Universal Quantification in a Constraint-Based Planner

Keith Golden and Jeremy Frank
NASA Ames Research Center
Mail Stop 269-1
Moffett Field, CA 94035
{kgolden, frank}@ptolemy.arc.nasa.gov

Abstract

We present a general approach to planning with a restricted
class of universally quantified constraints. These constraints
stem from expressive action descriptions, coupled with large
or infinite universes and incomplete information. The ap-

proach essentially consists of checking that the quantified
constraint is satisfied for all members of the universe. We
present a general algorithm for proving that quantified con-
straints are satisfied when the domains of all of the variables
are finite. We then describe a class of quantified constraints
for which we can efficiently prove satisfiability even when

the domains are infinite. These form the basis of constraint
reasoning systems that can be used by a variety of planners.

1 Introduction

Softbots §oftware rdots) are intelligent software agents
that sense and act in an environment, such as a com-
puter operating system. Since software environments are
so rich, there is almost no limit to the kinds of tasks that
softbots can perform, including on-line comparison shop-
ping, managing email, scheduling meetings, and process-
ing data. Planner-based softbots (Etzioni & Weld 1994;
Golden 1997) accept goals from users and invoke a planner
to find a sequence of actions (e.g., commands or program
invocations) that will achieve the goal.

We are working on softbots for data processing, includ-
ing image processing, managing file archives, and running
scientific models. Due to the richness of softbot problem

domains in general, and data processing domains in particu-

lar, the planner must handle a rich action representation. In
particular, it must support:

e Universal quantification: Many commands and pro-

grams operate on sets of things, where membership in the
set can be defined in terms of necessary and sufficient con-

ditions. For example,

— The Unix1s (or DOSdir) command lists all files in a
given directory.

— The “tar x” (or unzip) command extracts all files in
a given archive.

— The grep command returns all lines of text in a file
matching a given regular expression.

— Mostimage processing commands operate on all pixels
in an image or in a given region of an image.

e Incomplete information: It is common for softbots to
have only incomplete information about their environ-
ment. For example, a softbot is unlikely to know about
all the files on the local file system, much less all the files
available over the Internet.

Large or infinite universes. The size of the universe is
generally very large or infinite. For example, there are
hundreds of thousands of files accessible on a typical file
system and billions of web pages publicly available over
the Internet. The number pbssibldiles, file path names,
etc, is effectively infinite. Given the presence of incom-
plete information and the ability to create new files, it is
necessary to reason about these infinite sets.

Constraints: As noted in (Chieret al. 1997; Lansky &
Philpot 1993), data processing domains typically involve
a rich set of constraints. By constraints, we mean any
relations whose truth values can be computed.

The intersection of these features poses some interesting
challenges. For example, the intersection of universal quan-
tification and incomplete information means that standard
approaches to dealing with universal quantification in plan-
ning (Penberthy & Weld 1992) don’t work, and other ap-
proaches are needed (Golden 1998; Etzioni, Golden, & Weld
1997; Babaian & Schmolze 2000). This paper discusses the
effect of universal quantification and large or infinite uni-
verses on constraint reasoning and proposes a way to accom-
modate universally quantified constraints into a constraint-
based planner.

1.1 Universally quantified constraints

Universally quantified constraints can be exceedingly useful
when representing image processing domains. For example,
to represent an image-processing command that performs a
horizontal flip of the pixels in a rectangular region of an im-
age betweenMINX, MINY) and MAXX , MAXY), we might
write something like:

X,y when(MINX < X <MAXX && MINY <y <MAXY)
outputvalue(x,y) := input.value(MAXX +MINX -X,)

whereoutputvaluek, y) is the pixel value of the imageut-
put at coordinates,y, and similarly forinputvalue. The
keywordwhenindicates a conditional effect. We might also

AIPS 2002 233

want to specify spatial transforms of an image, such as scal- Replacing goals with their universal base depends on the
ing or projections, or changes to color values. All of these Closed World Assumption (all objects must be known) and
are convenient to represent using numeric constraints, quan-on the number of objects in the universe being relatively
tified over the pixels in the image or in the specified region. small. In softbot domains, neither assumption is likely to
In describing commands that act on text files, it is useful be valid. For example, not all files accessible to the softbot
to quantify over lines or characters of text. For example, will be known, and the number of available files can eas-
the grep command outputs all lines of text contained in the ily be thousands or millions. To address the problem that

input that match a given regular expression: not all files are known, the softbot can first achieve a sub-
vii h inout insLine(i goal of knowing all the relevant files and then proceed as
ine when (inputcontainsLine(line) above (Etzioni, Golden, & Weld 1997), but that still leaves

&& inputmatches(regexp)

