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Abstract

We present a general approach to planning with a restricted
class of universally quantified constraints. These constraints
stem from expressive action descriptions, coupled with large
or infinite universes and incomplete information. The ap-
proach essentially consists of checking that the quantified
constraint is satisfied for all members of the universe. We
present a general algorithm for proving that quantified con-
straints are satisfied when the domains of all of the variables
are finite. We then describe a class of quantified constraints
for which we can efficiently prove satisfiability even when
the domains are infinite. These form the basis of constraint
reasoning systems that can be used by a variety of planners.

1 Introduction
Softbots (software robots) are intelligent software agents
that sense and act in an environment, such as a com-
puter operating system. Since software environments are
so rich, there is almost no limit to the kinds of tasks that
softbots can perform, including on-line comparison shop-
ping, managing email, scheduling meetings, and process-
ing data. Planner-based softbots (Etzioni & Weld 1994;
Golden 1997) accept goals from users and invoke a planner
to find a sequence of actions (e.g., commands or program
invocations) that will achieve the goal.

We are working on softbots for data processing, includ-
ing image processing, managing file archives, and running
scientific models. Due to the richness of softbot problem
domains in general, and data processing domains in particu-
lar, the planner must handle a rich action representation. In
particular, it must support:

• Universal quantification: Many commands and pro-
grams operate on sets of things, where membership in the
set can be defined in terms of necessary and sufficient con-
ditions. For example,

– The Unixls (or DOSdir) command lists all files in a
given directory.

– The “tar x” (or unzip) command extracts all files in
a given archive.

– The grep command returns all lines of text in a file
matching a given regular expression.

– Most image processing commands operate on all pixels
in an image or in a given region of an image.

• Incomplete information: It is common for softbots to
have only incomplete information about their environ-
ment. For example, a softbot is unlikely to know about
all the files on the local file system, much less all the files
available over the Internet.

• Large or infinite universes: The size of the universe is
generally very large or infinite. For example, there are
hundreds of thousands of files accessible on a typical file
system and billions of web pages publicly available over
the Internet. The number ofpossiblefiles, file path names,
etc., is effectively infinite. Given the presence of incom-
plete information and the ability to create new files, it is
necessary to reason about these infinite sets.

• Constraints: As noted in (Chienet al. 1997; Lansky &
Philpot 1993), data processing domains typically involve
a rich set of constraints. By constraints, we mean any
relations whose truth values can be computed.

The intersection of these features poses some interesting
challenges. For example, the intersection of universal quan-
tification and incomplete information means that standard
approaches to dealing with universal quantification in plan-
ning (Penberthy & Weld 1992) don’t work, and other ap-
proaches are needed (Golden 1998; Etzioni, Golden, & Weld
1997; Babaian & Schmolze 2000). This paper discusses the
effect of universal quantification and large or infinite uni-
verses on constraint reasoning and proposes a way to accom-
modate universally quantified constraints into a constraint-
based planner.

1.1 Universally quantified constraints

Universally quantified constraints can be exceedingly useful
when representing image processing domains. For example,
to represent an image-processing command that performs a
horizontal flip of the pixels in a rectangular region of an im-
age between (MINX , MINY ) and (MAXX , MAXY ), we might
write something like:

∀x,y when(MINX≤ x≤MAXX && MINY≤ y≤MAXY )
output.value(x,y) := input.value(MAXX +MINX -x,y)

whereoutput.value(x,y) is the pixel value of the imageout-
put at coordinatesx,y, and similarly for input.value. The
keywordwhen indicates a conditional effect. We might also
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want to specify spatial transforms of an image, such as scal-
ing or projections, or changes to color values. All of these
are convenient to represent using numeric constraints, quan-
tified over the pixels in the image or in the specified region.

In describing commands that act on text files, it is useful
to quantify over lines or characters of text. For example,
thegrep command outputs all lines of text contained in the
input that match a given regular expression:

∀line when (input.containsLine(line)
&& input.matches(regexp))

output.containsLine(line)

Similarly, many commands operate on sets of files, which
can often be expressed in terms of a regular expression sat-
isfied by their path names. For example, the files recur-
sively contained in directory “/foo/bar” all have a path name
matching “/foo/bar/.+”, where “.+” means “any string at
least one character long.”

In these examples, we see that it is necessary to reason
about constraints on variables with either infinite or very
large domains.

1.2 Road map
In the remainder of the paper, we discuss how universally
quantified constraints arise in the planning process and how
they are solved. In Section 2 we describe how universally
quantified constraints arise as subgoals in the planning pro-
cess. In Section 3 we present a general approach to solv-
ing universally quantified constraints in a constraint network
and an algorithm for implementing this approach, and we
prove that the algorithm is both sound and complete. The
general approach is not always possible to instantiate when
there are infinite domains. In Section 4 we describe how
to efficiently handle constraints with infinite domains un-
der certain restrictions. In Section 5, we discuss how these
techniques apply to an Earth Science domain that we are
working on, and in Section 6 we present a detailed example
covering both planning and constraint reasoning. In Section
7 we describe related work, and in Section 8 we conclude
and describe future work.

2 Planning with universal quantification
The traditional approach to planning with universal quantifi-
cation, used byUCPOP(Penberthy & Weld 1992) and other
planners works as follows:

1. Universally quantified goals are replaced with the equiva-
lent universally ground conjunctive goal, which is called
theuniversal base.

2. Universally quantified effects arepeeledas needed; that
is, given an effect

∀x when(P(x)) Q(x)

and a goal, Q(a), a new ground effect is “peeled off”
the forall effect to satisfy the goal:

when(P(a)) Q(a)

The result is the subgoal P(a).

