronger complete-
ness criterion, that any given plan can be found, does
not hold in general. The reason is that a lenient iden-
tification function fI may return T even though the
planning process has not addressed all remaining flaws.

plan (P,D)
begin
if f(P) = T

return P
else if f(P) = F

return fail
else

given a flaw d from the flaw database D,
choose a resolution res(d) for the flaw
let (P’,D’) = apply res(d) to (P,D)
return plan(P’,D’)

end

Figure 4: The planning process. The plan database
consists of the candidate plan P and the set of flaws D.

This highlights the importance of identifying properties
of soundness and completeness for new planning frame-
works such as this one.

Theorem 1 Suppose a domain model, a plan identifi-
cation function fI , and an initial plan P0 are given. Let
PT be a valid plan (i.e., fI(PT) = T) that extends P0.
Then, the planning process can generate a valid plan P ′

that extends P0, and can be extended to PT .

Proof: The basic idea in the proof is to define an
oracle that specifies how to resolve each flaw that the
planning process may encounter, in order to get to a
suitable plan P ′. This is straightforward to do, using
the given target plan PT . The set of possible flaws is
defined by the tokens that appear in the target plan; no
other flaws need to be considered. For each flaw, the
oracle specifies how it should be resolved:

• Variable domain restriction: Assign the variable
the same domain it has in PT .

• Token insertion: Insert the free token so that
it satisfies the ordering of tokens on that same
timeline in PT .

• Compatibility choice: Choose any disjunction
that is satisfied in PT .

• Subgoal satisfaction choice: Let T be a token
that satisfies the subgoal in PT . If T already ap-
pears in the candidate plan, use that, otherwise,
add T as a new token.

To show that this oracle will result in a suitable plan,
we need to show that 1) all the flaws needed to arrive at
the final plan eventually appear, 2) each step provides a
candidate that can be extended to the final plan, and 3)
the function fI does not return F on any intermediate
candidate plans. Steps 2) and 3) are straightforward.
First, we show by induction that criterion 2) is main-
tained throughout the process. It is clearly true for P0.
Each step of the planning process preserves it, since
the chosen flaw resolution is always compatible with
PT . Criterion 3) follows from the fact that if the plan
identification function fI returns F on some candidate

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

plan Q, it must return F on all candidate plans that
extend Q, which by 2) includes the final plan.

To prove step 1), that all the necessary flaws arise, we
first note that it is sufficient to show that all tokens in
PT can be generated by the planning process. This will
automatically give rise to the variable domain flaws,
and the compatibility satisfaction flaws. To see that
each token can be generated, recall that the initial can-
didate plan has an initialization token for each timeline.
Also note that each compatibility specifies the possible
successors (and predecessors) for a corresponding token.
As a consequence, any given token on a timeline gives
rise to a compatibility flaw that produces a succeeding
token on that timeline. Straightforward induction then
proves that this allows the planning process to generate
all the tokens in PT . 2

Practice

RAX PS extends the theoretical framework into a well-
engineered system. The system had to operate under
stringent performance and resource requirements. For
example, the Deep Space 1 flight processor was a 25
MHz radiation-hardened RAD 6000 PowerPC proces-
sor with 32 MB memory available for the LISP image of
the full Remote Agent. This performance is at least an
order of magnitude worse than that of current desktop
computing technology. Moreover, only 45% peak use of
the CPU was available for RAX, the rest being used for
the real-time flight software. The following sections de-
scribe the engineering aspects of the RAX PS system.
First we describe the planning engine, the workhorse on
which all development was founded. Then we describe
the mechanism for search control used to fine-tune the
planner. We also give information on the overall devel-
opment process and on the methods of interaction with
external software planning experts.

RAX PS planning engine

As follows from the previously discussed theory, pro-
ducing a planner requires choosing a specific plan iden-
tification function fI , a specific way to implement non-
determinism and a flaw resolution strategy. In RAX PS
we designed the planner in two steps. First we defined
a basic planning engine, i.e., a general search proce-
dure that would be theoretically complete. Then we
designed a method to program the search engine and
restrict the amount of search needed to find a solution.
In this section we talk about the planning engine.