. the problem that the number of files m large. For ex-
outputcontainsLine(line) e problem that the number of files may be large. For e

ample, suppose the softbot has the goal of making all of the
Similarly, many commands operate on sets of files, which files in the user's home directory group readable. This goal
can often be expressed in terms of a regular expression sat-could be achieved by identifying all the files (recursively)
isfied by their path names. For example, the files recur- contained in the home directory “~user” and then ensuring
sively contained in directory “/foo/bar” all have a path name that each one is group readable, but it would take some time
matching “/foo/bar/.+”, where “.+” means “any string at just to identify all the files. It is much simpler and faster to
least one character long.” handle them all at once with a single Unix command, which
In these examples, we see that it is necessary to reasonrecursively makes all files in the directory group readable:
about constraints on variables with either infinite or very

) chmod -R g+r ~user
large domains.

Such an approach is supported in theccini planner
1.2 Road map (Golden 1998) by directly linking from universally quanti-
fied goals to universally quantified effects. The approach
used byrucciINI presupposes that the goals and effects are
all expressed in terms of predicates, lgteup-readable, for
which entailment can be determined using simple unifica-
tion. When conditions include constraints as well as pred-
icates, determining entailment requires additional mecha-
nisms, as we discuss in Section 2.2.

In the remainder of the paper, we discuss how universally
guantified constraints arise in the planning process and how
they are solved. In Section 2 we describe how universally
guantified constraints arise as subgoals in the planning pro-
cess. In Section 3 we present a general approach to solv-
ing universally quantified constraints in a constraint network
and an algorithm for implementing this approach, and we
prove that the alg(_)rithm is both sour)d and.compllete. The 21 Restrictions on universally quantified
general approach is not always possible to instantiate when expressions

there are infinite domains. In Section 4 we describe how)) .
to efficiently handle constraints with infinite domains un- Given the requirement to support universally quantified
der certain restrictions. In Section 5, we discuss how these 90als directly with universally quantified effects, it is im-
techniques apply to an Earth Science domain that we are Portant to specify exactly what kinds of expressions the lan-
working on, and in Section 6 we present a detailed example guage will allow, since the unrestricted case would require

covering both planning and constraint reasoning. In Section first-order theorem proving, which is undecidable. In a goal,
7 we describe related work, and in Section 8 we conclude the use of the keyword/hen indicates that the antecedent

and describe future work. and consequent refer to different times. For example, the
goalwhen(®(X)) W(X) means that for al that satisfyd(X)
: : ; P when the goal is giveli.e., in the initial state), we want
2 I?Ignnmg with umversf’il qgantlflcatlon ~ Y¥(X) to be truewhen the goal is achieve(e., in the final
The traditional approach to planning with universal quantifi- state). Thus, we can specify goals like “paint all the blue
cation, used bycropr(Penberthy & Weld 1992) and other chairs green” without contradiction:

planners works as follows: .
vc: chair when (c.color = blue) C.color = green

1. Universally quantified goals are replaced with the equiva-
lent universally ground conjunctive goal, which is called
theuniversal base

The planner has no control of what is true in the initial state,

so it will never try to achieve the goal by falsifying the

antecedent. To borrow a term from contingency planning,

2. Universally quantified effects amgeeledas needed; that the antecedent specifies thentextin which the consequent
is, given an effect should be achieved.

vxwhen(P(x)) Q(X) Effects All universally quantified effects are conditional

effects, in which the antecedent specifies restrictions on the
universe(s) of the quantified variable(s) and the consequent
specifies what will become true for members of the specified

and a goal, Q(a), a new ground effect is “peeled off”
the forall effect to satisfy the goal:

when(P(a)) Q(a) universes. These effects are of the form
The result is the subgoal P(a). VX, § (when(P(X, Y, W)) W(X,W)).

234 AIPS 2002

where® and W are conjunctive expressions and variables
in W areaction parametersvariables in action schemas that

need to be instantiated in order to obtain concrete actions.

Limiting @ to a conjunction is not a real limitation, since an
expression of the form

when (P vV ®,) W

can be rewritten as the conjunction oftien(®;) ¥” and
“when(dy) W.”

Effects cannot contain existential quantifiérgr any-
thing equivalent to existentials, such as universal quantifiers
nested within an antecedent or negation. Allowing existen-
tials or disjunctive consequents in effects would make them
non-deterministic. Given the lack of nesting and existentials,
all universals can be treated as free variables. All quantified
variables appearing i¥ must also appear i®. This is just
a sanity check, since the domain of any quantified variable
that does not appear fh is completely unrestrictedd may
contain additional quantified variableg,that don’t appear
iny.

