
A unified dynamic approach for dealing with Temporal Uncertainty
and Conditional Planning

Thierry Vidal

LGP/ENIT
47, av d’Azereix - BP 1629

F-65016 Tarbes cedex - FRANCE
thierry@enit.fr

Abstract

In temporal planning, Temporal Constraint Networks
allow to check the temporal consistency of a plan, but
it has to be extended to deal with tasks which effec-
tive duration is uncertain and will only be observed
during execution. The Contingent TCN models it: in
which Dynamic controllability has to be dmcked, i.e.:
during execution, will the system be able to consis-
tently release tasks according to the observed durations
of already completed tasks ? This behaviour is a re-
active one suggesting the plan is conditional in some
sense. A Timed Game Automaton model has been
specifically designed to check the Dynamic controlla-
bility. This paper furthermore discusses the use of such
a model with respect to conditional and reactive plan-
ning, and its strength with respect to execution super-
vision needs, and suggests improving efficiency by par-
titioning the plan into subparts~ introducing so-called
waypoints with fixed time of occurrence. Last we show
that the expressive power of automata might allow
to address more elaborate reactive planning features,
such as preprocessed subplans, information gathering,
or synchronization constraints.

Background and overview
Temporal Constraint .Networks (TCN) (Schwalb
Dechter 1997) rely on qualitative (or symbolic) con-
straint algebras (Vilain, Kautz, & van Beek 1989) but
mort. specifically tackle quantitative (or numerical) con-
straints. They are now at the heart of many applica-
tion domains, especially scheduling (Dubois, Fargier:
& Prade 1993) and planning (Morris: Muscettola,
Tsamardinos 1998; Fargier et al. 1998)~ where a TCN
might allow one to incrementally (i.e. at each addition
of a new constrainQ check the temporal consistency of
the plan.

In realistic applications the inherent uncertain nature
of some task durations must be accounted for, distin-
guishing between contingent constraints (whose effec-
tive duration is only observed at execution time, e.g.
the duration of a task) and controllable ones (which
instanciation is controlled by the agent, e.g. a delay be-
tween starting times of tasks): the problem becomes

Copyright (~ 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

a decision-making process under uncertainty, and con-
sistency nmst be redefined in terms of controUabilities,
especially the Dynamic controllability that encompasses
the reactive nature of the solution building process in
dynamic domains: this property allows one to check if it
is feasible to build a solution in the process of time, each
assignment depending only on the situation observed so
far, and still needing to account for all the future un-
known observations. In (Vidal & Fargier 1999) partial
results about complexity and tractable subclasses were
given and a first ad hoc algorithm was provided, based
on a discretization of time. This work has been re-
cently completed by the introduction of the Waypoint
controllability feature (Morris & Muscettola 1999) (i.e.
there are some time-points which cazl be assigned the
same time of occurrence in all solutions). Adding wait
periods in a plan allows to get this property checked,
and then the problem may lie in a subclass in which
Waypoint and Dynamic controllabilities are equivalent.

This paper goes further: relying on a Dynamic
controllability checking method through an equivalent
Timed Game Automaton, we will show that a small set
of waypoints might also be used to partition the plan
into subparts in which small size automata can be built
to check Dynamic controllability only locally, hence pro-
viding a nice tradeoff between expressiveness, optimal-
ity" of the plan and efficiency. The other contribution of
this paper is to situate the automaton approach within
the conditional and reactive planning area.

The paper is organized as follows. Section 2 provides
the basic constraint network model and the Dynamic
and Waypoint controllability definitions, and Section
3 gives the complete automaton-based Dynamic con-
troUability checking method (those two sections being
developped in more details in (Vidal 2000)). Then sec-
tion 4 gives evidence of the pros and cons of the ap-
proach in planning, with respect to efficiency, reactive
behaviours in presence of temporal uncertainty and ex-
ecution supervision needs, before proposing the com-
bined framework of partitioned Dynamic controllability.
Section 5 eventually describes how the full expressive-
ness of timed automata may be used to address more
complex features such as preprocessed subplans, infor-
mation gathering, or synchronization constraints.

Vidal 395

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Contingent TCN and Controllability
In temporal planning, the planning process produces
a Temporal Constraint Network to represent the tem-
poral informations captured by the plaal. This model
relies on a rcified logic framework (Vila & Reichgelt

¯ 1993) that separates the atemporal logical propositions
from their temporal qualification, which are then inter-
pretcd in a temporal algebra framework (in our casc
a time-point based one), for which one uses a graph-
based model on which we will focus in this so(:tion. This
model is used for checking the temporal consistency of
the plan.

VCe will barely recall here the Contingent TCN model
mid focus on the Dynanfic controllalfility property, both
being "already dcscribed in (Vidal & Fargicr 1999), and
we will re(:all as well the Waypoint controllability prop-
erty introduced in (Morris & Muscettola 1999). We will
use the, extended expressiveness and the unified charac-
terization that appear in more details in (Vidal 2000).