Replacing goals with their universal base depends on the
Closed World Assumption (all objects must be known) and
on the number of objects in the universe being relatively
small. In softbot domains, neither assumption is likely to
be valid. For example, not all files accessible to the softbot
will be known, and the number of available files can eas-
ily be thousands or millions. To address the problem that
not all files are known, the softbot can first achieve a sub-
goal of knowing all the relevant files and then proceed as
above (Etzioni, Golden, & Weld 1997), but that still leaves
the problem that the number of files may be large. For ex-
ample, suppose the softbot has the goal of making all of the
files in the user’s home directory group readable. This goal
could be achieved by identifying all the files (recursively)
contained in the home directory “~user” and then ensuring
that each one is group readable, but it would take some time
just to identify all the files. It is much simpler and faster to
handle them all at once with a single Unix command, which
recursively makes all files in the directory group readable:

chmod -R g+r ~user

Such an approach is supported in thePUCCINI planner
(Golden 1998) by directly linking from universally quanti-
fied goals to universally quantified effects. The approach
used byPUCCINI presupposes that the goals and effects are
all expressed in terms of predicates, likegroup-readable, for
which entailment can be determined using simple unifica-
tion. When conditions include constraints as well as pred-
icates, determining entailment requires additional mecha-
nisms, as we discuss in Section 2.2.

2.1 Restrictions on universally quantified
expressions

Given the requirement to support universally quantified
goals directly with universally quantified effects, it is im-
portant to specify exactly what kinds of expressions the lan-
guage will allow, since the unrestricted case would require
first-order theorem proving, which is undecidable. In a goal,
the use of the keywordwhen indicates that the antecedent
and consequent refer to different times. For example, the
goalwhen(Φ(~x)) Ψ(~x) means that for all~x that satisfyΦ(~x)
when the goal is given(i.e., in the initial state), we want
Ψ(~x) to be truewhen the goal is achieved(i.e., in the final
state). Thus, we can specify goals like “paint all the blue
chairs green” without contradiction:

∀c: chair when (c.color = blue) c.color = green

The planner has no control of what is true in the initial state,
so it will never try to achieve the goal by falsifying the
antecedent. To borrow a term from contingency planning,
the antecedent specifies thecontextin which the consequent
should be achieved.

Effects All universally quantified effects are conditional
effects, in which the antecedent specifies restrictions on the
universe(s) of the quantified variable(s) and the consequent
specifies what will become true for members of the specified
universes. These effects are of the form

∀~x,~y (when(Φ(~x,~y,~w)) Ψ(~x,~w)).
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whereΦ and Ψ are conjunctive expressions and variables
in ~w areaction parameters, variables in action schemas that
need to be instantiated in order to obtain concrete actions.
Limiting Φ to a conjunction is not a real limitation, since an
expression of the form

when (Φ1∨Φ2) Ψ

can be rewritten as the conjunction of “when(Φ1) Ψ” and
“when(Φ2) Ψ.”

Effects cannot contain existential quantifiers,1 or any-
thing equivalent to existentials, such as universal quantifiers
nested within an antecedent or negation. Allowing existen-
tials or disjunctive consequents in effects would make them
non-deterministic. Given the lack of nesting and existentials,
all universals can be treated as free variables. All quantified
variables appearing inΨ must also appear inΦ. This is just
a sanity check, since the domain of any quantified variable
that does not appear inΦ is completely unrestricted.Φ may
contain additional quantified variables,~y, that don’t appear
in Ψ.

Goals and preconditions The syntax of universally quan-
tified goals and action preconditions is the same as that of
effects, except that existential quantifiers nested within the
universal quantifiers are allowed inΨ:

∀~x,~y,∃~z (when(Φ(~x,~y,~w)) Ψ(~x,~z,~w)).

All universal quantifiers precede all existential quantifiers;
this is simply the negation of Skolem Normal Form. Goals
can also explicitly refer to time. For example, we can ask
for data on last Tuesday’s rainfall. Whereas effects are not
really restricted compared to the commonly supported sub-
set of ADL (Pednault 1989), the limitations on universally
quantified goals are more restrictive. This particular set of
restrictions was chosen to support the class of goals required
for the softbot domains that interest us, while simplifying the
inference procedures.

2.2 Goal regression with quantified variables
The subgoaling, or goal regression, procedure we use is sim-
ilar to that used byPUCCINI. We use the peeling technique
outlined above, with the addition that quantified variables in
the effect can be replaced by quantified variables in the goal.
Suppose we have a goalwhen(Φg)Ψg that we want to satisfy
using an effectwhen(Φe)Ψe. If the right-hand side (RHS)
of a goalΨg contains multiple conjuncts, they are solved in-
dependently, so subgoals are all of the formwhen(Φg)ψg,
whereψg is a single literal. We rely on a unification func-
tion MGU(ψe,ψg), which returns the most general unifier
between the effect literalψe and the goal literalψg. If the
literals don’t unify, MGU returns⊥. Otherwise, it returns a
set of pairs{〈ve,vg〉}, whose interpretation is thatψe unifies
with ψg if all the constraintsve = vg are satisfied.

The Goal Regression Algorithm To determine the con-
ditions required for {when(Φe)Ψe} to satisfy the goal

1Effectscan introduce the creation of new objects, through the
new keyword, which is similar in some respects to an existential
quantifier, but that is outside the scope this paper.

{ when(Φg)ψg}, ψg is matched against each of the literals
ψe∈Ψe, using the following procedure.