The first thing we need to clarify is what constitutes a
desirable plan for the flight experiment. RAX plans are
flexible only in the temporal dimension. More precisely,
in a temporally flexible plan all variables must be bound
to a single value, except the temporal variables (i.e.,
token start and end times, s and e). It is easy to see
that under these assumptions the only un-instantiated
constraint sub-network in the plan is a simple temporal
network (Dechter, Meiri, & Pearl 1991). This means
that the planner can use arc consistency to determine

Model size
State variables 18
Procedure types 42

Plan size
Tokens 154
Variables 288
Constraints 232

Performance
Search nodes 649
Search efficiency 64%

Table 1: Plan size and performance of RAX PS

whether the plan contains any behavior and that the
executive can adjust the flexible plan to actual execu-
tion conditions by using very fast incremental propaga-
tion (Tsamardinos, Muscettola, & Morris 1998). All of
this is translated into a plan identification function fI
defined as follows: When applied to a candidate plan,
fI checks its arc consistency. If the candidate is incon-
sistent, fI returns F . If the candidate is arc consis-
tent, fI returns one of two values: T if the candidate
is fully supported and all the non-temporal variables are
grounded, and ? in any other case.

To keep a balance between guaranteeing complete-
ness and keeping the implementation as simple as pos-
sible, non-determinism was implemented as chronolog-
ical backtracking. Also, the planner always returned
the first plan found. Finally, the planning engine pro-
vided a default flaw selection strategy at any choice
points of the backtrack search. This guaranteed that
no underconstrained temporal variable flaw would ever
be selected, while all other flaw selection and resolutions
were made randomly.

Search control

By itself, the basic planning engine could not generate
the plans needed for the flight experiment. However,
RAX PS included additional search control mechanisms
that allowed very localized backtracking. This is re-
flected in the the performance figures in Table 1, where
search efficiency is measured as the ratio between the
minimum number of search nodes needed and the total
number explored.

Achieving this kind of performance was not easy and
required a significant engineering effort. We outline the
principal aspects of this effort in the rest of the section.

Flaw agenda management RAX PS made use of
a programmable search controller rather than the de-
fault flaw selection strategy described before. Ideally,
the “optimal” search controller is an oracle such as the
one described before in the proof of completeness. Hav-
ing advance knowledge of the plan PT , the oracle can
select the correct solution choice without backtracking.
In practice this is not possible and the control strategy
can only make flaw resolution decisions on the basis of
the partial plan developed so far. The search controller
of RAX PS allows programming an approximate ora-
cle as a list of search control rules. This list provides

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

(:subgoal
(:master-match (Camera = Ready))
(:slave-match (Camera = Turning_On))
(:method-priority ((:method :add)(:sort :asap))

((:method :connect))
((:method :defer)))

(:priority 50))

Figure 5: Search control rules for unsatisfied subgoal

a prioritization of the flaws in a database and sorting
strategies for the non-deterministic choices for each flaw
selection. Figure 5 gives an example of a search control
rule.

The rule applies to an unsatisfied subgoal flaw
of a 〈Camera, Ready, s, e〉 token that requires a
〈Camera, Turning on, sk, ek〉 token. Note that in the
DS1 model the Camera can reach a Ready state only
immediately after the procedure Turning on has been
executed. Therefore, in this case, matching the token
types in the subgoal is sufficient to uniquely identify
it. When the priority value associated with the flaw is
the minimum in the plan database, the planner will at-
tempt to resolve the flaw by trying the resolution meth-
ods in order. In our case the planner will first try to
:add a new token and try to insert it in the earliest
possible timeline gap (using the standard sort method
:asap). The last resolution method to try is to :defer
the subgoal. When this happens, the plan database will
automatically force start or end of the token to occur
outside of the horizon hs. In our case, the deferment
method will only succeed if the Ready token is the first
token on the timeline.

Search control engineering The rule language for
the search controller is designed to be extremely flexi-
ble. It permits the introduction of new sorting methods,
if the standard methods prove to be ineffective. Also,
it is possible to prune both on solution methods (e.g.,
only :connect to satisfy a subgoal) and on resolution
alternatives (e.g., try scheduling a token only as early
as possible and fail if you cannot). Unfortunately, this
meant that completeness could no longer be guaranteed.
On the other hand it allowed for a finely tuned planner.
Designing search control became therefore an exercise
in trading off between scripting the planner’s behav-
ior and exploring the benefits of shallow backtracking
when necessary. Here are some issues that needed to
be addressed.
Interaction between model and heuristics: Ide-
ally, it is desirable to keep domain model and search
control methods completely separate. This is because
constraints that describe the “physics” of the domain
should only describe what is possible while search con-
trol should help in narrowing down what is desirable
from what is possible. Moreover, declarative domain
models are usually specified by domain experts (e.g.,
spacecraft systems engineers) not by problem solving
experts (e.g., mission operators). Commingling struc-

Sep_Thrust(40)

Accumulated Accumulated Accumulated

 Thrust(0,40) Thrust(40,80) Thrust(80,100)

Sep_Thrust(40)

Max_Thrust_time(100)

Sep_Thrust(20)

Figure 6: A plan fragment implementing thrust accu-
mulation within a plan horizon

tural domain information with problem solving meth-
ods can significantly complicate inspection and verifi-
cation of the different modules of a planning system.

