
A Planner Fully Based on Linear Time Logic

M. Cialdea Mayer and A. Orlandini and G. Balestreri and C. Limongelli

Dipartimento di Informatica e Automazione, Universit~ Roma Tre,
via della Vasca Navale 79, 00146 Roma, Italia.

{ c ialdea, orlandin, gippo, I imongel}@dia, uniroma3, it

Abstract

This work aims at verifying the effective possibil-
it). of using Linear Time Logic (LTL) as a plan-
ning language. The main advantage of such a rich
and expressive language is the possibility of en-
coding problem specifc information, that can be
of help both in reducing the search space and find-
ing a better plan. To this purpose, w~e have im-
plemented a planning system, PADOK (Planning
with Domain Knowledge), where the whole plan-
ning domain is modelled in LTL and planning is
reduced to model search.
We briefly describe the components of problem
specifications accepted by PADOK, that may in-
clude knowledge about the domain and control
knowledge, in a declarative format. Some exper-
iments are then reported, comparing the perfor-
mances of PADOK with some w~ll established ex-
isting planners (IPP, BLACKBOX and STAN)
some sample problems. In most cases, our sys-
tem is guided by additional knowledge that can-
not be stated in the languages accepted by the
other planners. In general, when the complexity of
the problem instances increases, the behaviour of
PADOK improves, with respect to the other plan-
ners, and it can solve problem instances that other
systems cannot.

Introduction

The expressive power of planning languages is an im-
portant issue, addressed for example in (Currie & Tare
1991; Stephan & Biundo 1996; Cesta & Oddi 1996).
The logical approach to planning, traditionally based
on deduction, is certainly more expressive and flexible
than specialized planning systems. However, the use
of general theorem provers often raises efficiency prob-
lems. More effective planners are based on the "plan-
ning as satisfiability" approach: a plan corresponds to
a model of the problem specification. In (Kautz & Sel-
man 1992) planning is reduced to model search in clas-
sical propositional logic, and in (Kautz, McAllester,
Selman 1996) different cncodings of planning problems
are presented.

Copyright (~) 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

Since modal temporal logics are useful tools for
modeling and reasoning about time, their application
to planning has been proposed in different formats:
(Stephan & Biundo 1996; Koehler & Treinen 1995)
use interval-based temporal logics, in a deductive view;
(Cimatti et al. 1997; Cimatti & Roveri 1999) propose
planning via model checking; (Barringer et al. 1991)
and (Bacchus & Kabanza 1996) use model construction
in linear time temporal logic; (Cerrito & Cialdea Mayer
1998) analyses the general forms that may take the
encoding of a planning problem in Linear Time Logic
(LTL).

Similarly to (Bacchus & Kabanza 1996; Barringer et
al. 1991; Cerrito & Cialdea Mayer 1998) in this work
we propose to use LTL as a specification language for
planning, keeping inside the "planning as satisfiability"
approach. The use of LTL as a planning language has
several advantages. A first important aspect of LTL is
its underlying simple model of time, allowing an easy
and natural representation of a world that changes over
time. It is more expressive than classical propositional
logic; for instance, even if we identify a plan with a fi-
nite time. sequence, we do not need to fix a maximal
length to such a time segment. Most important, we
recall the obvious benefits deriving from its general-
ity and expressiveness, compared with special purpose
planning formalisms. In particular, we are not bound
to adhere to the model of a single final goal and in-
stantaneous actions: LTL can easily been used to ex-
press domain restrictions in the style of (Cesta & Oddi
1996), as well as intermediate tasks, like in (Bacchus
& Kabanza 1996), or in the style of the Hierarchical
Task Networks approach (Erol, Hendler, & Nau 1994;
Yang 1990). Furthermore, LTL can express domain
knowledge useful to guide the search, as shown in (Bac-
chus & Kabanza 1995).

This latter issue is the motivation of this work. We
believe that the possibility of specifying extra problem
specific information, such as the domain expert is often
aware of, is of great importance. In fact, such additional
knowledge can be of great help both in reducing the
search space and finding a better plan, especially in
complex problems. The specification of such domain
specific information can include control knowledge and

Mayer 347

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

even become a sort of high lcvel, non sequential program
that guides the planner. Obviously, with the addition
of new restrictions, completeness may be lost. If we
want to minimize the risk that additional information
spoils the possibility of finding a plan when one exists,
the specification itself must be given in some language
with a well defined formal semantics, so that meta-level
tools can be designed, in order to check, for instance,
consistency of the specification. A logical language is
obviously the best choice in this respect.