1. regress ({when(Φe)ψe}, {when(Φg)ψg})
2. β =MGU(ψe,ψg)
3. C = {}
4. Φn := copy(Φe)
5. if β =⊥ then return failure
6. for each 〈ve,vg〉 ∈ β
7. if ve is quantified ∀
8. then replace ve in Φn with vg.
9. else if vg is quantified ∀
10. then return failure .
11. else C := C ∧ (ve = vg).
12. end for
13. for each ve 6∈ β
14. replace ∀ve in Φn with ∃v′e
15. end for
15. return {when(Φg)Φn}∧C

The reason that unmatched universally quantified variables
can be replaced with existentials (line 14) is as follows:
since the effect occurs for allv that satisfyΦ, andv isn’t
mentioned in the goal, it is only necessary to findsomevalue
of v that satisfiesΦ. Any new∃ variables are written inside
the scope of all∀ variables from the goal.2

Examples of Goal Regression We will now present some
examples of goal regression. Suppose that we have an action
to give a Mothers’ Day card to all new mothers:

∀p1, p2:person when(p1 =parent(p2) &&
sex(p1) = F && age(p2) < 1)

has-card(p1)

and our goal is to give a card to Mary (i.e., has-card(Mary)).
Applying this action to satisfy the goal will result in the sub-
goal

∃p′2:person (Mary = parent(p′2) &&
sex(Mary) = F && age(p′2) < 1)

That is, the action will achieve the goal if Mary is female
and has a child less than one year old.

Now suppose our goal is to give a card to all mothers of
newborn boys:

∀m,s:person when(m=parent(s)
&& sex(m) = F
&& sex(s) = M && age(s) = 0)

has-card(m)

If we use the action to give a card to all new mothers, the
subgoal then becomes

∀m,s:person when(m=parent(s)
&& sex(m) = F
&& sex(s) = M && age(s) = 0)

{m=parent(s); sex(m) = F; age(s) < 1}

2For completeness, it is also necessary to determine whether
two or more effects combine to achieve a universally quantified
goal. A technique called goal partitioning (Golden 1997), provides
this ability, but at a high computational cost. We are investigating
a way to lower this cost, but that is outside the scope of this paper.
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Note that the left hand side of this expression is just the
left-hand side of the original goal, and the right hand side
is the “peeled” left hand side (LHS) of the effect. All sub-
goals from conditional effects are generated the same way,
so the same LHS expression is carried back through succes-
sive goal regressions.

The right-hand side (RHS) literalsm =parent(s) and
sex(m) = F are clearly entailed by the LHS, which we can
determine by unification, using a slight variation on the re-
gression procedure above. When the LHS entails a literal on
the RHS, we say that the goal literal istrivially satisfied, and
remove it without further subgoaling.

The remaining goal condition, a constraint, is not so
straightforward. Although age(s) = 0 clearly entails age(s)
< 1, the two do not unify. As we discuss below, the pur-
pose of reasoning about universally quantified constraints is
to answer the entailment question for constraints.

The Form of Subgoals Subgoals are just goals, and obey
the same restrictions. However, since subgoals are generated
through a specific process, outlined above, it is worth show-
ing that the process maintains the restriction on the form of
subgoals.

• Since the subgoaling process always copies the LHS of
the goal to the LHS of the subgoal, all restrictions obeyed
by the former are obeyed by the latter. In particular, the
LHS is conjunctive and it must not contain existentials.

• The RHS of the subgoal comes from the (peeled) LHS of
the effect. Since the latter is conjunctive, so is the former.

• Quantified variables appearing in the RHS but not in the
LHS are existential. To see why, consider that every quan-
tified variable that appears in the RHS either originated in
the goal or is a copy of a variable from the effect.

1. If the variable appeared in the goal, then it cannot have
been in the LHS of goal, since otherwise it would be in
the LHS of the subgoal, contradicting our assumption.
Since it was not in the LHS of the goal, it must be an
existential.

2. If the variable came from the effect, then it must be an
existential, since, as indicated in line 14 of the regres-
sion algorithm, all universals in the effect that aren’t
replaced by variables from the goal are replaced by ex-
istentials.

2.3 From planning to constraints
In the remainder of the paper, we discuss how to tell if the
LHS of a universally quantified subgoal entails the RHS
when both sides contain constraints. We will not concern
ourselves further with the details of the planning algorithm.
We can convert the whole planning problem into a constraint
problem, but it would also be possible to use a causal-link
planner likePUCCINI (Golden 1998), and perform constraint
reasoning to answer questions about whether certain sub-
goals are trivially satisfied (i.e., the LHS entails the RHS).
In either case, we can separate the problem of solving con-
straints to check subgoal satisfaction from the rest of the
planning problem.

We assume that the planner produces candidate plans that
are complete except for the instantiation of some action pa-
rameters and are correct subject to a list of subgoals being
“trivially” satisfied (i.e., no more actions need to be inserted
into the plan). The planner sends the constraint reasoner this
list of subgoals, which are of the form

∀~x,~y,∃~z (Φ(~x,~y,~w)⇒ Ψ(~x,~z,~w))

along with some additional constraints on the parameters.
The job of the constraint network is to either return an as-
signment to all of the unspecified parameters (~w) such that
all of the subgoals are trivially satisfied, or return failure
in case there is no such assignment. If the constraint net-
work returns failure then the candidate plan is invalid, so the
planner should continue searching. Otherwise, the candi-
date plan, instantiated with the values for~w returned by the
constraint network, is a valid plan.

3 Solving Quantified Constraints
In order to determine whether the subgoals are trivially sat-
isfied, it is necessary to reason about the solutions to the
CSPs induced byΦ andΨ. Before proceeding, we review
some standard CSP notation. LetX be a set of variables.
Denote the domain ofx∈ X asd(x). Let D be the set of do-
mains. Letk = (x1 . . .xi . . .xn;R) be a constraint;xi ∈ X and
R⊆ d(x1)× . . .×d(xn) is a relation definingthe permitted
assignments to the variables. LetK be the set of constraints.
ThenC(X) = (X,D,K) is a CSP. Asolution to the CSP is
an assignment of values to the variables such that all con-
straints are satisfied. LetS(C) be the set of solutions toC.
Let L be a relation on a set of variablesU , and letπV(L)
be the projection of the relationL onto the setV ⊆U . A
CSP isk-consistentif any consistent assignment to k-1 vari-
ables can be extended to an assignment to k variables (k=2
is arc consistency.) A CSP isstrongly k-consistentif it is
j-consistent for all j≤k.