We first recall the basics of TCNs (Schwalb & Dechter
1997). At the qualitative level, we rely on the time-
point continuous algebra (Vilain, Kautz, & van Beck
1989), where time-points are related by a number of
relatkms, that can be be represented through a graph
where nodes are time-points and edges correspond to
precedence (-<) relations. We can use the same time-
point graph to represent quantitative constraints as
well, thanks to the TCN formalism (Schwalb & Dechter
1997). Here continuous binary constraints define the
possible durations between two time-points by means
of temporal intervals. A basic constraint between x
and y is l~g _< (y - x) < u,.v equally expressed
c,~ = [l~u,u~u] in the TCN. TCN a priori allow dis-
junctions of intervals, but we will restrict ourselves to
the so-called STP (Simple Temporal Problem) where
disjunctions are not permitted. A TCN is said to be
consistent if one can C[IOOSE for each time-point a value
such that¯ all the constraints are satisfied, the rcsulting
instanciatioxl being a solution of the STP modelled by
the TCN. Then consistency checking of such a restricted
TCN can be made through complete and polynomial-
time propagation algorithms.

The TCN suits well the cases in which effective dates
of time-points and effective durations of constraints are
always chosen by the agent. If not, the problem has to
bc redefined in the following way.

A typology of temporal constraints
One needs first distinguishing between two different
kinds of time-points: the time of occurrence of an ac-
tivated time-point can be freely assigned by the agent,
while received time-points are those which effective time
of occurrencc is out of control and can only be observed.

This raises a corresponding distinction between so-
called controllable and contingent constraints (Clb and
Ctg for short): the former can be restricted or instan-
ciated by the agent while values for the latter will be
provided (within allowed bounds) by the e~ernal world
(see (Vidal & Fargier 1999) for details).

396 AIPS-2000

For instance, in planning, a task which duration is
uncertain and will only be known when the task is com-
pleted at execution time will be nmdelled by a Ctg be-
tween the beginning time-point which is an activated
one and thc ending one whicaa is a received one. As far
as Clbs are concerned, we need to further distinguish
between two cases.

¯ An EndClb between x and y is a Clb in t.he usual
way we designed them until now: after x ha,,.’ oc-
curred, the system can let time fly before assigning a
value to the EndClb. If y is an activated tiine-point,
then the EndClb is called a Free, and the agent can
let time fly up to the upper bound of the const.raint
uzv before deciding when to release y. If y is a re-
ceived time-point, then it means the agent can freely
restrict the duration interval (hence it is not a Ctg),
but the effective value will be assigned only when y is
received. This kind of EndClb is called a Wait. For
instance, a delay between the end of a task and the
beginning of the next one is usally a Free, whilo a
constraint restricting the possible delay between the
ends of two tasks (and which (’an be fnrther rest rioted
if needed) is a Wait.

¯ A BeginClb between x affld y is a Clb which effective
duration nmst be decided as soon as x has occurred.
For instance, a task corresponding to a robot nlove
may have different cont.rollalfle durations depending
on the robot speed that can be fixed by the agent,
but this has to be done at the beginning of tho task
and will not be changed throughout the move. Hence
the duration is determined when releasing the t~k.

The resulting Contingent Temporal
Constraint Network model

Tim previous subsection introduces some h;vel of uncer-
tainty in the STP that. results in the following definition
of the corresponding Contingent TUN.

Definition 1 (CTCN)
.~f = (Vb, Ve.,Rg,Rc) is a Contingent Temporal Con-
straint Network with

Vb= {bl,... ,bB} tJ {b0}: set of the B activated time-
points plus the origin of time,

Ve = {ex eE} : set of the E received time-points,
Rc = {cl cc}: set of the C Clbs, with Re =

I~bc [.J I{ec, Rbc being the set of EndClb and Rbc being
the set of BeginClb,

Rg ={gl ,ga}: set of the G Ctgs.

The reader should take note that the distinction be-
tween the Free and the Wait is purely semantic, the
forthcoming model, property definitions and reasoning
processes will barely differentiate between Ctg, EndClb
and BeginClb.

In the foUowing, a decision 6(bi) will refer to the ef-
fective time of occurrence of an activated time-point bi,
and an observation wi will refer to the effective dura-
tion of the Ctg between xi and ei (knowu by the system
when receiving time-point e,).

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Dynamic and Waypoint controllabilities

In a CTCN, the classical consistency property is of no
use. It would mean indeed that there exists at least
one complete assignment of times of occurrence to the
whole set of time-points such that eax:h effective du-
ration belongs to the corresponding interval constraint.
But this would require that in such a "solution" a value
is chosen for the Ctgs, which contradicts the inherent
unpredictable nature of those constraints. The decision
variables of our problem are only the activated time-
points. And hence a solution should be here, intuitively,
an assignment of the mere activated time-points such
that all the Clbs are satisfied, whatever values are taken
by the Ctgs. This suggests the definition of the so-called
controllability property.