The main issue we address in this work is ttle effective
feasibility of an approach to planning based on LTL:
can model search in LTL be effective enough in order
to constitute the kernel of a planner, when the declara-
tive specification of additional domain knowledge is al-
lowed? In order to address the problem, we have built
a prototypal system, PADOK (Planning with Domain
Knowledge), run it on a set of examples, and compared
its results with some other existing planning systems,
i.e. IPP (Koehler et al. 1997), BLACKBOX (Kautz
& Sehnan 1998a) and STAN (Long & Fox 1998).
the comparison wc only consider planning problems in
the "classical" style, characterized by an initial state, a
goal and a set of instantaneous actions, with precondi-
tions and effects. However, PADOK is in most examples
guided by problem specific information. In many cases
its behaviour shows a lower time growth rate w.r.t, the
other planners: when the problem instances increases,
PADOK behaviour improves. In general, PADOK, when
given suitable domain knowledge, is comparable to the
other systems.

The Encoding of Planning Problems
We consider the language of propositional LTL con-
taining only unary future time temporal operators: DA
means that A is true now and will always be true, OA
that A is either true now or sometime in the future..
and OA that A holds in the next state. The model of
time underlying LTL is a countably infinite sequence of
states (a time frame), that can be identified with IN. Its
elements are called time points, and an interpretation
:~ is a function mapping each time point i to the set
of propositional letters true at i.

We consider the connectives -~ (negation) and V (dis-
junction) as primitive, and the other propositional op-
erators A (conjunction), --~ (implication) and - (double
implication) are defined as usual. The satisfiability re-
lation A4~ ~ A, for i G r~l (A is true at time point i in
the interpretation j~4), is defined as follows:

1. ¢~li ~ p iff p G A4(i), for any propositional letter
in the language.

-~A iff A4~ ~ A.

A V B iff either J~4i ~ A or A4~ ~ B.

DA if[for all j _ i, A4j ~ A.

OA iff there exists j > i such that J~4j ~ A.

OA iff A4i+~ ~ A.

Truth is satisfiability in the initial state: a formula
A is true in .A4 (and ,.~4 is a model of A) iff ..~4o ~
Truth of sets of formulae is dcfined as usual.

A temporal interpretation describes how the worhl
evolves in time, hence a suitable set of formulae can
constrain the behaviour of the world and be taken as
the specification of a planning domain.

In the following, we describe how to represent plan-
ning problems such as can be specified in ADL-like lan-
guages. Such a description can be found ’also in (Cer-
rito & Cialdea Mayer 1998), together with alternative
forms of encodings in LTL, and recalls the encoding
of planning problems in the situation calculus (Reiter
1991) and the linear encoding of (Kautz, McAllester,
& Sehnan 1996). We assume that a propositional lan-
guage £ is given, containing propositional letters (or
ground atoms - we shall use a first, order syntax in or-
der to enhance readability) representing "all the relevant.
"fluents", i.e. properties that may change over time.
Furthermore, the language contains a distinguished set.
Action.s of atoms., representing the execut ion of actions
(i.e. if a is an action azld a is true at state i of a given
temporal interpretation ..Vl, then ,’%4 represents a time
sequence where a is performed at state i). Hence, any
initial segment (0,...,n) of a temporal interpretation
.~4 of the language/: corresponds to a (possibly paral-
lel) plan: it determines the sequence of sets of actions
P = (Ao A,,) such that for every i = 0 ,r~ and
action a, a G Ai if and only if :g4i ~ a.

For simplicity, we assume here that a planning prob-
lem H is specified by a complete description St) of the
initial state, the description Goal of the final state, m)d
a description of the available actions, with their pre-
conditions and (possibly conditional) effects. The
notion of a temporal interpretation satisfying all the
constraints of a planning problem, thus representing a
plan that solves the problem, is quite straightforward
(basically: the initial state satisfies St) and there exists
a state g satisfying Goal; if a is an action holding at
time point i then tile preconditions of a hold at i; and
classical effect and frame conditions for actions are sat-
isfied at any time point). Since we assume that the
initial state description is complete, it can be shown
that P = (A0, ..., An) is a plan solving the planning
problem II iff there exists an interpretation ,~ for £,
satisfying all the constraints of H, that determines P.
Hence, plans can be characterized in terms of temporal
models.