Having reviewed these definitions, we now formally de-
fine quantified constraints:

Definition 1 Let Φ,Ψ be CSPs. We then refer to a subgoal
∀~x,~y∃~z(Φ(~x,~y,~w)⇒ Ψ(~x,~z,~w)) as a quantified constraint,
and refer to the constraints comprisingΦ,Ψ as primitive
constraints. A quantified constraint issatisfiedfor ~w =~θ iff
π{~x}S(Φ(~x,~y,~θ))⊆ π{~x}S(Ψ(~x,~z,~θ)).

The general approach to solving quantified implications is
straightforward. Given an expression of the form “all things
that satisfyΦ also satisfyΨ,” we identify the set of things
that satisfyΦ and check whether they also satisfyΨ. We can
think of this as an empirical proof technique: we’re doing
nothing more than checking the validity of the expression
for all members of the universe.

Given a quantified constraint

∀~x,~y∃~z(Φ(~x,~y,~w)⇒Ψ(~x,~z,~w)),

the variables in~w must be assigned values by a search pro-
cedure. As mentioned in Section 2, these variables repre-
sent the parameters of actions; the search over these values
is a search over candidate plans. During this search, we can
propagate the domains of the variables in~x,~ybased onΦ, but
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do not assign these variables. We do not propagate based on
the constraints inΨ, because these constraints do not hold
if the domains of the variables inΦ are empty. Once all of
these variables are assigned, we are left with the constraint

∀~x,~y∃~z(Φ(~x,~y)⇒Ψ(~x,~z)),

where~x represents one or more universally quantified vari-
ables common toΦ andΨ. Again, as described above, the
desired semantics of this implication is that everything sat-
isfying Φ also satisfiesΨ. Thus, we must identify the set
of tuples corresponding to the assignments to~x that satisfy
Φ(~x,~y), and check that each tuple also satisfiesΨ(~x,~z). To
do this, we solve bothΦ(~x,~y) and Ψ(~x,~z) for ~x. We then
check to see ifπ{~x}S(Φ(~x,~y)) ⊆ π{~x}S(Ψ(~x,~z)). Because
the quantified constraint takes the form of an implication,
if the set of solutions toΦ is empty, then the implication
is satisfied vacuously, and there are no constraints on the
values of the variables in~x . If there are solutions toΦ
butπ{~x}S(Φ(~x,~y)) 6⊆ π{~x}S(Ψ(~x,~z)), then the quantified con-
straint is not satisfied, and some other assignment to the vari-
ables in~w must be generated. Otherwise, the constraint is
satisfied, and the domains of~x are defined by the the restric-
tions imposed byΦ.

If the set of tuples satisfyingΦ is finite, then enumerat-
ing them and checking that each one of them satisfiesΨ is
relatively straightforward, though possibly time consuming.
But what if the set is infinite? In the general case, there is
nothing that can be done. However, as we will see, there are
some useful classes of problems where it is possible to iden-
tify the infinite set of tuples satisfyingΦ(~x,~y) and check that
they all satisfyΨ(~x,~z) using efficient constraint propagation
techniques.

It should be noted that the steps presented above can be
done in a variety of ways. There is no need to assign all
variables in~w before beginning the process of identifying
the domain of~x. It is also possible to fix the domains of~x
after solvingΦ before solvingΨ and only check to see if any
elements of these domains are eliminated during the solving
of Ψ. These refinements are left as future work.

We present an algorithm for proving that quantified con-
straints are satisfied. The only assumptions are that there is
a way of enumerating the variables in~w, and that there is
some way of representing the values satisfyingΦ(~x,~y) and
Ψ(~x,~y). In the following sections, we discuss specific tech-
niques for performing these operations.

1. isSatisfied(γ)
2. choose assignments for all variables ~w.
3. for (each(∀~x,~y,∃~z.Φ(~x,~y)⇒Ψ(~x,~z)) ∈ γ)
4. if (S(Φ(~x,~y)) 6= /0)
5. for (each ~α ∈ π{~x}S(Φ(~x,~y)))
6. if (~α 6∈ π{~x}S(Ψ(~x,~y)))
7. return failure .
8. end for
9. end for
10. return success .

We now prove that the algorithm is both sound and com-
plete:

Theorem 1 The algorithm for checking the satisfiability
of quantified constraints is sound: it will not return suc-
cess if, for any quantified constraint,∀~x,~y,∃~z.Φ(x,~y,~w)⇒
Ψ(~x,~z,~w), there is some assignment~α to ~x such that
∃~y,∀~z.Φ(~α,~y,~w)∧¬Ψ(~α,~z,~w).

Proof: Suppose otherwise. Then there is some some~α
such that∃~y,∀~z.Φ(~α,~y,~w)∧¬Ψ(~α,~z,~w). The algorithm will
only return success if eachwi ∈ ~w is singleton, andline 7 is
not reached. This happens if

1. There are no quantified constraints (line 3). This contra-
dicts the assumption that there is such a constraint.

2. S(Φ(~x,~y,~w)) = /0 (line 4). This is equivalent to sayingΦ
is false for all~x, contradicting our assumption that there
was some~α for which Φ was true.

3. S(Φ(~x,~y,~w)) 6= /0 and there is no~α such that~α ∈
π{~x}S(Φ(~x,~y,~w)) and~α 6∈ π{~x}S(Ψ(~x,~y,~w)) (lines 5,6).
That is, there is no~α such that ∃~y.Φ(~α,~y,~w) and
∀~z.(¬Ψ(~α,~z,~w)), contradicting the assumption that
∃~y,∀~z.Φ(~α,~y,~w)∧¬Ψ(~α,~z,~w).

Theorem 2 The algorithm for checking the satisfiability of
quantified constraints is complete: If, for all quantified con-
straints,∀~x,~y,∃~z.Φ(x,~y,~w)⇒Ψ(~x,~z,~w), then the algorithm
returns success.