Goals and preconditions The syntax of universally quan-

tified goals and action preconditions is the same as that of

effects, except that existential quantifiers nested within the
universal quantifiers are allowed

VX, ¥, 32 (When(®(X, ¥, W) W(R, 7, W)).

All universal quantifiers precede all existential quantifiers;
this is simply the negation of Skolem Normal Form. Goals
can also explicitly refer to time. For example, we can ask
for data on last Tuesday'’s rainfall. Whereas effects are not
really restricted compared to the commonly supported sub-
set of ADL (Pednault 1989), the limitations on universally
guantified goals are more restrictive. This particular set of

{when(®g)yg}, Wg is matched against each of the literals
e € We, using the following procedure.

1. regress ({when (®g)Ye}, {when (Pg)yg})
2. B =MGU(Ye,yqg)

3. ={}

4., @, := copy (De)

5. if B=L then return failure

6. for each (Ve,Vg) €PB

7. if Ve is quantified V

8. then replace Ve in ®p with vg.
9. else if vy is quantified V

10. then return failure

11. else C :=C A (Ve=Vg).

12. end for

13. for each Ve &P

14. replace WWe in ®, with v

15. end for

15. return {when (®g) Py} AC

The reason that unmatched universally quantified variables
can be replaced with existentials (line 14) is as follows:
since the effect occurs for all that satisfy®, andv isn't
mentioned in the goal, it is only necessary to famnevalue

of v that satisfiesp. Any new3 variables are written inside
the scope of alV variables from the go&l.

Examples of Goal Regression We will now present some
examples of goal regression. Suppose that we have an action
to give a Mothers’ Day card to all new mothers:

Vp1, P2:person when(p; =parent (p2) &&
sex(p1) = F && age(pz)<1)
has-card (p1)

and our goal is to give a card to Mariyg, has-card(Mary)).

restrictions was chosen to support the class of goals required APPIYing this action to satisfy the goal will result in the sub-

for the softbot domains that interest us, while simplifying the
inference procedures.

2.2 Goal regression with quantified variables

The subgoaling, or goal regression, procedure we use is sim-

ilar to that used byucciNI. We use the peeling technique
outlined above, with the addition that quantified variables in
the effect can be replaced by quantified variables in the goal.
Suppose we have a goghen(®g)¥, that we want to satisfy
using an effectvhen(®)We. If the right-hand side (RHS)
of a goal¥y contains multiple conjuncts, they are solved in-
dependently, so subgoals are all of the faumnen(®g)yy,
whereyyg is a single literal. We rely on a unification func-
tion MGU(We, Yg), Which returns the most general unifier
between the effect literape and the goal literalpg. If the
literals don’t unify, MGU returnsL. Otherwise, it returns a
set of pairs{(ve, vg) }, whose interpretation is thgk unifies
with (g if all the constraints/e = vg are satisfied.

The Goal Regression Algorithm To determine the con-
ditions required for When(®.)We} to satisfy the goal

1Effectscanintroduce the creation of new objects, through the
new keyword, which is similar in some respects to an existential
quantifier, but that is outside the scope this paper.

goal

Jp,:person (Mary = parent(p,) &&
sex (Mary) = F && age(p,) <1)

That is, the action will achieve the goal if Mary is female
and has a child less than one year old.

Now suppose our goal is to give a card to all mothers of
newborn boys:

¥m, s: person when(m =parent (S)
&& sex(m) = F
&& sex(s) = M && age(s)
has-card (m)

:O)

If we use the action to give a card to all new mothers, the
subgoal then becomes

¥m,s: person when(m =parent (S)

&& sex(m) = F

&& sex(s) = M && age(s)
{m=parent (s); sex(m) = F; age(S) <1}

0

2For completeness, it is also necessary to determine whether
two or more effects combine to achieve a universally quantified
goal. A technique called goal partitioning (Golden 1997), provides
this ability, but at a high computational cost. We are investigating
a way to lower this cost, but that is outside the scope of this paper.

AIPS 2002 235

Note that the left hand side of this expression is just the We assume that the planner produces candidate plans that
left-hand side of the original goal, and the right hand side are complete except for the instantiation of some action pa-
is the “peeled” left hand side (LHS) of the effect. All sub- rameters and are correct subject to a list of subgoals being
goals from conditional effects are generated the same way, “trivially” satisfied (i.e., no more actions need to be inserted
so the same LHS expression is carried back through succes-into the plan). The planner sends the constraint reasoner this

sive goal regressions.

The right-hand side (RHS) literalmm =parent§) and
sexfn) = F are clearly entailed by the LHS, which we can
determine by unification, using a slight variation on the re-
gression procedure above. When the LHS entails a literal on
the RHS, we say that the goal literativially satisfied and
remove it without further subgoaling.