In (Vidal & Fargier 1999), three different levels
controllability have been exhibited, completed in (Mor-
ris & Muscettola 1999) by an additional property called
the Waypoint Controllability. A unified definition of
those four properties is proposed in (Vidal 2000), but
we will focus here barely on the Dynamic and the Way-
point controllabilities that are of interest in planning.

Definition 2 (Situations)
Given that Vi = 1... G, g~ = [li, u~],

f~ = [ll,ul] x ... x [lc,uG] is called the space of sit-
uations, and

= {~ ¯ [l~,ul],... ,wa ¯ [Ic,uo]} ¯ ~ is called a
situation of the CTCN.

Then, for each time t, one can define the current-
situation w.ct C_ w which is the set of observations prior
to t, i.e. such that only Ctgs with ending points ei "~ t
are considered.

In other words, a situation represents one possible
assignment of the whole set of Ctgs, and a current-
situation with respect to t is a possible set of observa-
tions up to time t.

Definition 3 (Schedules)
= {6(bl),... ,6(bB)} is calle d a schedule, A

being the space of schedules (i.e. the cartesian product
of interval constraints (bi - bo))

Then, for each time t, one can define the current-
schedule 6__5t C_ ~ which is the sub-schedule assigned so
far, s.t. Vx~ ̄ Vb U I~ with xi "< t,

if_ qc~j = (b# - xi) E Rbc then J(bj) E d~_t
else i__f xi E Vb then 6(xl) E di_~t

A schedule is then one possible sequence of decisions
(that might be "controllable" or not). And current-
schedule encompasses the notion of reactive chronologi-
cal building of a solution in plan execution. One should
notice that we take into account, the case of BeginClb,
tbr which the time of occurrence of the ending point bj
might have been already decided at time t (and hence
must be in aA_t) even if t __< bj.

Definition 4 (Projection and Mapping)
~, is the projection of .Af in the situation w, built by

replacing each Ctg gi by the corresponding value {wi} E

w. In (Vidal ~ Fargier 1999) a projection is proved
be a simple TCN corresponding to a STP.

is a mapping]tom 12 to A such that #(..o) = J is
schedule applied in situation w.

Intuitively, a CTCN will be "coutrollable" if and only
if there exists a mapping # such that every schedule
#(w) is a solution of the projection A/:.~. In fact this
only the "weakest" view of the problem (called Weak
controllability in (Vidal & Fargier 1999)), that does
take into account the relative temporal placement of
decisions and observations. The above intuitive state-
ment implicitely assumes that one knows the complete
situation before choosing one schedule that will fit. But
when a plan is executed, decisions are taken in a chrono-
logical way, and for each atomic decision the agent
knows the past observations, but the observations to
come are still unknown. The Dynanfic controllability
property defined below allows to take this into account,
being more restrictive than the Weak controllability, in
that it compels any current schedule at any time t to
depend only upon the current situation at that time.

Another interesting property that we will use in this
paper, called Waypoint controllability has been further
introduced in (Morris & Muscettola 1999), stating that
there are some points for which all the schedules share
the same time of occurrence, whatever the situation is.
Those waypoints serve as "meeting" time-points in a
plan, when the agent waits for all the components of a
subpart of the plan to be over before starting the next
stage. Waypoints can be created during the planning
process through the addition of "wait periods" (Morris
& Muscettola 1999).

These definitions are given herebelow, where one can
notice that they both share the first condition (which
is the "weak" part), and have to satisfy a second one
that fits the corresponding description above, but has a
similar formulation in both cases: this unified definition
will make it easy to combine the two properties in the
global framework that will be presented in this paper.

Definition 5 (Dynamic/Waypoint controllability)
¯ ,~" is Dynamically controllable/_ff

(I) 31~ : f~ ~ A s.t. #(w)=~ is a solution of ,~
(~) V(w,w’) ¯ f12, with 6=p(w) and 6’ =#(w’),

Vt, q w.~t =w.~t’ then 6.~t = ti’~t
¯ .ff/s Waypoint controllable with respect to W C 1,~ i___ff

(1) 3p : f~ ~ A s.t. #(w)=6 is a solution of]V~
(2) V(w,w’) ̄ f~2, with 6=#(w) and 6’ =/a(w’),

Vz ̄ W, ~(x) = ~’(z)
Those definitions are illustrated in (Vidal 2000)

through small examples that will not be given here.
Dynamic and W~,point controllability are proven

to be exponential in the number of time-points. But
the complexity of Waypoint controllability is actually
exponential in the maximum number of time-points
between two waypoints (Morris & Muscettola 1999),
which means the more waypoints one considers in the
CTCN, the less complex Waypoint controllability is.

Vidal 397

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

We will now focus oll Dynmnic controllability issues.
Tile checking algorithm given in (Vidal & Fargier 1999)
is a "home made" one that relies on a discretization of
time. Considering the inherent continuous nature of
interval constraints in TCNs, we have been interested
in the applicability of timed automata in this context.
The next. section describes a method based on such a
model, which appears to be perfectly suited for solving
our problem.