Proof: Suppose the algorithm returns failure, but for
all quantified constraints,∀~x,~y,∃~z.Φ(x,~y,~w) ⇒ Ψ(~x,~z,~w).
The algorithm will return failure if there is some quan-
tified constraint for whichS(Φ(~x,~y,~w)) 6= /0 and ~α ∈
π{~x}S(Φ(~x,~y,~w)) but ~α 6∈ π{~x}S(Ψ(~x,~z,~w)) (line 6). But
then π{~x}S(Φ(~x,~y,~w)) 6⊆ π{~x}S(Ψ(~x,~z,~w)), which in turn
violates the assumption that for all quantified constraints,
∀~x,~y,∃~z.Φ(x,~y,~w)⇒Ψ(~x,~z,~w).

Complexity Let nΦ be the number of variables inΦ and
let dΦ be the size of the largest domain of any variable in
Φ. DenotenΨ anddΨ similarly. The complexity of the algo-
rithm is O((dΦ)nΦ +(dΨ)nΨ), because checking the satisfia-
bility of the constraints potentially requires enumerating the
solution space for both CSPsΦ,Ψ.

4 Handling infinite universes
The general approach discussed in Section 3 works for rel-
atively small, finite domains. To handle large or infinite do-
mains efficiently, we need to employ special-case constraint
propagation techniques. We describe one such technique in
detail in this section.The technique depends on being able
to represent infinite domains concisely. In Sections 4.1 and
4.2, we discuss concise representations of infinite domains
for numbers and strings, and describe classes of constraints
for which these concise representations can store the valid
domains exactly. In Section 4.3, we describe further restric-
tions on the form of the quantified constraints that allow us
to check the satisfiability of these quantified constraints effi-
ciently, even if the variable domains are infinite.
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Figure 1: Reasoning about numeric functions and relations

4.1 Numeric domains
Large or infinite sets of numbers can be represented con-
cisely using intervals. Additionally, we can determine
whether one interval contains another efficiently. If we as-
sume that all infinite numeric domains are represented as
single intervals, the question of whether the domain of a
numeric variable can represent exactly the possible values
allowed by a constraint reduces to the question of whether
the values for that variable allowed by the constraint can be
represented as an interval. Assuming that the domains of
the other variables in the constraint are also represented as
intervals, the question then becomes whether the projection
of an interval on one variable is an interval on another. We
will consider both continuous (real) and discrete (integer)
domains.

Continuous If the domain ofx is continuous, then for ev-
ery continuous functiony = f (x), if the domain ofx is an in-
terval, the domain ofy will also be an interval. The converse
is not necessarily true. However, the converse is true iff
is either non-decreasing or non-increasing. Iff (x) increases
and decreases inx, then there will be somey interval that
corresponds to multiplex intervals (Figure 1a). However, if
they interval obeys certain restrictions, then the domain of
x will still be an interval. In particular,

• neither of the horizontal lines representing the bounds of
the y interval may crossf more than twice. Crossing
twice corresponds to passing through one peak or trough
in f .

• if one of the lines passes through a peak, the other line
must be above the peak (Figure 1b), and if one line passes
through a trough, then the other line must be below the
trough.

We can apply the same sort of reasoning to relations (Figure
1c); however a special class of relations is worth noting. If
any relation defines a convex region (Figure 1d), such that

the relation is true for all points inside the region and false
for all points outside it, then the projection of any interval
on y will be an interval onx (or vice versa). Examples of
convex regions are:x< 10,y> 2x+1, x2 +y2≤ r2.

Continuous to discrete A function from a continuous
(real) variable to a discrete (integer) variable is by defini-
tion not a continuous function. However, it may be regarded
as a continuous function whose range is projected onto the
integer number line. If such a description is valid, then the
projection of any continuous interval onx will be a discrete
interval ony. Going the other direction, intervals ony will
map to intervals onx under the same circumstances as in
the fully continuous case: non-decreasing functions, non-
increasing functions, and relations defining convex regions.

Discrete A function whose domain is discrete will not, in
general, project an interval onto another interval. For ex-
ample, consider the simple case ofy = 2x, wherex andy
are integers. The domain ofy is the set of even numbers,
which cannot be represented as an interval. However, when
we consider relations defining convex regions, we again find
that the projection of an interval is an interval. So although
y = 2x does not give an interval,y≤ 2x does.

Other domain representations The decision to represent
a numeric domain using a single interval has had a profound
impact on the class of constraints that we can “solve” for
particular variables. Another representation, such as a fi-
nite set of intervals, would allow additional constraints to
be handled, though at the cost of additional complexity in
constraint execution.

4.2 String domains
Just as infinite sets of numbers can be represented by inter-
vals, infinite sets of strings can be represented by regular
expressions. Regular expressions are a much more flexible
representation than intervals, in that the set of regular ex-
pressions is closed under intersection, union and negation,
whereas the set of intervals is only closed under intersec-
tion. Regular expressions (regexps) are equivalent to finite
automata (FAs) in expressive power, and in fact we repre-
sent regexps as FAs, since the latter are easier to compute
with. For example, deciding whether two FAs accept the
same language can be done efficiently.

Concatenation The concatenation of two strings,x andy,
yields another string,z. This constraint is represented as
z= x+ y. If the domains ofx andy are regexps, the domain
of z will simply be the regexp resulting from concatenating
the regexps forx andy.

Less obviously, if the domains ofx andz are regexps, the
domain ofy is a regexp. To construct an FA fory given FAs
for x andz, we in effect traverse the FAs forz andx in par-
allel, exploring the cross-product of the nodes from the two
FAs, starting with the pair of initial states and adding a tran-

sition{sn, tm}
lab→{sp, tq} from every node{sn, tm} and every

labellab such that the transitionssn
lab→ sp andtm

lab→ tq appear
in the original FAs (see Figure 2). This is simply the opera-
tion that is performed when intersecting two FAs. Whenever
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Figure 2: Given FAs for RE1 and RE3, find an FA for RE2
such that RE3 is concatenation of RE1 and RE2. First, tra-
verse FAs for RE3 and RE1 in parallel, constructing cross-
product FA (upper right). Then, identify states that are ac-
cept states for RE1 and mark the corresponding states in the
FA for RE3 (shaded circles). Construct a new NFA (bottom)
for RE2 by copying FA for RE3 and making marked nodes
start nodes.

we reach a node{s, t}, such that nodes is an accept state in
the FA forx, we mark nodet. After the traversal is complete,
the marked nodes in the FA forz represent all of the states
that can be reached by reading a string accepted byx.