The remaining goal condition, a constraint, is not so
straightforward. Although agsX= 0 clearly entails ags]
< 1, the two do not unify. As we discuss below, the pur-
pose of reasoning about universally quantified constraints is
to answer the entailment question for constraints.

The Form of Subgoals Subgoals are just goals, and obey

the same restrictions. However, since subgoals are generate

through a specific process, outlined above, it is worth show-
ing that the process maintains the restriction on the form of
subgoals.

e Since the subgoaling process always copies the LHS of
the goal to the LHS of the subgoal, all restrictions obeyed
by the former are obeyed by the latter. In particular, the
LHS is conjunctive and it must not contain existentials.

e The RHS of the subgoal comes from the (peeled) LHS of
the effect. Since the latter is conjunctive, so is the former.

Quantified variables appearing in the RHS but not in the
LHS are existential. To see why, consider that every quan-
tified variable that appears in the RHS either originated in
the goal or is a copy of a variable from the effect.

1. If the variable appeared in the goal, then it cannot have
been in the LHS of goal, since otherwise it would be in
the LHS of the subgoal, contradicting our assumption.
Since it was not in the LHS of the goal, it must be an
existential.

. If the variable came from the effect, then it must be an
existential, since, as indicated in line 14 of the regres-
sion algorithm, all universals in the effect that aren’t
replaced by variables from the goal are replaced by ex-
istentials.

2.3 From planning to constraints

In the remainder of the paper, we discuss how to tell if the
LHS of a universally quantified subgoal entails the RHS
when both sides contain constraints. We will not concern
ourselves further with the details of the planning algorithm.
We can convert the whole planning problem into a constraint
problem, but it would also be possible to use a causal-link
planner likepuccini (Golden 1998), and perform constraint

reasoning to answer questions about whether certain sub-

goals are trivially satisfied.g., the LHS entails the RHS).

In either case, we can separate the problem of solving con-

straints to check subgoal satisfaction from the rest of the
planning problem.

236 AIPS 2002

list of subgoals, which are of the form
VXY, 32 (P(X,Y, W) = P(X,Z W))

along with some additional constraints on the parameters.
The job of the constraint network is to either return an as-
signment to all of the unspecified parametew$ guch that

all of the subgoals are trivially satisfied, or return failure
in case there is no such assignment. If the constraint net-
work returns failure then the candidate plan is invalid, so the
planner should continue searching. Otherwise, the candi-
date plan, instantiated with the values foreturned by the
constraint network, is a valid plan.

3 Solving Quantified Constraints

qn order to determine whether the subgoals are trivially sat-

isfied, it is necessary to reason about the solutions to the
CSPs induced by andW. Before proceeding, we review
some standard CSP notation. Létbe a set of variables.
Denote the domain of € X asd(x). Let D be the set of do-
mains. Letk = (x1...X% ...%n; R) be a constrainty € X and
RC d(x1) x ... x d(xn) is a relation defininghe permitted
assignments to the variables. lkebe the set of constraints.
ThenC(X) = (X,D,K) is a CSP. Asolutionto the CSP is
an assignment of values to the variables such that all con-
straints are satisfied. L&C) be the set of solutions 0.
Let L be a relation on a set of variables and letrs, (L)
be the projection of the relation onto the seW CU . A
CSP isk-consistenif any consistent assignment to k-1 vari-
ables can be extended to an assignment to k variables (k=2
is arc consistency.) A CSP w&rongly k-consistent it is
j-consistent for all €k.

Having reviewed these definitions, we now formally de-
fine quantified constraints:

Definition 1 Let®,W be CSPs. We then refer to a subgoal
VX, YIZ(P(X, ¥, W) = W(X,Z,W)) as aquantified constraint
and refer to the constraints comprisirg, W as primitive
constraints A quantified constraint isatisfiedfor & = © iff

The general approach to solving quantified implications is
straightforward. Given an expression of the form “all things
that satisfy® also satisfyd!,” we identify the set of things
that satisfy® and check whether they also satify We can
think of this as an empirical proof technique: we'’re doing
nothing more than checking the validity of the expression
for all members of the universe.