Finally, a set of LTL formulae S over £: is a correct
and complete encoding of a planning problem II iff: for
every temporal interpretation ~4 of £, ,~4 is a model of
S if and only if ,~t satisfies the constraints of H. As a
consequence, any model of a correct and complete en-
coding S of a planning problem H determines a plan
solving H and, conversely, every plan solving H is rep-
resented by some model of S.

In the rest of this section a simple encoding schema is
presented, that is provably correct and complete (Cer-
rito & Cialdea Mayer 1998). The specification of the

348 AIPS-2000

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

initial state, goal and action preconditions are repre-
sented as follows: (1) The initial state is represented
a formula So, that is assumed to be complete with re-
spect to fluents, i.e. for any fluent R, either So ~ R or
So ~ -~R. (2) The goal is represented by a formula
the form OGoal: "either now or sometime in the future
Goal is true". (3) For every action a, a formula of the
form [3(a --+ Ira) represents the preconditions for the ex-
ecutability of a: "at any time, a is performed only if its
preconditions ira hold" (action precondition axioms).

The encoding contains also a set of axioms describing
incompatibility relations between actions. Obviously,
if two actions a and b are incompatible because they
have conflicting preconditions or effects, this need not
be represented explicitly. In fact, no model of a com-
plete encoding can have a and b true at the same time
point. But if the reason of the incompatibility is differ-
ent, it must be explicitly coded. In particular, this is
the case if a deletes a precondition of b (or vice versa).
In fact, if Adi ~ a A b, then the preconditions of the
actions must be true at i, while their effects are true at
i + 1: t,he conflict cannot be determined by logic alone.
In that case the encoding is added an "incompatibility
axiom" between a and b, with the form rn(-~a V-~b):
"at an), time, a is performed only if no contemporary
execution of b is performed" .1

In order to express general frame and effect condi-
tions for actions, we assume that for any fluent R two
formulae are specified, that can easily be computed
from tile actions description: G+ specifies all tile condi-
tions that can lead to change the truth value of 17 from
false to true, and G~ specifies all the conditions that
can lead to change the truth value of R from true to
false. We consider a simple form of progression encod-
ing, including, for any fluent R, the following formula:

re(OR -- + V(R^ - ~G~))

"At any non-initial time point (say n-I-1), R holds iff
the previous state (n) some action having R as effect
accomplished, or else R holds and no action having -~R
as effect is performed". This is a paraphrase of Reiter’s
successor state axiom (Reiter 1991) into LTL.

Planning in LTL with PADOK
In order to check whether LTL can be effectively "exe-
cuted", we have built a prototypal system, PADOK. It
is implemented in Objective Cam1 (Leroy 1999) and its
model search mechanism relies on the system ptl, de-
veloped in C by G. Janssen at Eindhoven University
(Janssen 1999). The system ptl is an efficient imple-
mentation of proof search in LTL, thanks also to the
use of Ordered Binary Decision Diagrams (OBDD).

PADOK takes in input the specification of a planning
problem given partly in an ADL-like syntax, and trans-
lates it into a set of propositional LTL formulae, accord-
ing to the encoding described in the previous section.

1When actions have conditional effects, such axioms may
be weakened. We omit the details here.

The encoding can be enriched with additional problem
specific knowledge, included in the specification (as tic-
scribed further on). The system ptl is invoked in order
to search for a model of the produced axioms and: if
some model is found, the corresponding plan is given in
output.

The syntax allows universal as well as existential
quantification (over finite domains) and conditional ef-
fects for actions. Quantifiers are considered as abbrevi-
ations for finite disjunctions or conjunctions. Atomic
formulae include some simple arithmetical formulae,
whose interpretation is the intended one. In paxt.icu-
lax, the specification of a planning problem includes the
declaration of each object type involved in the problem,
the set of fluents and static predicates, the initial state
(that must not contain positive disjunctions or existen-
tial quantifiers), the goal (any syntactical form) and
operators.

An operator is declared by speci~-ing its name,, the
type of the operands, its pre- and post-conditions. Ac-
tion preconditions are allowed to have any syntactical
form and, when azl action has a conditional effect, any
formula can be used to express the condition, with no
syntactical restrictions. In detail, post-conditions may
have one of the following forms:

Vxl : tl ...Vx~ : t,~(Ll A ... A Lk)
Vxl : ~l...Vx~ : t~(F =~ LI A ... A Lk)

where n >_ 0, k :> 1, L1 , Lk are literals and F is any
formula. An effect of the second form means that. for all
xt of type tt for all xn of type tn, if F holds in the
state where the action is performed, then L1 ̂ ... A Lk
holds in the next state (logical implication is denoted
by the distinguished symbol -~).