In our experience, however, such an ideal separation
was difficult to achieve. Model specifications that were
logically correct turned out to be very inefficient be-
cause they required the discovery of simple properties
by extensive search (e.g., a token being the first of a se-
quence of tokens with the same procedure). The stan-
dard method used in RAX-PS was to define auxiliary
token variables and use search control to enforce a spe-
cific value, which in turn would prune undesired alter-
natives through constraint propagation. Including the
control information within the model caused a signif-
icant level of fragility in domain modeling, especially
in the initial stages of the project when we still had a
weak grasp on how to control the search.
Using global control information: RAX-PS
search control requires rules to rely solely on local in-
formation. For example, a variable restriction rule can
only rely on the information in the token to which the
variable belongs. Sometimes, however, global informa-
tion is needed to make control decisions. For example,
in the DS1 the planner needs to schedule the correct
amount of accumulated thrust within a planning hori-
zon. This requires keeping track of the sum of the dura-
tion of each Thrust token in each candidate plan. New
Thrust tokens will not be generated if the sum exceeds
a given limit. The solution we adopted (Figure 6) was
to appropriately program the domain model, so that
the constraint propagation mechanisms could compute
the global information. In particular, we included an
extra Thrust Accumulation timeline whose tokens ef-
fectively act like a global timer. Tokens on this timeline
captured the possible start and end time ranges of each
Thrust token by variable codesignations in subgoals.
Local constraints then performed the summation and
predecessor/successor subgoals propagated the sum to
other Thrust Accumulation subgoal tokens.
High-level control languages: The control rules
described above can be thought of as an “assembly
language” for search control; and the DS1 experience
confirmed that programming in a low-level language is
painful and error prone. However, this assembly lan-
guage provides us with a strong foundation on which
to build higher level control languages which are well
founded and better capture the control knowledge of
mission operators. The declarative semantics of the

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Subsystem State
Variables

Value
Types

Constraints Comments

MICAS Executable: 2

Health: 1

7 14 Models the health, mode and activity of the
MICAS imaging camera. RAX demonstrates fault
injection and recovery for this device as part of
the 6 day scenario.

Navigation Goal: 1

Executable: 1

Internal: 1

5 6 To schedule Orbit determination (OD) based on
picture taking activity.

Propulsion
&

Thrust

Goal: 2

Executable: 1

Internal: 1

9 12 Based on thrust schedule generated by the NAV
module, the planner generates plans to precisely
activate the IPS in specific intervals based on
constraints in the domain model and is the most
complex set of timelines and subsystem
controlled by the planner.

Attitude Executable: 1

Health: 1

4 4 Enables the planner to schedule slews between
constant pointing attitudes when the spacecraft
maintains its panels towards the sun. The targets
of the constant pointing attitudes are imaging
targets, Earth (for communication) and thrust
direction (for IPS thrusting).

Power

Mgmt.

Goal: 1

Internal: 1

2 1 Allows the planner to ensure that adequate power
is available when scheduling numerous activities
simultaneously.

Executive Goal: 1

Executable: 1

2 7 Allows modeling of low level sequences
bypassing planner models giving Mission Ops the
ability to run in sequencing mode with the RA.

Planner Executable: 1 2 2 To schedule when the Executive can request the
plan for the next horizon.

Mission Goal: 1 2 2 Allows the Mission Manager and the planner to
coordinate activities based on a series of
scheduling horizons updatable by Mission Ops
for the entire mission.

Figure 7: Timelines of the RAX domain model

domain model also opens up the possibility of auto-
matically understanding dependencies that point to ef-
fective search control. The synthesized strategies can
then be compiled into the low-level control rules. Work
is currently in progress to explore the viability of such
methods to alleviate the burden of control search pro-
gramming.

Scenario-driven development and testing

We used a scenario-driven iterative refinement process
to develop the domain model. Domain models were
based on a fixed scenario. The scenario might involve a
certain amount of thrust activity, communication win-
dows and picture taking activity. When the scenario
was changed, the fragility of the model was immedi-
ately apparent with the planner not converging within
resource bounds. Testing, therefore, was a critical com-
ponent in deployment.