Given a quantified constraint

VX, YFZ(P(X, ¥, W) = W(X,Z,W)),

the variables inW must be assigned values by a search pro-
cedure. As mentioned in Section 2, these variables repre-
sent the parameters of actions; the search over these values
is a search over candidate plans. During this search, we can
propagate the domains of the variableg ijibased orp, but

do not assign these variables. We do not propagate based onTheorem 1 The algorithm for checking the satisfiability
the constraints i, because these constraints do not hold of quantified constraints is sound: it will not return suc-
if the domains of the variables i are empty. Once all of cess if, for any quantified constraintx, y, 372 d(x,y,w) =
these variables are assigned, we are left with the constraint W(X,Z W), there is some assignmeft to X such that

VR, Y D(X,Y) = W(X,2)), 3y, VZ.0(a, Y, W) A -W(d,Z W).

whereX represents one or more universally quantified vari- Proof: Suppose otherwise. Then there is some sdme
ables common t@ andW. Again, as described above, the ¢,cp thaBy, V2. ®(d, ¥, W) A ~W(d, 2 W). The algorithm will

desired semantics of this implication is that everything sat- only return success if eash € W is singleton, andine 7 is
isfying ® also satisfiesP. Thus, we must identify the set 5 reached. This happens if ’

of tuples corresponding to the assignmentg that satisfy
®(X,¥), and check that each tuple also satisHigg,Z). To 1. There are no quantified constraints (line 3). This contra-
do this, we solve botld(X,y) and W(X,2) for X. We then dicts the assumption that there is such a constraint.
check to see ifryx S(P(XY)) C mx SW(X,2)). Because 2. S(B(X,y,W)) = 0 (line 4). This is equi :

> A ? =S . A =) quivalent to saying
.tpttahquar{nﬂfed ?otl_"nstrmtr:jtbtgkes thte f?hrm (;L an |m|pl|ct:_:1t|on, is false for all%, contradicting our assumption that there
if the set of solutions is empty, then the implication was somei for which ® was true.

is satisfied vacuously, and there are no constraints on the

values of the variables iR . If there are solutions teb 3. SP(X,¥,W)) # 0 and there is nod such thatd e
but s S(P(X,Y)) Tz S(W(X,2)), then the quantified con- Ty S(P(X,Y,W)) and & ¢ Ty S(W(X,Y,W)) (lines 5,6).
straintis not satisfied, and some other assignmenttothe vari- That is, there is nod such that3y.®(d,y,w) and
ables inw must be generated. Otherwise, the constraintis vz (-W(d,Z,W)), contradicting the assumption that
satisfied, and the domains%#re defined by the the restric- 3y, VZ.D(Q, Y, W) A —W(d,2Z,W).

tions imposed byb.

If the set of tuples satisfying is finite, then enumerat-
ing them and checking that each one of them satisfiés
relatively straightforward, though possibly time consuming.
But what if the set is infinite? In the general case, there is
nothing that can be done. However, as we will see, there are
some useful classes of problems where it is possible to iden- p,gof: Suppose the algorithm returns failure, but for

tify the infinite set of tuples satisfyin@(X,y) and check that all quantified constraintsyx,y,3Z.®(x,¥,W) = W(X,Z,W).
they all satisfy¥(%,2) using efficient constraint propagation the algorithm will return failure if there is some quan-
techniques. tified constraint for whichS(®(X,y,W)) # 0 and & €

It should be noted that the steps presented above can ben{x}s(qg(y,y’w)) but & ¢ T SW(X,ZW)) (line 6). But
done in a variety of ways. There is no need to assign all {nan Ty S(P(X,Y,W)) Tz SW(X,2,W)), which in turn

variables inw before beginning the process of identifying yjg|ates the assumption that for all quantified constraints,
the domain ofk. It is also possible to fix the domains ®f VX,Y, F2.0(x, ¥, W) = W(X, 2 W).

after solving® before solving¥ and only check to see if any) _ _

elements of these domains are eliminated during the solving Complexity Let ne be the number of variables i and

of W. These refinements are left as future work. let dp be the size of the largest domain of any variable in
We present an algorithm for proving that quantified con- ®- Denoteny anddy similarly. The complexity of the algo-

straints are satisfied. The only assumptions are that there is fithm is O((de)" + (dw)"), because checking the satisfia-

a way of enumerating the variablesin and that there is bility of the constraints potentially requires enumerating the

Theorem 2 The algorithm for checking the satisfiability of
guantified constraints is complete: If, for all quantified con-
straints,VvX,y, 3Z.®(x, ¥, W) = W(X,Z, W), then the algorithm
returns success.

some way of representing the values satisfy®(g,y) and solution space for both CSHEx ‘.