Let us consider, for example, the jewelry-box do-
main, where knobs axe named by natural numbers (0
is the first knob) and there are two operators: first:
with no parameters and no preconditions, turning the
first knob, and turn, for the knobs following the first.
The preconditions of turn specify that a given knob c
can be turned only if it is not the first knob (ot,herwise
first is applied), its predecessor c - 1 is closed and all
the knobs preceding c - 1 are open.

action turn c : knob
PRE c > O, -,open(c- 1),

Vx : knob(x < c - 1 -~ open(x))
POST open(c) ~ -.open(c),

~open(c) =~ open(c)
The following exa~nple is the specification of the action
stack (move a block on another block) in the blocks
domain (where the table is an object of different, type).

action stack b : block,to : block
PRE free(b), free(to)
POST Vb’ : block

(on(b, b’) ~ free(U) A -an(b, b’)),
on(b, Table) ~ -,on(b, Table),
--free(to), on(b,

Considering the operators declarations, PADOK com-
putes each pair of incompatible actions and adds the
necessary axioms to the LTL encoding of the problem.

Mayer 349

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Besides these basic information concerning the do-
main and the problem instance, PADOK exploits the
expressive power of LTL by including the specification
of both a background theory arid control knowledge, in
order to reduce the search space and possibly find a
better plan. In other words, the LTL encoding of
the basic information about a planning domain (as de-
scribed above) determines models which are indeed
correct representation of a plan solving the given prob-
lem, but, in many cases, the human expert is often
aware of knowledge that can be of precious help for
tile planner. PADOK ~tllows the addition of such knowl-
edge, in a declarative form. The logical format of both
the background theory and c:ontrol knowledge is suited
to be checked for consistency off-line, thus providing a
precious help to the domain expert.

The domains considered in the experiments
and the examples

The gripper domain. A robot with two hands
has to move a given number of balls from room
A to room B (from AIPS-98 planning comped-
tion).

The jewelry-box domain. In order to open a
jewelry-box, its n knobs have to be turned open.
The knobs are arranged in a sequence. A knob
can be turned (open or closed) only if: either
is the first knob, or it is the knob immediately
following the first closed knob (from (Janssen
1999)).

The blocks domain. A given mmlber of blocks
have to be arranged in a given goal configuration,
moving only one block at a time.

The teacup domain wlth one robot. A robot
must deliver tea to the inhabitants of a given
number of rooms. Each room is connected to
the hallway and possibly to other rooms. One
of the rooms contains a cupstack, another the
tea-machine. This is a simplification of the next
problem and a general "delivery" problem.

The teacup domain with two robots. In this
version of the domain, each of the two robots is
allowed only in some of the rooms, so they have
to exchange empty or full cups in order to readt
the goal (from IPP and BLACKBOX reposito-
ries).

The Background Theory

The background theory contains formulae without tem-
poral operators. Such formulae are meant to be true
throughout time, i.e. they represent state invariants.
Consequently, for each formula A in the theory, the for-
mula DA is added to the problem encoding, so that the
seaxched model is required to satisfy A at each timc
point, for any A in the theory. This is a natural rep-
resentation of facts that do not vary over time. For
example, in the teacup domains, the topology of the
rooms (which rooms axe connected one to the other)
described in the theory.

The theory is used to filter operator instances, by
elimination of those a~’tions whose preconditions or
effects axe inconsistent with the theory. Obviously..
there are often operator instances whictn art: self-
contradictory arid should not be taken into consider-
ation. For example, consider the operator go in the
teacup domain with one robot:

action go rl : location, r2 : location
PRE atRobby(rl), connected(rl, r2)
POST atRobby(r2), -,atRobby(rl)

Any instance of go where rl = r2 is contradictory:
its post-condition, in fact, can never be satisfiod, and
PADOK automatically rules out, such actions. But
there are also cases where an operator instance should
be ruled out not just because it. is self contr~atictory,
but because it, is inconsistent with some background
knowledge about, the domain. For example, if we
know that room 2 is not. connected to room 3 (and it
will never be), then the actions go(room2, room3) and
go(room3, room2) are impossible. PADOK exploits the
knowledge in the background theory to this aim, often
dramatically reducing tim search spewe. For example,
105 contradictory actions (out of 154) axe ruh:d out
the problem instance of the teacup domain with one
robot, and 10 rooms.

The background theory does not necessarily contain
only knowledge about the domain: sometimes (classic’al)
fornmlae expressing control knowledge can ~dso be used
for simplification purposes.