Using a Timed Automaton for Dynamic
Controllability checking

The principles of timed automata

We will assume in the following the reader has a min-
imal hlowledgc of finite-statc antomata. The method
we present here relies on the timed automata model
used for describing the dynamical behaviour of a sys-
tem (Alur & Dill 1994). It consists in equiping a finite-
state automaton with time, allowing to consider cases in
which the system coat remain in a state during a time T
before making the next troalsition. This is made possi-
ble by augmenting states and transitions with "continu-
ous variables called clocks which grow uniformly when
the automaton is in some state. The clocks interact
with the transitions by participating in pre-conditions
(guards) for certain transitions and they are possibly
reset when some transitions are taken.’" The original
model can be slightly changed converting some guards
into staying conditions (Asarin, Maler, & Pnueli 1995)
in states (see (Vidal 2000) for more details). The
pressiveness remains tile same, but those are more con-
venient to use when addressing controllability checking.

In our model (see next subsection), we will introduce
a second type of clocks, that work in the opposite way:
they are first set to a fixed value, then they decrease
uniformly until they reach the value 0, which serves
as a specific guard for activating some transitions. To
distinguish dram, we have chosen to call the first type
of clocks stopwatches and the second one egg timers ...
We will see that stopwatches allow to model Ctgs and
EndClbs, while egg timers appear to be necessary to
model BeginClbs.

In (Maler, Pnueli, & Sifakis 1995; Asarin, Maler,
Pmmli 1995), such tools are claimed to be well-suited to
real-time games, where transitions are divided in two
groups (such as constraints in CTCN) depending
which of the two players control it, and some states
are designated as winning for one of the players. The
strategy for each player is to select controlled transi-
tions that will lead her to one of her winning states.
This extension of the classical discrete game approach
has the following features: (1) there are no "turns" and
the adversary need not wait for the player’s next move
(Maier, Pnueli, & Sifakis 1995), and (2) each player
only choose between alternative transitions, but also be-
tween waiting or not before taking it, from which one
coax view the two-player game as now "a three-player
one where Time can intcrfcrc in fw¢or of both of the

398 AIPS-2000

two players (Asarin, Maler, & Pnueli 1995)".
This is especially interesting for controlling reactive

systems in which one player is the environment ("Na-
ture:’) and the other player is the controller (for in-
stance a plan execution controller) and has control
only over some of the trausitions (similarly as Clbs in
CTCN). A trajectory (i.e. a path in the automaton)
reaching a winning state for the controller is called C-
trajectory in (Mater, Pnueli, & Sifakis 1995), and de-
fines a so-called safety game (Asarin, Maler, & Pnueli
1995) policy.

An accurate Timed Automaton model

Different formulations of timed automata inodeis can
be found in the bibliography of the area. We pro-
pose here our own "adapted definition of Timed Au-
tomaton, which relics on the preliminary definition
of conditions and functions that can be applied to
clocks, namely: Re is the finite set of all possible
stopwatch reset functions (of the form (swi +-- 0) s.t.
swi E rsw), As is the infinite set of all possible egg
timer assignment functions (of thc form (eti e- Ai)
s.t. eti E r~t and Ai E77) and Cond defines the in-
finite set of all possible clock conditions that will be
used as guards or staying conditions (generally of the
form (li < clocki < ui) s.t. clocki EF and (li , ui) 677"
(eti = 0) s.t. eti E [~et). Details on those sets can be
found in (Vidal 2000). One should just notice here that,
0ond defines both ranges of values that must/will be
reached by a stopwatch and conditions expressing that
an egg timer has rearohed the value 0.

Definition 6 (Timed Game Automaton)
A = (Q, ~, F,S,T) is a timed game automaton (TGA)
where

¯ Q is the discrete and finite set of states qi, with
three special cases:

- qo is the initial state,
- qok is the unique winning state,
- qf is the unique losing state;

¯ E = ~b x E~ is the input alphabet such that any
label in Eb is of the form bi and any label in Ee is of
the fo~vn ei;

¯ F = F,,oUF~t is the discrete and finite set of clocks,
where Fs~. is the set of stopwatches and Fet is the set
of egg timers;

¯ S : Q --r Cond assigns staying conditions to states;
¯ T = Tb U Te C Q2 x ~ x Cond x Re x As is the set

of transitions of the form
7-=< q, q’, a, g, r, a > with a distinction betwee.n

- r E Tb is an activated transition ±ff a E Eb,
- 7" E Te is a received transition iff a E E~.

Therefore for activated transitions, if there is a guard
conditionning its activation, the agent will be able to
decide the exact time of activation by "striking" the
stopwatch within the two bounds of the guard. If it is
a received transitions, then the transition will be auto-
maritally taken at some unpredictable time within the

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

two bounds of the guard. Egg timers will on the con-
trary compel some activated transitions to be aken at
one and only one predicted time.