Y(X,y). In the following sections, we discuss specific tech-

niques for performing these operations. 4 Handling infinite universes
1. isSatisfied(y) The general approach discussed in Section 3 works for rel-
2. choose assignments for all variables W. atively small, finite domains. To handle large or infinite do-
3. for (each(VX¥,FZP(XY)=W(X2)) <€y mains effjciently, we need to emplo'y special-case constraint
4 if (S(®(X,Y)) # 0) propagation techniques. We describe one such technique in
5. for (each @ € Tx S(P(X,Y))) detail in this sept!onThe t(_achnlqug depends on being able
6 if (G¢ Tz (WX Y))) to represent infinite d_omalns conC|se_Iy. In S_ec_tlc_)ns 4.1 a_nd
7 return ?ailure) 4.2, we discuss concise representations of infinite domains
3 end for for numbers and strings, and describe classes of constraints
9. end for for which these concise representations can store the valid
10. return success . domains exactly. In Section 4.3, we describe further restric-

tions on the form of the quantified constraints that allow us
We now prove that the algorithm is both sound and com- to check the satisfiability of these quantified constraints effi-
plete: ciently, even if the variable domains are infinite.

AIPS 2002 237

the relation is true for all points inside the region and false
for all points outside it, then the projection of any interval
ony will be an interval onx (or vice versa). Examples of
convex regions arex < 10,y > 2x+ 1, X2 +y? < r2.

iy dom:

Continuous to discrete A function from a continuous
(real) variable to a discrete (integer) variable is by defini-
tion not a continuous function. However, it may be regarded
as a continuous function whose range is projected onto the
integer number line. If such a description is valid, then the
projection of any continuous interval crwill be a discrete
interval ony. Going the other direction, intervals grwill

map to intervals orx under the same circumstances as in
the fully continuous case: non-decreasing functions, non-
increasing functions, and relations defining convex regions.

{y dom:

Discrete A function whose domain is discrete will not, in
general, project an interval onto another interval. For ex-
) ample, consider the simple caseyof 2x, wherex andy

are integers. The domain gfis the set of even numbers,
which cannot be represented as an interval. However, when
we consider relations defining convex regions, we again find
that the projection of an interval is an interval. So although
4.1 Numeric domains y = 2x does not give an intervay,< 2x does.

Large or infinite sets of numbers can be represented con- Other domain representations The decision to represent
cisely using intervals. Additionally, we can determine a numeric domain using a single interval has had a profound
whether one interval contains another efficiently. If we as- impact on the class of constraints that we can “solve” for
sume that all infinite numeric domains are represented as particular variables. Another representation, such as a fi-
single intervals, the question of whether the domain of a nite set of intervals, would allow additional constraints to
numeric variable can represent exactly the possible values be handled, though at the cost of additional complexity in
allowed by a constraint reduces to the question of whether constraint execution.

the values for that variable allowed by the constraint can be

represented as an interval. Assuming that the domains of 4.2 String domains

the other variables in the constraint are also represented as
intervals, the question then becomes whether the projection
of an interval on one variable is an interval on another. We
will consider both continuous (real) and discrete (integer)
domains.

(b)

Figure 1: Reasoning about numeric functions and relations

Just as infinite sets of numbers can be represented by inter-
vals, infinite sets of strings can be represented by regular
expressions. Regular expressions are a much more flexible
representation than intervals, in that the set of regular ex-
pressions is closed under intersection, union and negation,
Continuous If the domain ofx is continuous, then for ev- Whereas the set of intervals is only closed under intersec-
ery continuous functiog = f(x), if the domain ok is an in- tion. Regular ex_pressions (regexps) are equivalent to finite
terval, the domain of will also be an interval. The converse ~ automata (FAs) in expressive power, and in fact we repre-
is not necessarily true. However, the converse is true if ~ Sent regexps as FAs, since the latter are easier to compute
is either non-decreasing or non-increasingf (i) increases ~ With. For example, deciding whether two FAs accept the
and decreases ix then there will be somg interval that same language can be done efficiently.
corresponds to multiple intervals (Figure 1a). However, if concatenation The concatenation of two stringsandy,
the_y m'gerval ob_eys certain restrictions, then the domain of yields another stringz. This constraint is represented as
x will still be an interval. In particular, z=x+y. If the domains ok andy are regexps, the domain
o neither of the horizontal lines representing the bounds of of zwill simply be the regexp resulting from concatenating

the y interval may crossf more than twice. Crossing the regexps fok andy.

twice corresponds to passing through one peak or trough Less obviously, if the domains afandz are regexps, the

in f. domain ofy is a regexp. To construct an FA fgigiven FAs

« if one of the lines passes through a peak, the other line fOr X andz we in effect traverse the FAs farandx in par-

must be above the peak (Figure 1b), and if one line passes &ll€l: exploring the cross-product of the nodes from the two
through a trough, then the other Iin'e must be below the FAS. starting with the pair of initial states and adding a tran-

trough. sition {sy,tm} lab {sp,tq} from every nodgs,,tm} and every

We can apply the same sort of reasoning to relations (Figure labellab such that the transitiorsy @sp andtp, @tq appear
1c); however a special class of relations is worth noting. If in the original FAs (see Figure 2). This is simply the opera-
any relation defines a convex region (Figure 1d), such that tion that is performed when intersecting two FAs. Whenever