A new nondeterministic FA (NFA) fory is constructed by
copying the FA forz, making the start node a non-start node
and making all the marked nodes new start nodes. The com-
plexity of the whole operation is dominated by generating
the cross-product FA (O(mn), wheremandn are the number
of nodes in the FAs forx andz, respectively). A similar pro-
cedure can be used to construct an NFA forx, given FAs for
y andz.

Note that, in Figure 2, the FA for RE3 does not yet reflect
the concatenation constraint. That is, RE3 accepts strings,
such as bbaba, for which RE1 is not a prefix. When the con-
straint is enforced for all three variables, RE3 = aba | baba.
It doesn’t matter what order the variables are considered.

Containment The relation contains(a, b) means that
string b is a substring ofa. If the domain ofb is a regexp
r, then the domain ofa is simply the regexp “.*r.*”, where
“.” means “accept any character,” so “.*” means “accept any
string of zero or more characters.” Less obviously, if the do-
main ofa is a regexp, then so is the domain ofb. Given an
FA for a, we can construct an NFA forb by eliminating any
dead-end nodes froma (that is, nodes from which it is im-
possible to reach an accept node), and then making all nodes
in a both start and accept nodes.

4.3 Tractable Reasoning
In the previous sections we established that we can enforce
consistency on a variety of constraints, even when the do-
mains are infinite. We now show how to use these results
to demonstrate that a quantified constraint is satisfied. In
order to do this, we need some additional definitions. Let
C(X) be a CSP. Consider the hypergraphGC, where the ver-

tices of GC are the variables ofC and the hyperedges are
the constraints. Assume we have imposed a total ordero on
the variablesX. Freuder (Freuder 1982) defines thewidth
of a variablex ∈ X induced by orderingo as the number
of variables earlier in the ordering that are in the scope of
a constraint onx. The width of an orderingo is the maxi-
mum width of any variable induced by the orderingo, and
the width of a CSP is the minimum width over all orderings.

We restate the following theorem from (Freuder 1982)
without proof:

Theorem 3 Let C be a CSP. If C is strongly k-consistent and
the width of C is< k, then there is a variable order that will
result in a backtrack-free search for a solution to C.

We can now prove the following:

Corollary 1 Let C be a CSP and assumeC is strongly k-
consistent and the width of C is w< k. Let x be the first
variable in a search order inducing a width of w< k. Then
d(x) = πx(S(C)).

Proof: We will show that each element ofd(x) can be
extended to a solution toC. For eachα ∈ d(x), make the
assignmentx = α. Consider the assignment of any variable
y. Now, since the width ofC is w< k, we know that when
we use a variable ordering that induces a widthw< k, fewer
thank variables sharing constraints withy are assigned be-
fore assigningy. Further, since we also know thatC is
strongly k-consistent, any consistent assignment of fewer
thank variables can always be extended by one assignment.
Thus, we can continue assigning variables without failure
until all variables are assigned, regardless of the initial as-
signment tox.

Theorem 4 Let ∀~x,~y,∃~z.Φ(x,~y,~w)⇒ Ψ(x,~z,~w) be a quan-
tified constraint such that:

1. Φ and Ψ share one universally quantified variable x
whose domain is infinite, and x and any other infinite do-
main variables are only involved in constraints for which
strong k-consistency can be enforced.

2. Φ andΨ are strongly k-consistent.
3. There exists an ordering o1 such thatΦ has width w< k

induced by o1 and x is the first variable in the order.
4. There exists an ordering o2 such thatΨ has width w< k

induced by o2 and x is the first variable in the order.

Then the quantified constraint is satisfied if and only if
dΦ(x)⊆ dΨ(x).

Proof: Since x is the only universally quantified vari-
able shared betweenΦ andΨ, we only need to check that
π{x}S(Φ(x,~y,~w)) ⊆ π{x}S(Ψ(x,~z,~w)). Since we have as-
sumedΦ andΨ are k-consistent, and that each has an or-
dering that induces width less thank, the previous theorem
allows us to conclude that all values of the first variable in
the ordering are part of the solution space. But we have also
assumed that, for both orderings, that variable isx. Thus,
π{x}S(Φ(x,~y,~w)) = dΦ(x) and π{x}S(Ψ(x,~z,~w)) = dΨ(x),
and we are done.

We are now confronted with the problem of establishing
strong k-consistency. For CSPs with variables with infinite
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domains, arc-consistency can be enforced on tree-structured
(width 1) CSPs in polynomial time, but no stronger result
is known. In the case of finite domains, Freuder (Freuder
1990) has shown that, for certain families of CSPs called
k-trees, strong k-consistency can be established in polyno-
mial time in the number of variables. Our current imple-
mentation maintains strong k-consistency for primitive k-ary
constraints over infinite numeric or string domains but only
maintains arc consistency globally. Thus, we limit our atten-
tion to tree-structured CSPs.

Universally quantified constraints with infinite domains
can be solved in time polynomial in the number of vari-
ables, but it is also necessary to consider the cost of com-
puting the domain for each variable. In the case of numeric
constraints, this cost is generally trivial, consisting of a few
arithmetic operations. In the case of string domains, the cost
depends on the size of the regular expressions representing
the domains. Given two domains represented by FAs of size
m andn, intersection of the two domains is O(mn), union
is O(m+ n), negation is O(m), and enforcement of the con-
straints discussed in Section 4.2 is at worst O(mn). However,
some of these operations produce NFAs as outputs, and oth-
ers require deterministic FAs (DFAs) as inputs. Converting
from an NFA to a DFA can result in an exponential increase
in the size of the FA.