A first remark can be made about the losing state.
Obviously an agent will never make a move that will
push herself into the losing state, which means that

i~ r ----<q, qt,a,g,r,a>, then r E Te

Building and using a TGA for Dynamic
controllability checking
In (Vidal 2000), we thoroughly demonstrate that
TGA can be built out of the CTCN and is able to ex-
press exactly what a CTCN expresses (actually more,
see the last section). We will just exhibit here some
intuitive correspondences between the two models. Ob-
viously letters b and e and terms activated and received
refer to the same concept in both models: an event in
..~: will appear as a translation labelled with this event
in .4. Therefore ~’~’b -~ Yb and ~’~e -~ ~. Similarly, tem-
poral intervals in .~; will appear as guards in ,4.

Then (Vidal 2000) provides an algorithm acting
the TGA that is proven to check Dynamic cont.rollabil-
ity. This method is inspired by well-established tech-
niques in the area of reactive program synthesis. A
synthesis algorithm uses as a basic principle a so-called
controllable predecessors operator: unformally, this op-
erator computes from a state q the states from where
the system can be forced to reach q, "returning revised
guards and staying conditions (Asarin, Maler, & Pnueli
1995)". Hence a synthesis algorithm will rectlrsively ap-
ply this operator from the initial set of winning states
until it reachcs a fixed point. If q0 is in the final set, then
the controller can ~lways win the gmne. Moreover, the
synthesis process is designed to work in an increment.al
way: it is straightforward to apply the operator only to
the set of newly added states.

On the application of TGA in planning

Relevance and conditional nature of the
approach
First, we don~t really need to argue on the relevance
of representing temporal uncertainty in planning, since
durations of tasks are often not fully predictable in
realistic: applications. Talking about uncertainty, our
approach does not address unpredicted events: we
only consider events that arc actually known to oc-
cur, it is only their time of occurrence that is un-
known (though it is known to lie within a tempo-
ral window). This kind of expressiveness is needed
in most of the current planning and scheduling ap-
plications, as for instance in the NASA project Deep
Space One (Morris, Muscettola, & Tsamardinos 1998;
Morris & Muscettola 1999), or in multimedia author-
ing tools (Fargier et al. 1998), a multimedia document
(with audio and video units) being actually a partial-
order plan being executed during a browsing session.

Interestingly enough, having to de~ with suc~ con-
tingent durations leads an agent to base its activation

decisions on previous observations. Here again it is only
the time of activation that is considered as a decision
variable. For instance, consider a task that must be ac-
tivated at b2 within 5 seconds before or after el occurs.
Figure 1 shows the TGA that results from a synthesis
algorithm: one shouldn’t decide to activate b2 less than
25 seconds after bl to make sure the constraints will be
satisfied, but then it is possible that el is received be-
fore, and hi that case one just has to activate b2 within
5 seconds. Therefore the example is Dynamically con-
trollable. In this example we have in fact two differ-
ent sequences of events depending on w~ being lower
or greater than 25. The resulting plans are different,
which means this example corresponds to some kind of
conditional plan. Moreover, the TGA models a reac-
tive (or game-like, as the name suggests it) behaviour,
since the decision initially made in ql to activate b2 at
25 might be opportunistically modified on early recep-
tion of el. One might get b2 actually activated only 10
seconds after bl.

Figure 1: An example of reactive behaviour

This example might also illustrate the case of Be-
ginClbs: suppose that (b2 - bl) is a BeginClb, then
means the time of occurrence of b2 must be set in ql.-
which will be modelled thanks to an egg tinier assigned
in that state, and the transition to qs triggered as soon
as the egg timer equals 0. Here there is no possibility
to be reactive, and the synthesis algorithm would fail,
concluding Dynamic controllability does not hold.

What lesson can be learned from this example ?
The TGA is a discrete event tool that. implicitely mod-
els reactive behaviours and is hence able to synthesize
conditional plans. This is simply because two transi-
tions from the same state correspond to a branching,
i.e. a oR node in the model, which means only one
of the two next states will be traversed. On the con-
trary, in a CTCN time-points are AND nodes: all the
next time-points need to be effectively received or ac-
tivated. Consequently, CTCNs are able to implicitely
model some time-based branching features in a plan,
but to check the temporal feasibility of the plan, one
needs to develop those branches for instance in the TGA
(or through a discrete game simulation as in (Vidal
Fargier 1999)).

Vidal 399

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

As a matter of conclusion, the CTCN formalism is a
very powerfull tool for describing the specifications of
a dynamic system (as e.g. a contingent plan), through
the constraints it has to meet., expressing rich temporal
information in a compact way. Whereas the TGA is

¯ a simulation model that captures all the possible ex-
ecution scenarii of the plan: it has the ad~antage of
providing efficient and robust techniques to check its
"s’Mety", but runs the risk of combinatorial explosion
in tile number of states.