Control Knowledge
Control knowledge can bc specified by means of any
logical formula, possibly containing temporal operators.
Suc]a formulae axe required to hold at any time point
(for eadl control formula A, the formula OA is added
to the LTL encoding).

In the sample problems wc have considered, three
main categories of formulae, have been used to encode
control knowledge. The first one is represented by for-
mulae of the form A --+ [:]A: if something holds at any
given stage, then it will be true forever. This kind
of suggestion is uscfifl in problems where "good situ-
ations" can be identified, i.e. portions of the goal tlmt,
when achieved, need never be destroyed and rebuilt
again.

Control statements of the second kind say that
"whenever you axe in a situation such that then your
action must be one among ...". This is in fact simil~ to
a high level programming instruction. For example, in
the gripper domain it is immediate to see that a good
strategy would not loose the opportunity to drop a ball
at its destination as soon as it were possible:

Vx : ballVg : gripper (atRoblnd(B) A carry(x: g)
--~ drop(x, B, g))

(if the robot is holding something and it is in room B,
then it must drop it). Similarly, we can state that if
the robot is in room A, it has a free harld and there are
still balls in A, then it must do a pick action:

350 AIPS-2000

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

atRobby(A) ^ 39 gripper free(g) A 3z: balat(z,A)
-4 3x : bali 3g : gripperpick(x, A, g)

The same form of "positive guide" is represented in
the teacup domain with two robots by the following
formula, stating that if a robot is in the condition of
making a deliver action, then it must profit immedi-
ately of thc occasion:

Vp : robotVr : room(at(p,r) A ordered(r)
A fullcuploaded(p) -4 deliver(p,

The third form of useful knowledge concerns restric-
tions on the execution of some action, in the form: "do
not perform action z unless ...". For example, in the
teacup domain with the given topology - as well as
in other domains involving some "go" action .-- we can
harmlessly restrict the robot to enter a room only if
there is something to do there (i.e. either serve tea, or
fill in a cup with tea, or get an empty cup):

Vr : room(3x : location go(x, r)
O(deliver(r) V fillcup(r) V getcup(r)))

As can be noticed from the above examples, the guid-
ing knowledge that can be encoded in LTL can easily be
viewed as a sort of high level, non sequential program.
If we imagine the plan is in fact to be executed by seine
artificial agent: we can consider LTL as a sort of very
high level robot programming language, where maxi-
mum freedom is left. in the choice of inany details, but
the agent is guided in the essential steps of its actions,
so as to improve its performances.

Control knowledge helps not only in reducing the
search space, but also to possibly find a better plan.
For example, in the case of the blocks domain, under
suitable control, a problem instance with 10 blocks is
solved in approximately 7.5 seconds arid a plan with 11
actions is found. By contrast, if no control knowledge
is used, the plan grows to 109 actions and the time to
solve the problem is more than 60 seconds (if no sim-
plification is made, the problem just cannot be solved).
In other cases, the time required to find a solution does
not explode in such a way and it can even be smaller in
simple problem instances, because of the overhead due
to the treatment of the additional knowledge. How-
ever, the length of the plan is always reduced. The
next table illustrates the case of the teacup domain
with one robot (the instance with 24 rooms cannot be
solved without guide).

8 2.46 68 4.67 168
10 3.79 87 253 6.84
12 7.26 104 13.39 355
14 12.48 123 474 21.85
16 15.26 140 38.32 610
18 23.27 159 763 48.28
20 30.59 177 59.05 933
22 40.97 195 75.34 1120

Experiments and Comparisons
PADOK has been compared with three other planners,
BLACKBOX (v. 3.4), IPP (v. 3.3 and 4.0) and
(v. 3.0), on some sample problems. All the systems run
on a Pentium II 400 Mhz under Linux. BLACKBOX,
IPP and STAN are three of the five contestants partic-
ipating to the First Planning System Competition at.
AIPS-98 and IPP v. 3.3 is the planner that. won the
competition in the ADL track. Recently, the new re-
lease of IPP has been delivered, so we have considered
it too.

The aim of the comparisons is to check whether the
approach based on LTL and a general purpose proof
method is actually feasible, when the expressive power
of the language is exploited so as to encode rich problem
specific knowledge.