5 Applicability
We have implemented this approach in a constraint-based
planner and are applying it to an Earth Science data process-
ing domain that involves a mixture of image processing, text
processing and other operations. Preliminary results indicate
that the assumptions we make in this paper are valid for this
domain. There are two main assumptions that potentially
limit the applicability of our approach.

1. Constraints can be fully captured by the domain represen-
tation. This is really only a limitation for numeric con-
straints, since every string constraint in the domain can be
captured fully using regexps. Most numeric constraints
that appear in universally quantified expressions repre-
sent either convex regions of images or functions from
real-valued measurements to integral pixel values. These
constraints all obey this restriction.

2. The width of the constraint network defined by quanti-
fied constraints must less than the level of consistency
enforced, and the left and right hand sides must share at
most one quantified variable. This is a more serious lim-
itation. Since the nature of the quantified constraints is
dictated by quantified goals, it is possible to formulate
goals that violate this restriction. Since the set of goals
is open, we can’t draw any conclusions about which goals
are common without extensive user tests. On the other
hand, in most goals we have looked at, quantified con-
straints result in tree-structured CSPs that trivially obey
our assumptions.

6 An Image Processing Example
In this section, we illustrate the entire planning process, in-
cluding generating subgoals through regression, determin-

ing entailment through unification and computing entail-
ment for universally quantified constraints with infinite do-
mains.

Suppose we have a grayscale image corresponding to the
elevation over some region:

plot.xSize = XMAX;
plot.ySize = YMAX;
∀x,y: unsigned,el: real.

when(x < XMAX && y < YMAX &&
el=elevation(xProj(x),yProj(y)))

plot.value(x, y) = hProj(el)

where words in ALL CAPS are constants,xProj andyProj
are linear functions mapping thex, y coordinates of the im-
age to the corresponding longitude, latitude that they rep-
resent,hProj is a linear function mapping elevation to pixel
values in the image, with lower (blacker) values correspond
to lower elevations, andelevation(x, y) is the elevation at lon-
gitudex, latitudey. The notationplot.xSize denotes the hor-
izontal size of the imageplot, andplot.value(x, y) means
the pixel value at the coordinatesx,y in the imageplot.

Say we would like to produce a color image showing the
same elevations, but highlighting particular ranges of eleva-
tion using different colors. For example, pixels correspond-
ing to points below sea level should be blue and points above
the snow line should be shades of gray.

One way to accomplish this would be by creating bitmaps
or monochrome images corresponding to the the pixels of
interest (i.e., pixels above or below a particular value), and
using these bitmaps to select the pixels on which particular
operations, like coloring the pixels blue, will be performed.
Suppose we have athreshold command, which takes an
image,in, as input and has an argument specifying a thresh-
old value, and outputs an image,out, the same size as the
input, with a value of 255 for every pixel in the input whose
value is above the threshold and a value of zero for every
pixel below the threshold:

∀x,y: unsigned,v: pixelValue
when ( x < in.xSize && y < in.ySize &&

v = in.value(x, y) )
when(v≤thresh) out.value(x,y) := 0;
when (v>thresh) out.value(x,y) := 255;

wherethreshis an action parameter of type pixelValue (i.e.,
a variable from~w) denoting the threshold value, and a pix-
elValue is an integer in the range[0,255]. The use of nested
when statements is merely a shorthand, where “when (Φ1)
{ when (Φ2) Ψ}” is equivalent to “when (Φ1∧Φ2) Ψ}.”
Here, we focus on a single subgoal that arises during plan-
ning: to generate a threshold map,sea, based on elevation at
sea level:

∀x′,y′:unsigned,elev: real.
when(x′<XMAX && y′<YMAX &&

elev=elevation(xProj(x′),yProj(y′)))
when (elev > 0) sea.value(x,y) = 255;
when (elev ≤ 0) sea.value(x,y) = 0;

Regressing this subgoal through thethreshold action, we
get:
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∀x′,y′:unsigned,elev: real,∃v′:unsigned
when(x′<XMAX && y′<YMAX &&

elev=elevation(xProj(x′),yProj(y′)))
x′ < in.xSize;
y′ < in.ySize;
v′ = in.value(x, y);
when (elev > 0) v′>thresh;
when (elev ≤ 0) v′≤thresh;

We try to satisfy this goal using the initial state; specifically,
letting the imagein be plot.

∀x′,y′:unsigned,elev: real∃v′: unsigned∃el′:real
when(x′<XMAX && y′<YMAX &&

elev=elevation(xProj(x′),yProj(y′)))
x′ < XMAX;
y′ < YMAX;
v′ = hProj(el′);
el′ =elevation(xProj(x’),yProj(y′)));
in =plot;
when (elev > 0) v′>thresh;
when (elev ≤ 0) v′≤thresh;

The subgoalel′ =elevation(xProj(x′),yProj(y′))) is trivially
satisfied by unification ifel′ =elev. The subgoalsx′ <
XMAX and y′ < YMAX are also trivially satisfied. This
can be determined easily by quantified constraint reasoning:
The domain ofx′ established by the LHS is [0,XMAX-1],
and the same domain is established by the RHS. Removing
the satisfied terms, we get:

∀x′,y′:unsigned,elev: real∃v′: unsigned∃el′:real
when(x′<XMAX && y′<YMAX &&

elev=elevation(xProj(x′),yProj(y′)))
v′ = hProj(el′);
el′=elev ;
when (elev > 0) v′>thresh;
when (elev ≤ 0) v′≤thresh;

which, simplified to it essence, gives us the following two
quantified constraints.