238 AIPS 2002

RE3 = b*aba

Figure 2: Given FAs for RE1 and RE3, find an FA for RE2

such that RE3 is concatenation of RE1 and RE2. First, tra-
verse FAs for RE3 and REL1 in parallel, constructing cross-
product FA (upper right). Then, identify states that are ac-

tices of Gc are the variables of and the hyperedges are

the constraints. Assume we have imposed a total arader

the variablesX. Freuder (Freuder 1982) defines thith

of a variablex € X induced by ordering as the number

of variables earlier in the ordering that are in the scope of

a constraint orx. The width of an ordering is the maxi-

mum width of any variable induced by the orderiogand

the width of a CSP is the minimum width over all orderings.
We restate the following theorem from (Freuder 1982)

without proof:

Theorem 3 LetC be a CSP. If C is strongly k-consistent and
the width of C is< k, then there is a variable order that will
result in a backtrack-free search for a solution to C.

We can now prove the following:

Corollary 1 Let C be a CSP and assureis strongly k-
consistent and the width of C is wk. Let x be the first

cept states for RE1 and mark the corresponding states in thevariable in a search order inducing a width of wk. Then

FA for RE3 (shaded circles). Construct a new NFA (bottom)
for RE2 by copying FA for RE3 and making marked nodes
start nodes.

we reach a nodés;t}, such that nodsis an accept state in
the FA forx, we mark nodé. After the traversal is complete,
the marked nodes in the FA farrepresent all of the states
that can be reached by reading a string accepted by

A new nondeterministic FA (NFA) foy is constructed by
copying the FA forz, making the start node a non-start node
and making all the marked nodes new start nodes. The com-
plexity of the whole operation is dominated by generating
the cross-product FA (@fn), wheremandn are the number
of nodes in the FAs fox andz, respectively). A similar pro-
cedure can be used to construct an NFAXagiven FAs for
y andz

Note that, in Figure 2, the FA for RE3 does not yet reflect
the concatenation constraint. That is, RE3 accepts strings,
such as bbaba, for which RE1 is not a prefix. When the con-
straint is enforced for all three variables, RE3 = aba | baba.
It doesn’t matter what order the variables are considered.

Containment The relation containg{ b) means that
string b is a substring of. If the domain ofb is a regexp

r, then the domain o is simply the regexp “r.*", where

“” means “accept any character,” so “.*” means “accept any
string of zero or more characters.” Less obviously, if the do-
main ofa is a regexp, then so is the domaintnfGiven an

FA for a, we can construct an NFA fdrby eliminating any
dead-end nodes from (that is, nodes from which it is im-

possible to reach an accept node), and then making all nodes

in a both start and accept nodes.

4.3 Tractable Reasoning

4.

d(x) = T%(S(C)).

Proof: We will show that each element af{x) can be
extended to a solution 6. For eacha € d(x), make the
assignmenk = a. Consider the assignment of any variable
y. Now, since the width o€ is w < k, we know that when
we use a variable ordering that induces a width k, fewer
thank variables sharing constraints wiyhare assigned be-
fore assigningy. Further, since we also know thét is
strongly k-consistent, any consistent assignment of fewer
thank variables can always be extended by one assignment.
Thus, we can continue assigning variables without failure
until all variables are assigned, regardless of the initial as-
signment tax.

Theorem 4 LetVX,y,3Z.d(x, Y, W) = W(x,Z, W) be a quan-
tified constraint such that:

1. ® and W share one universally quantified variable x
whose domain is infinite, and x and any other infinite do-
main variables are only involved in constraints for which
strong k-consistency can be enforced.

2. ® andW are strongly k-consistent.

3. There exists an orderingisuch thatd has width w< k
induced by @ and x is the first variable in the order.
There exists an orderingpasuch that¥ has width w< k
induced by g and x is the first variable in the order.

Then the quantified constraint is satisfied if and only if
do(X) C dy(X).

Proof: Sincex is the only universally quantified vari-
able shared betweeh andW¥, we only need to check that
T S(P(X,Y,W)) C T S(W(x,2W)). Since we have as-
sumed® andW are k-consistent, and that each has an or-
dering that induces width less thénthe previous theorem
allows us to conclude that all values of the first variable in

In the previous sections we established that we can enforce the ordering are part of the solution space. But we have also

consistency on a variety of constraints, even when the do-
mains are infinite. We now show how to use these results
to demonstrate that a quantified constraint is satisfied. In
order to do this, we need some additional definitions. Let
C(X) be a CSP. Consider the hypergrapt, where the ver-

assumed that, for both orderings, that variable.isThus,
T SP(X,Y,W)) = do(X) and T S(W(x,2,W)) = d(X),
and we are done.