The results of the comparisons are given by tables
and diagrams, showing the solution time (in seconds)
required by the different systems. Plan lengths are not
reported, since they do not differ significantly. We re-
port the results obtained for IPP v. 3.3 only in tim
case of the jewelry-box domain, because in this case
the difference in the performances of the two versions
is significant. In the other domains the more recent
version behaves better, but the results are not so dra-
matically different as in the case of the j ewelry-box
domain. In particular, IPP 3.3 can solve neither the
12 balls instance of the gripper domain, nor the 12
rooms instance of the teacup domain with one robot,
nor the 10 rooms instance of the teacup domain with
two robots.

The performances of PADOK depend on the nature of
the problem. In some problems the system behaves well
even in absence of guiding knowledge. This is the case,
for exmnple, of the jewelry-box domain, illustrated
below. Note that this is an easy domain when measured
in terms of number of fluents and propositional actions.
but it requires very long solutions: to solve the 10 knobs
instances 682 actions are required, and the 16 knobs
instance requires 43.690 actions.

[Jewelry-box domain I
[knobs I P^DOK [B,~kbo~ I STAN I IPP 3.3 [IPP 4.0[

6 0.05 0.41 0.085 18.91 0.01
8 0.13 4.01 - - 0.08

10 1.02 0.32
12 4.93 2.38
14 24.79 - - - 11.64
16 107.28 - - - 64.97

However, the jewelry-box domain is aa exception:
in most domains, the behaviour of the system is quite
poor without a background theory and control knowl-
edge, and it highly improves with the encoding of suit-
able knowledge. Considering that PADOK uses a sys-
tematic model search mechanism, our experiments con-
firm the results reported in (Kautz & Selman 1998b),
and the positive effect that additional knowledge may
have.

Mayer 3 51

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

There are also problems where PADOK behaves quite
poorly, in comparison with other planners. The blocks
world seemed to be one of such bad domains: in easy
instances PADOK is nmch slower thin1 other planners
and an earlier version of the system could not solve
more difficult cases. However, some optimizatien of the
code nlade it possiblo to go further and soh-o nlore in-
stances of the proble:n. In such more difficult cases:
PADOK shows a better behaviour than the other plan-
ners. Specifically, we have considered random configll-
rations fi)r different numbers of blocks. Obviously, the
number of blocks alone is not a good representation of
the dixnension of a problem in the blocks world: but the
initial mid final configuration should ’also be taken into
account. For the larger problems that have been tried
by ,all planners (i.e. 12 and 14 blocks) we have con-
sidered two configurations: an easy one (12a and 14m
respectively, that are essentially reversal problems) and
a randoln one (12b and 14b). With no guide, the config-
urations with 12 blocks and over have not been solved
by PADOK. The results reported below concern runs
with knowledge about the destination of blocks and the
definition of "good towers", that must never be undone;
moreover, a stack action is executed only if a good tower
is obtained. With this knowledge, PADOK could solve at
least problems with 24 blocks. The results are reported
in the following table.

[The blocks domain [

[blocks [PAX}OK I Blackbox [SWAN]lPP 4.0]

6 0.49 0.38 0.19 0.12

8 2.94 1.38 0.51 0.44

10 7.5 6.04 1.62 1.50

12a 12.9[2.74 2.57 3.42

12b 23.9 - 26.10 20.28

14a 23.57 7.20 8.10 9.93

14b 51.44

We note that PADOK execution time for the easy config-
urations with 12 and 14 blocks is approximately half the
corresponding more difficult one. It seems to profit less
than the other systems of the easy situations 12a and
14a. The graphical representation in Figure 1 shows
that in easy problems, PADOK behaves very poorly
(the configurations with 12 and 14 blocks are the easier
ones).

The knowledge about the gripper domain exploited
by PADOK consists of heuristics: never drop a ball in
the origin room and never pick it back from the desti-
nation room, otherwise do pick/drop actions whenever
possible. With this help, PADOK Can solve problems
with at least 30 balls (in approximately 166 seconds).

The gripper domain]

4 0,14 0.19 0.09 0.02

6 1,02 5.68 0.13 0.27

8 2.9 2.03 3.93
I0 5.12 39.16 39.87

12 8.32

so -SC~ACK.OX"
I

"IPP" ~(~

50 .’PADOK" 2~.
"STAN" []

40-

Figure 1. The easier instances in the blocks domain

Figure 2 represents the execul.ion times of the four plan-
ners in the gripper domain.

r
"IPP"

5 -.STAN. []

/

-

0-

25-

20-

15- -

6 a
BALLS

Figure 2. The gripper domain

The knowledge about the donlaizl exploited in the
two teacup domains concerzl essentially the topology
of the rooms, the location of the tea-machine and the
cups, and, in the two robots case, where ea(~ of them is
allowed. With such information, PADOK has solved the
teacup problem with one robot up to 24 rooms, and
the teacup problem with two robot up to 20. In the
tables and figures below, wc omit data about Blazkbox,
that could only solve the 4 rooms instance of the teacup
domain with one robot.