The TGA as a plan execution control tool

Another strength of this approach in to provide a model
that can be directly used as an execution supervisor
tool. As a matter of fact, aa far as tinled automata are
concened, a distinction can be made between the Anal-
ysis problem and the Synthesis one (Maler, Pnueli, &-
Sifakis 1995). Synthesis means building a controller au-
tomaton out of the original one, synthesizing its condi-
tional behaviour in reaction to the environment. Anal-
ysis means proving that the system is controllable, i.e.
proving that a controller can be built. This yields a nat-
ural parallel between Synthesis and Analysis in timcd
automata on one hand and respectively solution com-
putation and satisfiability checXing in constraint-based
temporal planning on the other hand. Not only solving
the synthesis problem clearly implies solving the analy-
sis one, but it gives a schedule of starting times for the
planned tasks. Moreover, in constraint networks only
a deterministic sequence of decisions might be issued,
whereas with a TGA one can get a reactive execution
supervisor., with disjunctive possible trajectories, which
makes it a much more powerfuU tool in dynamic and
uncertain planning environments.

Complexity and practical efficiency issues
As far as complexity is concerned, the algorithms for
building and synthesizing the automaton are respec-
tively linear ,and in logarithmic time in the number of
states, which is in the worst case pB, where B is the
number of activated time-points and p the degree o]par-
aUelism (i.e. the maximum number of time-points pos-
sibly occurring at the same time) (Vidal 2000). Hence
the complexity of the approach lies in the possibly ex-
ponential number of states developped, which depends
upon the network feature p.

First, the method might be relevant in application
domains in which p is kept rather low, which is often
the case in planning and scheduling, where the set of
tasks to trigger is mostly a sequence, the partial or-
der in the CTCN only adding some flexibility. Next,
one could use dispatchable networks (Morris, Muscet-
toM, & Tsamardinos 1998), that are TCNs in which
redundant constraints are removed and only minimal
paths are exhibited, so as to optimize propagation dur-
ing execution. This could restrict as weU the number of
states produced in the TGA. Besides, automata-based
techniques might be improved to reduce the number
of states produced, considering that two subsequences

4O0 AIPS-2000

containing the sazne set of events, though in distinct
orders, might converge on the same state, or using
more complex abstraction views, like in the so-called
symbolic approaches (like Decision Binary Diagrams)
(Maler, Pnueli, & Sifakis 1995; Asarin, Maler, & Pnue.li
1995). Another interesting suggestion (Bornot, Sifakis,
& Tripakis 1997) is to first translate the CTCN into
timed Petri net, which is a rather compact representa-
tion, then using a system like KRONOS (Yovine 1997)
that generates the TGA with very high performance.
That could be relevant in domains where one has to
deal with concurrent systems, like in multi-agent plan-
ning for instance, for which Petri nets would be espe-
cially well-suited.

Another possibility is to accept an incomplete check-
ing algorithm in the long term (based on incomplete
propagations in the CTCN), using the TGA only in the
short term, as far as execution runs, so as to account
fox’ safety: the algorithm anticipates the possible losing
stare deadends and can activate arty necessary rct:overy
action in a~ivance.

Last, it is argued in (Morris & Muscettola 1999) that
choosing cleverly the set of waypoints through addi-
tion of some "wait" periods in the plan might lead to
Dynamic controllability being equivalent to Waypoint
controllability. Anyway, trying to design a plan in this
way may lead to a high 1mmber of waypoints lowering
the plan optimality. We will show in next subsection
how one can mix waypoints and TGA to get some nice
compromise.

An extended framework using TGAs and
waypoints

As discussed before, one can introduce wait periods in
a plan, which end points will be waypoints. The more
one adds waypoints, the less hard it will be to prove
Waypoint controllability a~ld the more chances one has
to get Dynamic controllability equivalent to Waypoint
controllability (sim:e the equivalence property is based
on received points being protected from one another
by putting waypoints between some of them (Morris
& Muscettola 1999)). But this may severely restrict
the optimality of the plan, since in that case an oppor-
tunitic scenario like the one in Figure 1 would not be
possible. In other words, one may compel the executed
plan to "play for time" at some points when it is not
really needed.

But waypoints might be used barely to restrict Dy-
namic controllability checking in all subparts of the net-
works between any pair of waypoints. For doing so, we
need to prove the following property, where :~"(x,x’)
stands for the restriction of .~ to the time-points tem-
porally constrained to be after x and before x~.