The scenarios also drove planner testing. We devel-
oped several scenarios to cover the possible modifica-
tions to the baseline, and to exercise fault conditions.
The scenarios were run automatically with a test har-
ness. Automated verification tools reported cases where
the planner failed to converge, or where the planner
generated an incorrect plan. The testing process is de-
scribed more fully in (Smith et al. 1999).

Interaction with Plan Experts

Quite often, legacy or specialized software external to
the planner provides specialized knowledge about the
development of plan fragments. We call such software
planning experts. The RAX-PS framework provides a
practical solution to the direct integration of this knowl-
edge into the planning process. Experts can be wrapped
into appropriate adaptors that present their products as
if they were coming directly from the declarative model.

It is illustrative to describe in more detail the in-
teraction between RAX-PS and the optical navigation
(OPNAV) system. OPNAV was one of the revolution-
ary technologies validated by DS1. During the nominal
mission, when RAX was not active, OPNAV period-
ically commanded taking pictures of beacon asteroids
to triangulate the position of the spacecraft and esti-
mate whether the spacecraft was on course. When RAX
was active, OPNAV would simply provide a source of
planning goals, i.e., the beacon asteroids to be imaged.
RAX-PS would then plan the detailed activities needed.

The communication of goals from OPNAV to RAX-
PS worked as follows. Before OPNAV could be invoked,
the planner had to extend the plan enough to know at
what time it wanted to perform imaging activities. At
this point a search control rule would explicitly invoke
OPNAV and as a result a set of floating tokens and
relative temporal constraints would be deposited in the
plan database. In principle the planner could reject any
of them. However the constraints posted by OPNAV
and the design of the search control rules ensured that
under normal circumstances the planner would schedule
the goals linearly in time (with higher priority goals
scheduled first) and only start rejecting OPNAV goals
when it ran out of time in the allotted temporal window.

Developing a principled interaction between planning
systems and legacy control software is a topic of active
research, and is very important for the practical accept-
ability of planning technology.

The Planner in Flight
The Remote Agent Experiment was conducted during
the week of May 17th. The experiment achieved all of
the technology validation objectives. However, it was
not without surprises. The most notable occurred in
the early morning of May 18th when the RAX team
realized that Remote Agent had ceased to command
the spacecraft while being otherwise healthy. In the
next 10 hours the problem was diagnosed by analyzing
telemetry data downlinked from the spacecraft and by
inspecting the source code. The problem turned out to
be a low probability deadlock condition due to a missing
critical section in the EXEC code. Within the following
10 hours the RAX team developed a potential software
patch, developed a completely new experimental sce-
nario to complete the achievement of all Remote Agent
validation objectives, and validated the scenario by run-
ning it on flight analog hardware. The new scenario was
activated in the morning of May 21st. In spite of an-
other problem in communication software external to
the Remote Agent, the experiment completed around
14:00 PDT achieving 100% of the validation objectives.

RAX-PS performed flawlessly. Most importantly,
without the planner the experiment could simply not
have resumed after the interruption given the tight time
constraints. Developing, testing and approving a new
sequence of complex activities on a spacecraft usually
requires several days (Rayman 1999). With a planner,
a new mission scenario could be developed in less than

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

an hour. Indeed, it is worth noting that most of the
overnight testing and validation involved running the
full 6 hours of the new scenario on the flight processor,
in real time. In the end, a potentially catastrophic soft-
ware fault turned out to be a unexpected showcase of
how planning technology can robustify and reduce costs
for future robotic space missions. Details of the actual
flight run can be seen in (Bernard et al. 1999a) and
(Nayak et al. 1999).

Conclusion

In this paper, we have presented an overview of the Re-
mote Agent Experiment Planning/Scheduling system,
both from theoretical and practical points of view. On
the theoretical side, we described the underlying plan-
ning framework, which in many ways is different from
traditional planning approaches. Among many other
advantages, the framework provides the ability to plan
concurrent activities that have different durations, and
the expressiveness needed to plan for complex interact-
ing goals, including maintenance goals. On the practi-
cal side, we discussed some of the problems that had to
be solved during the implementation and testing of the
planner as flight software, and presented our solutions
to these problems.

Research and development of autonomous planning
systems, capable of solving real problems, continues
among the many scientists in the field. The work we
have presented here is just another step in this devel-
opment, but it is a step that has taken autonomous
planning to interplanetary space.