[The teacup domain (1 robot)

I rooms I PADOK I STAN I IPP 4.o l
4 0.48 0.1 0.04

6 1.18 0.39 0.35

8 2.46 1.78 1.63

10 3.79 25.15 16.65

12 7.26 683.7 106.27

14 12.48

352 AIPS-2000

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

I The teacup domain (2 robots)

{ rooms { PADOK I STAN I IPP4.0 I
4 1.56 0.29 0.29
6 6.51 2.72 4.65
8 7.92 32.0 56.36

10 11.99 544.00 369.89
12 26.12

700 ¯ ,
fp-

"PADOK"
600 --S’rAN=

500-

400-

300-

200-

Figure 3. The teacup domain with one robot

.A
14

Figure 4. The teacup domain with two robots

In general, we can note that the time growth rate
in PADOK behaviour is considerably smaller than the
other planners: it gains in relative efficiency when the
size of the problem increases. As a consequence, in the
more complex problem instances it is faster than all the
other planners and it can solve some problem instances
that other planners cannot.

Concluding Remarks
In this work we have ’addressed the problem of check-
ing whether the expressive power of Linear Time Logic
as a representation language for planning problems can
be effectively exploited, especially considering the ben-
efits that can be gained from the declarative representa-
tion of domain specific and control knowledge. We have

shown some examples of guiding knowledge that can be
expressed in the LTL specification of a planning prob-
lem, and presented the first experiments with PADOK, a
prototypal planning system bA-~ed on LTL and strongly
exploiting domain specific information.

The experimental results, comparing PADOK with
other planners (specifically, BLACKBOX, IPP and
STAN), show that in many domains, when we can give
the planner meaningful and important information (in
relatively simple form), the time growth rate in PADOK
behaviour is smaller, in comparison with the other plan-
ners we have considered. As a consequence, in the more
complex problem instances of such domains, PADOK
is behaves better than the other planners. The intu-
ition that the importance of domain specific and guiding
knowledge grows with the size of the addressed prob-
lems is confirmed by our experiments. We are opti-
mistic also with respects to more complex domains: the
implementation of our system can still be improved and,
if the slower growth rate we have observed in PADOK
execution time w.r.t, other planners is confirmed, the
approach can aim at real problems, where we usually
have a high degree of guiding knowledge.

In general, we believe that the loss in efficiency that
often derives from the use of general logical procedures
can be recovered with the expressive power of the lan-
guage and the declarative specification of heuristics.
Nov,-, other benefits can be easily obtained, for instance
from the possibility to represent actions with a duration
and intermediate tasks.

In this work we have not considered the positive cf-
fect of simplification and control knowledge in detail,
by means of an internal analysis of our system. This
is the subject of a next work, where we also intend to
further analyse thc different forms of control fornmlae
that can be included in a specification, and their re-
spective effect. Such a work is in fact essential, in order
to provide a guide on what knowledge can be of help
and how it is better formulated.

In (Cerrito & Cialdea Mayer 1998), beyond the en-
coding considered in this work, alternative forms of en-
codings are presented: a "forward" encoding exploit-
ing the Until operator, and two forms of "backward’"
encodings. As a next task, we shall experiment such
encodings, in order to check whether either the use of
the binary temporal operators or a form of goal driven
encoding provide any advantage. In fact, it can happen
that, in dependence of the nature of the problem, one
or another search strategy is to be preferred. The plan-
ning system could allow the user to choose between the
corresponding forms of encoding.

A further important step for future research consists
in developing domain analysis tools, such as for instance
off-line consistency checking, thus exploiting the advan-
tages deriving from the use of a logical language.

Acknowledgments. This work has been partially
supported by Italian MURST, ASI and CNR. More-
over, the authors wish to thank Gcert Janssen, who

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

kindly made his system ptl available to us and never
denied his help, and the anonymous referees, for their
useful comments.

References

Bacchus, F., and Kabanza, F. 1995. Using temporal
logic to control search in a forward chaining planner.
In Proc. of tile TIME-g5 International Workshop on
Temporal Representation and Reasoning.