∀e1: real. (e1 > 0)⇒(hProj(e1)>thresh)
∀e2: real. (e2≤ 0)⇒(hProj(e2)≤thresh)

Recall thathProj is an increasing linear function. Assume
hProj(e)=0.05e+42. Note that although the domain ofhProj
is unbounded, the range is[0,255], so all values ofe below
-840 map to 0, and all values above 4260 map to 255. Since
we map real values onto integers, we will always round up.

These constraints share the parameterthresh, which needs
to be assigned a value. As discussed above, there are a num-
ber of possible variable ordering strategies we could employ,
the default being to choose a value forthreshand then see
if the quantified constraints are satisfied. Say we pick the
value 43. Let’s tackle the constraint one1 first. Enforc-
ing the LHS constraint sets the domain ofe1 to the interval
(0,∞). On the RHS, propagating the value ofthreshsets the
domain ofhProj(e1) to [44,255]. The domain ofe1 then be-
comes(20,∞). Since the domain ofe1 is not the same as it
was according to the LHS, the constraint is violated, so 43
is not a valid assignment tothresh.

Now say we pick 42. Once again, the domain ofe1 is
(0,∞) . This time, propagatingthreshin the RHS makes the

domain ofhProj(e1) [43,255], resulting in a domain fore1
of (0,∞), which is consistent with the LHS, so we proceed
to the other forall constraint. Enforcing the LHS sets the do-
main ofe2 to the interval(−∞,0]. Propagating the value of
threshin the RHS sets the domain ofhProj(e2) to [0,42], re-
sulting in a domain of(−∞,0] for e2. Both forall constraints
are consistent.

An alternative to branching on values ofthreshwould be
to leave it unassigned and see if we can narrow down the
choices through propagation. Working on the constraint on
e1 first, we enforce the LHS constraint, setting the domain of
e1 to the interval(0,∞). Propagating the value ofe1, the do-
main ofhProj(e1) is then[43,255] and the domain ofthresh
is [42,255]. Since enforcing the RHS constraints did not
shrink the domain ofe1, the first implication is valid so far.
Enforcing the LHS of the second constraint sets the domain
of e2 to the interval(−∞,0]. Enforcing the RHS sets the
domain ofhProj(e2) to [0,42] and restricts the domain of
threshto the singleton 42. The domain ofe2 did not shrink,
and the reduction of the domain ofthreshdid not shrink the
domain ofe1, so both implications hold, and the only valid
parameter choice is 42, which ishProj(0), the pixel value
corresponding to sea level.

7 Previous Work
Other planners, including (Golden, Etzioni, & Weld 1994;
Golden 1998; Babaian & Schmolze 2000) also support uni-
versal quantification. The universally quantified statements
in PSIPLAN (Babaian & Schmolze 2000) can include in-
equality constraints, which are used to exclude individuals
from the universe of discourse. However, no prior planning
systems support the ability to determine the validity of uni-
versally quantified constraints that we discuss here.

The Amphion system (Stickelet al. 1994) was designed
to construct programs consisting of calls to elements of a
software library. Amphion is supported by a first-order theo-
rem prover. The task of assembling a sequence of image pro-
cessing commands is similar to the task Amphion was de-
signed to solve. However, the underlying representation we
present here is a subset of first-order logic, enabling the use
of less powerful reasoning systems. The planning problem
we address is considerably easier than general program syn-
thesis in that action descriptions are not expressive enough
to describe arbitrary program elements, and the plans them-
selves do not contain loops or conditionals.

Ginsberg and Parkes (Ginsberg & Parkes 2000) point
out that the satisfiability encoding of many STRIPS plan-
ning problems requires creating multiple grounded instances
for axioms of the form∀xyz.(a(x,y) ∧ b(y,z) ⇒ c(x,z),
then performing search over the truth values for all of the
grounded instances. They propose a formulation in which
a(x,y)),b(y,z) andc(x,z) are constraints on variablesx,y,z
and use this formulation to either search for units or find
good variables to flip in local search. This is a different re-
striction on first-order logic from that we use, and further-
more, the domains ofx,y,z are implicitly assumed to be fi-
nite.

L’Homme (L’Homme 1993) and Marriott and Stuckey
(Marriott & Stuckey 1998) both describe methods of pre-
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serving an interval representation of variables involved in
arithmetic constraints while eliminating infeasible values.
However, they explicitly assume that the interval representa-
tion is an unsound approximation to the domain of feasible
values. Benhamou and Goualard (Benhamou & Goualard
2000) describe a method of sound but incomplete approxi-
mate propagation of infinite domains. Since we require both
soundness and completeness in cases where that set may be
infinite, we have made stronger restrictions on the types of
reasoning performed.

8 Conclusions and Future Work
We have described a planning methodology for softbots
that supports universal quantification, incomplete informa-
tion, and constraints on variables with very large or infinite
domains. We restrict the form of both goals and effects,
while preserving the ability to express conditional effects
and reason about incomplete information. Our approach
uses a combination of unification and constraint reasoning
to demonstrate entailment. We described an algorithm for
proving or disproving entailment for constraints over finite
domains, and identified a subclass of constraints for which
the same algorithm can prove or disprove entailment for
variables with infinite domains. This class of constraints has
proven useful in the domains of planning for image process-
ing and managing file archives.

When describing the algorithm to validate quantified con-
straints, we assumed that all parameters of the actions were
assigned before validation occurs. As described in Section
6, there are times when it is worth deferring the decision
about parameters to actions, because propagation will limit
the possibilities. Exploiting these possibilities is the subject
of future work.

We can potentially weaken the conditions on quantified
constraints required to reason about variables with infinite
domains.The condition thatΦ andΨ share only one vari-
able can be relaxed when there is a procedure for check-
ing the validity of the constraint without checking infinitely
many values. One case is when all of the constraints de-
scribe linear equations or inequalities. In addition, it may
be possible to generalize theconditions under which consis-
tency enforcement allows us to conclude that all the values
of a variable participate in solutions to a CSP. Finally, we
can try to find more constraints on which we can enforce
consistency when domains are infinite.
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