Property 1 (Partitioned Dynamic controllability)
Al" is Dynamically controllable i_ff
(1) ,~ is Waypoint controllable wrt C I" ’b, an d
(~2) V(x, x’) E I~2s.t. x ~_ x’ and /~x"/x ~_ :r" ~ x’,

J~r(X, X’) is Dynamically controllable

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Sketch of proof. The proof is rather straightfor-
ward. Dynamic controllability means that a current-
schedule will only depend on the corresponding current-
situation. For any time t between two waypoints z and
z’, 5(x) is set in all schedules, which means it does not
even depend on w_~(x), and any forthcoming decision
will not depend on it either. Consequently, $_~ does
only depend on the part of the situation between $(x)
and t, which is equivalent to the formulation above. <~

Then, a possible global algorithmic framework to
check Dynamic controllability using waypoints could be
the following (that could be easily defined in an incre-
mental way):

1. Use some heuristic (to be defined at the planning
engine level) to decide to introduce waypoints or not
while planning

2. Check if the CTCN is Waypoint controllable

3. Check Dynamic controllability by building a TGA
between any pair of successive waypoints

If the heuristics are well defined, then the added way-
points will correspond to wait periods, which are chosen
such that it is possible to set their value in all sched-
ules, which means the CTCN will by construction be
necessarily Waypoint controllable, and the second step
might be removed. The idea is to introduce "not so
many’" waypoints in the plan, so as to still meet in one
hand high optimality requirements for the plan, while
on the other hand drastically reducing time and space
complexity of the TGA approach by only synthesizing
automata corresponding to subparts of the whole plan.
This decomposition technique hence offers a nice trade-
off between expressiveness, optimality and efficiency.

Using the full expressiveness of TGAs in

planning
We will end this paper with some general considera-
tions about the expressive power of the TGA formalism,
that is obviously larger than what we use in the case of
CTCN Dynamic controllability checking, and might be
of interest for other planning problems.

Generalized conditional planning
A first obvious remark is about the relation between
the TGA model and conditional or reactive planning:
if the TGA allows to represent the inherent conditional
nature of a CTCN, then why not using it for different
kinds of branching in planning ? For instance, consider
information gathering problems, in which a perception
action is included in a plan, and the next steps of the
plan depend on the outcome of this action. Or more
generally speaking, all cases in which non-determism of
actions has to be dealt with. If one wishes to represent
distinct evolutions of a plan, then this corresponds to
some disjunctions (OR nodes) that are naturally repre-
sented in a TGA and may be smoothly merged with
temporal contingency branching. Hence TGA might be

used in such cases as well. The only difference is that
this kind of non-determinism cannot be represented in a
compact, way in a CTCN, and one can hardly avoid the
use of OR nodes in addition to partial order (i.e. AND
nodes) in a temporal constraint-based planning graph.

Preprocessed plans and reactive planning
Sometimes a unique plan with branching nodes is not
enough to solve a problem. One may need to use a li-
brary of subplans to run in reaction to typical events.
For instance a planning system may produce a nominal
plan together with a number of alternative "recovery"
sequences to be runned in replacement when a mod-
eled disturbance occurs, as in (Washington, Golden,
Bresina 1999). Instead of having those subsequences
connected to a node of the nominal plan, they may be
stored in a library and connected to a type of received
and unpredictable event, which defines a more general
kind of uncertainty than the one addressed in this pa-
per (not only the time of occurrence of the event is
unknown, but the occurrence of the event itself). Re-
ceiving this event will force the execution supervisor to
temporally abandon the current plan to run the corre-
sponding recovery sequence.

Then a more general reactive framework needs to be
designed, as in (Vidal & Coradeschi 1999): one can
define temporal chronicles corresponding to each "ab-
normal" scenario, with the possibility of having several
"faulty" events in elaborated and rather complete sce-
narios. A purely reactive TGA framework can be de-
signed, where on-line automaton building is processed,
in reaction to received events: the system dynamically
matches the received event with the chronicles that con-
taln it, and synthesizes the possible next steps in those
chronicles in one unique incremental automaton.

By mixing the general off-line planning franmwork
presented in this paper with this purely reactive be-
haviour, one get a real-time planning system that might
be very robust in stochastic environments.

Synchronization constraints
In multimedia documents (Fargier et al. 1998) for in-
stance, one has to model temporal constraints that are
outside the scope of classical temporal algebras, called
synchonization constraints. Three of them have been
defined:

Parmin Two objects A and B are related by a parmin
if both starts at the same time and the first that is
finished terminates the other as well (for instance re-
ceiving a button click will stop prematurely a video
sequence, while the end of the video sequence will
cause the button to disappear, irrespective of the ini-
tial possible durations of both objects);

Parmaster This is the same as parmin, except that
only the first object in the relation forces the second
one to finish at the same time;

Parmax Two objects A and B are related by a parmax
if both starts at the same time and the first that is

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

finished has to wait for the second one to finish as
well before one carl process next steps in the plan.

The two first ones are interruption-like behaviours,
whilt.: the third one is an "appointment" constraint. In
(Fargier et al. 1998), a first description of these con-
straints is given, and the shortcomings of CTCN for
modeling them is shown: a parmin for instance could
only be modeled in a CTCN by considering three dif-
ferent ending events: (1) the expected end of the first
object: (2) the expected end of the second objcct, and
(3) tile "effective end" of both, that will actually
one of the two previous ones. Representing a parmin
hence means considering a ternary constraint involving
the three tim~points, which is not covered by CTCN
where only binary constraints are allowed.