Acknowledgments

The authors acknowledge the support of the complete
Remote Agent team from NASA Ames and JPL. We
would particularly like to thank Steve Chien, Scott
Davies, Greg Rabideau and David Yan who contributed
to the RAX-PS flight experience. We also thank Jeremy
Frank, David E. Smith, and the anonymous reviewers
for their comments.

References

Allen, J. 1984. Towards a general theory of action and
time. Artificial Intelligence 23(2):123–154.

Bernard, D.; Dorais, G.; Gamble, E.; Kanefsky, B.;
Kurien, J.; Man, G. K.; Millar, W.; Muscettola, N.;
Nayak, P.; Rajan, K.; Rouquette, N.; Smith, B.; Tay-
lor, W.; and Tung, Y.-W. 1999a. Spacecraft autonomy
flight experience: The DS1 Remote Agent experiment.
In Proceedings of the AIAA Conference 1999, Albu-
querque, New Mexico.

Bernard, D. E.; Dorais, G. A.; Fry, C.; Jr., E. B. G.;
Kanefsky, B.; Kurien, J.; Millar, W.; Muscettola, N.;
Nayak, P. P.; Pell, B.; Rajan, K.; Rouquette, N.;
Smith, B.; and Williams, B. C. 1999b. Design of the
Remote Agent experiment for spacecraft autonomy. In
Proceedings of the IEEE Aerospace Conference, 1999.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal
constraint networks. Artificial Intelligence 49:61–95.

Fikes, R., and Nilsson, N. 1971. STRIPS: A new ap-
proach to the application of theorem proving to prob-
lem solving. Artificial Intelligence 2:189–208.

Ghallab, M., and Laruelle, H. 1994. Representation
and control in IxTeT, a temporal planner. In Proceed-
ings of the Second International Conference on Artifi-
cial Intelligence Planning Systems.

Jónsson, A. K.; Morris, P. H.; Muscettola, N.; and Ra-
jan, K. 1999. Next generation Remote Agent planner.
In Proceedings of the Fifth International Symposium
on Artificial Intelligence, Robotics and Automation in
Space (iSAIRAS99).

Mackworth, A. K., and Freuder, E. C. 1985. The com-
plexity of some polynomial network consistency algo-
rithms for constraint satisfaction problems. Artificial
Intelligence 25:65–74.

McAllester, D., and Rosenblit, D. 1991. Systematic
nonlinear planning. In Proceedings of the Ninth Na-
tional Conference on Artificial Intelligence, 634–639.

Muscettola, N.; Nayak, P. P.; Pell, B.; and William, B.
1998. Remote Agent: To boldly go where no ai system
has gone before. Artificial Intelligence 103(1-2):5–48.

Muscettola, N. 1994. HSTS: Integrated planning and
scheduling. In Zweben, M., and Fox, M., eds., Intelli-
gent Scheduling. Morgan Kaufman. 169–212.

Nayak, P. P.; Bernard, D. E.; Dorais, G.; Jr., E. B. G.;
Kanefsky, B.; Kurien, J.; Millar, W.; Muscettola, N.;
Rajan, K.; Rouquette, N.; Smith, B. D.; Taylor, W.;
and wen Tung, Y. 1999. Validating the DS1 Remote
Agent experiment. In Proceedings of the Fifth Interna-
tional Symposium on Artificial Intelligence, Robotics
and Automation for Space (i-SAIRAS) 1999 ,Noord-
wijk, The Netherlands.

Rayman, M. 1999. Personal communication with Marc
Rayman, Chief Mission Manager DS1.

Smith, B.; Millar, W.; Dunphy, J.; wen Tung, Y.;
Nayak, P. P.; Jr., E. B. G.; and Clark, M. 1999. Vali-
dation and verification of the Remote Agent for space-
craft autonomy. In Proceedings of the IEEE Aerospace
Conference 1999, Snowmass, CO.

Smith, D. E.; Frank, J.; and Jónsson, A. K. 2000.
Bridging the gap between planning and scheduling.
Knowledge Engineering Review 15(1).

Tate, A. 1996. Representing plans as a set of con-
straints - the 〈I-N-OVA〉 model. In Proceedings of
the Third International Conference on Artificial In-
telligence Planning Systems.

Tsamardinos, I.; Muscettola, N.; and Morris, P. 1998.
Fast transformation of temporal plans for efficient ex-
ecution. In Proceedings of the 15th National Confer-
ence on Artificial Intelligence (AAAI-98) and of the
10th Conference on Innovative Applications of Arti-
ficial Intelligence (IAAI-98), 254–261. Menlo Park:
AAAI Press.

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