Bacchus, F., and Kabanza, F. 1996. Planning for tem-
porally extended goals. In Plvceedings of the Thir-
teenth National Conference on Artificial Intelligence
(AAAI-96), 1215-1222. AAAI Press / The MIT Press.
Barringcr, H.; Fisher, M.; Gabbay, D.; and Hunter, A.
1991. Meta-reasoning in executable temporal logic. In
Prec. of the Second Int. Conf. on Principles of Knowl-
edge Representation and Reasoning.
Ccrrito, S., and Cialdca Mayer, M. 1998. Using linear
temporal logic to model and solve planning problems.
In Giunghiglia, F., ed., Proceedings of the 8th Interna-
tional Conference on Artificial Intelligence: Method-
ology, Systems, Applications (AIMSA’98), 141-152.
Springer.

Cesta, A., azld Oddi, A. 1996. DDL.I: a formal de-
scription of a constraint representaton language for
physical domains. In Ghallab, M., and Milani, A.,
cds., New Direction in AI Planning, 341-352. IOS
Press.
Cimatti, A., and Pa3veri, M. 1999. Conforrnant plan-
ning via model checking. In Prec. of the Fifth Euro-
pean Conference on Planning (ECP-99).

Cimatti, A.; Giunchiglia, E.; Giunchiglia, F.; and
Traverso, P. 1997. Planning via model checking: a
decision procedure for ,4T~. In Steel, S., and Alami,
R., cds., Prec. of the Fourth European Conference on
Planning (ECP-97), 130--142. Springer-Verlag.
Currie, K., and "rate.. A. 1991. O-Plan: the open plan-
ning architecture. Journal of Artificial Intelligence
52:49--86.
Erol, K.; Hendler, J.; and Nan, D. S. 1994. Complexity
results for HTN planning. In Preceedinys of AAAI-9$.

Janssen, G. L. J. M. 1999. Logics for Digital Cir-
cuit Verification. Theory, Algorithms and Applica-
tions. CIP-DATA Library Technische Universiteit
Eindhoven.

Kautz, H., and Sehnan, B. 1992. Planning as satisfia-
bility. In Neumann, B., ed.~ lOth European Conference
on Artificial Intelligence (ECAI), 360-363. Wiley &
Sons.

Kantz, H., and Selman, B. 1998a. BLACKBOX: A
new approach to the application of theorem proving
to problem solving. In Working notes of the AIPS-
98 Workshop on Planning as Combinatorial Search,
58-60.

Kantz, H., and Selman, B. 1998b. The role of
domain-specific knowledge in the planning as satisfia-

bility framework. In Prec. of the Fourth b~t. Conf. on
Artificial Intelligence Planning Systems (AIPS-98).

Kautz, H.; McAllester, D.; and Selman, B. 1996. En-
coding plans in propositional logic. In Prec. of the 5th
Int. Conf. on Principles of Knowledge Reprrsentation
and Reasoning (KR’96), 374-384.

Koehler, J., and Treinen, R. 1995. Constraint dedm’-
tion in an interval-based temporal logic. In Fisher, M.,
attd Owens, R.., eds... Executable Modal and Temporal
Logics, (Prec. of the IJCAI’g3 Workshop), volume 897
of LNAI, 103 117. Springer.

Koehler, J., Nebel, B.; Hoffmann, J.; and Dimopoulos,
Y. 1997. Extending planning graphs to an ADL subset.
In Steel, S., and Alarni, R., eds., Prec. of the Fourth
Eurepean Conference on Planning (ECP-97), 273-285.
Springer-Verlag.
Leroy, X. 1999. Tim Objective Caml system, docu-
mentation and user’s guide, release 2.02. Available at
http ://caml. inria, fr/.
Long, D., and Fox, M. 1998. Type analysis of plan-
ning domain descriptions. In 17th Workshop of UK
Planning and Scheduling.

R.eiter, R.. 1991. The frame problem in the situa-
tion calculus: A simple solution (sometimes) and
completeness result for goal regression. In Lifschitz,
V., ed., Artificial Intelligence and mathematical theory
of computation: Papers in honor of John McCarthy.
Academic Press. 359- 380.
Stephan, B., and Biundo, S. 1996. Deduction based
refinement planning. In Drabble, B., cd., Preceedings
of the "trd International Conference on Artificial Intel-
ligence Planning Systems (AIPS-96), 213-220. AAAI
Press.

Yang, Q. 1990. Formalizing planning knowledge for hi-
erarc]fical planning. Computational b~tellige.nce 6:12
24.

354 AIPS-2000

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