Interestingly enough, those behaviours are implicitely
conditional behaviours, and are very easy to model
t.hrough a TGA. Therefore, once again we have exhib-
it.ed a type of feature needed in some application do-
mains, for which CTCN are not expressive enough., but
that could easily be represented through a TGA.

Conclusion
This paper has brought to light the advmltage of us-
ing Timed Ga~ne Automata for checking dynamic tem-
poral properties of a plar~ in the presence of temporal
uncertainties. Discussing efficiency and usefullness in
practice, it suggests the addition of heuristically and
sparingly selected wait periods in the plan to partition
it. so as to be able to check the Dynamic controllability
property locally, processing small size automata, hence
controlling the expected state combinatorial explosion.

A discussion has been initiated as well on the applica-
bility of Timed Automata to more gcncral conditional
and reactive planning features. We hope this study will
suggest further studies in that field, mixing some of the
approaches suggested, thus contributing to bridge the
gap betwcen symbolic (specification) models and dis-
crete event systems (simulation) models in order to ad-
dress realistic real-time planning problems in dynamic
and uncertain environnmnts.

Acknowledgement

The author is grateful to Paul Morris (NASA Ames
Research) for fruitful discussions and his suggestion of
the modified Dynamic controllability definition.

References
Alur, R.: and Dill, D. 1994. A theory of timed au-
tomata. Theoretical Computer Science 126:183-235.

Asarin, E.; Maler: O.; and Pnueli, A. 1995. Symbolic
controller synthesis for discrete and timed systems. In
Antsaklis, P.; Kohn, W.; Nerode, A.; and Sastry, S.,
eds., Hybrid Systems II, LNCS 999. Springer Verlag.

Bornot, S.; Sifakis, J.; and Tripakis, S. 1997. Modeling
urgency in timed systems. COMPOS’97, LNCS.

402 AIPS-2000

Dubois, D.; Fargier, H.; and Prade, H. 1993. The use
of fuzzy constraints in job-shop scheduling. In IJCAI-
93 Workshop on Knowledge-Based Planning, Schedul-
ing and Control.
Fargier, H.; Jourdan, M.; LavMda, N.; and Vidal, T.
1998. Using temporal constraint networks to manage
temporal scenario of multimedia documents. In ECAI-
98 workshop on Spatio-Temporal Reasoning.

Maler, O.; Pnueli, A.; and Sifakis, J. 1995. On the
synthesis of discrete controllers for timed systems. In
Proceedings of the 12th Symposium on Theoretical As-
pects of Computer Science.

Morris, P., and Muscettola, N. 1999. Managing
temporal uncertainty through waypoint controllabil-
ity. In Dean, T., ed., Proceedings of the 16th Inter-
national Joint Conference on A.I. (IJCAI-99), 1253-
1258. Stockholm (Sweden): Morgan Kaufmann.

Morris, P.; Muscettola, N.; and Tsamardinos, I. 1998.
Reformulating temporal plans for efficient execution.
In Proceedings of the International Conference on
Principles of Knowledge Representation and Reason-
ing (KR-98).
Schwalb, E., and Dechter, R. 1997. Processing dis-
junctions in temporal constraint networks. A~.ificial
Intelligence 93:29-61.

Vidal, T., and Coradeschi, S. 1999. Highly reactive
decison making: a game with time. In Dean, T., ed.,
Proceedings of the 16th International Joint Cortference
on A.I. (IJCAI-99), 1002-1007. Stockholm (Sweden):
Morgan Kaufmann, San Francisco, CA.

Vidal, T., and Fargier, H. 1999. Handling contingency
in temporal constraint networks: from consistency to
controllabilities. Journal of Experimental g_4 Theoreti-
cal Al~ificial InteUigence 11:23-45.
Vidal, T. 2000. Controllability characterization and
checking in contingent temporal constraint networks.
In Proceedings of the 7th International Conference
on Principles of Knowledge Representation and Rea-
soning (KR’2000). Breckenridge (Co, USA): Morgan
Kaufmann, San Francisco, CA.
Vila, L., and Reichgelt, H. 1993. The token reifica-
tion approach to temporal reasoning. Technical Report
1/93, Dept of Computer Science, UWI.

Vilain, M.; Kautz, H.; and van Beck, P. 1989. Con-
straint propagation algorithms: a revised report.. In
Readings in Qualitative Reasoning about Physical Sys-
tems. Morgan Kanfman.
Washington, R.; Golden, K.; and Bresina, J. 1999.
Plan execution, monitoring, and adaptation for plane-
tary rovers. In IJCAI-99 workshop on Scheduling and
Planning meet Real-Time Monitoring in a Dynamic
and Uncertain World, 9-15.

Yovine, S. 1997. Kronos: a verification tool for real-
time systems. International Journal of Software Tools
for Technology Transfer 1(1[2).

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