We are now confronted with the problem of establishing
strong k-consistency. For CSPs with variables with infinite

AIPS 2002 239

domains, arc-consistency can be enforced on tree-structureding entailment through unification and computing entail-
(width 1) CSPs in polynomial time, but no stronger result ment for universally quantified constraints with infinite do-
is known. In the case of finite domains, Freuder (Freuder mains.
1990) has shown that, for certain families of CSPs called Suppose we have a grayscale image corresponding to the
k-trees, strong k-consistency can be established in polyno- elevation over some region:
mial time in the number of variables. Our current imple- o .
mentation maintains strong k-consistency for primitive k-ary ~ P1Ot-XSiz€ = éMﬁi
constraints over infinite numeric or string domains but only @lOt_' ySize = d el real
maintains arc consistency globally. Thus, we limit our atten- x,y.hunS|gne ,€l. real.
tion to tree-structured CSPs. when(x <_XMAX && ys YMA).(&&

Universally quantified constraints with infinite domains eI—eIevatlon(xP_rOJ(x),yProl(y)))
can be solved in time polynomial in the number of vari- plot.value(x, y) = hProj(el)
ables, but it is also necessary to consider the cost of com- where words in ALL CAPS are constant®roj andyProj
puting the domain for each variable. In the case of numeric are linear functions mapping the y coordinates of the im-
constraints, this cost is generally trivial, consisting of a few age to the corresponding longitude, latitude that they rep-
arithmetic operations. In the case of string domains, the cost resenthProj is a linear function mapping elevation to pixel
depends on the size of the regular expressions representingvalues in the image, with lower (blacker) values correspond
the domains. Given two domains represented by FAs of size to lower elevations, anglevation(x, y) is the elevation at lon-

m and n, intersection of the two domains is @f), union gitudex, latitudey. The notatiorp1ot.xSize denotes the hor-
is O(m+ n), negation is Ofy), and enforcement of the con- izontal size of the imagelot, andplot.value(x, y) means
straints discussed in Section 4.2 is at worsh@(However, the pixel value at the coordinatggy in the imageplot.

some of these operations produce NFAs as outputs, and oth- Say we would like to produce a color image showing the
ers require deterministic FAs (DFAs) as inputs. Converting same elevations, but highlighting particular ranges of eleva-
from an NFA to a DFA can result in an exponential increase tion using different colors. For example, pixels correspond-

in the size of the FA. ing to points below sea level should be blue and points above
] - the snow line should be shades of gray.
5 Applicability One way to accomplish this would be by creating bitmaps

We have implemented this approach in a constraint-based Of monochrome images corresponding to the the pixels of
planner and are applying it to an Earth Science data process-interest {.e., pixels above or below a particular value), and
ing domain that involves a mixture of image processing, text Using these bitmaps to select the pixels on which particular
processing and other operations. Preliminary results indicate operations, like coloring the pixels blue, will be performed.
that the assumptions we make in this paper are valid for this Suppose we have ehreshold command, which takes an
domain. There are two main assumptions that potentially image,in, as input and has an argument specifying a thresh-
limit the applicability of our approach. old value, and outputs an imageut, the same size as the
input, with a value of 255 for every pixel in the input whose
value is above the threshold and a value of zero for every
pixel below the threshold:

1. Constraints can be fully captured by the domain represen-
tation. This is really only a limitation for numeric con-
straints, since every string constraint in the domain can be

captured fully using regexps. Most numeric constraints VX, y: unsignedy: pixelValue

that appear in universally quantified expressions repre- when (x< in.xSize && y < in.ySize &&
sent either convex regions of images or functions from v = in.value(x, y))

real-valued measurements to integral pixel values. These when(v<thresh out.value(x,y) := 0;
constraints all obey this restriction. when (v>thresl) out.value(x,y) := 255;

2. The width of the constraint network defined by quanti- \herethreshis an action parameter of type pixelValtige(
fied constraints must less than the level of consistency g variable fromw) denoting the threshold value, and a pix-
enforced, and the left and right hand sides must share at g|value is an integer in the rand@ 255. The use of nested
most one quantified variable. This is a more serious lim- when statements is merely a Shorthand, wheamdén (Q)l)
itation. Since the nature of the quantified constraints is {when (®,) W})” is equivalent to ‘when (P1AD,) W}.”
dictated by quantified goals, it is possible to formulate Here, we focus on a single subgoal that arises during plan-

_goa|3 that violate this restriction. Since the Set_Of goa|S ning: to generate a threshold mapa based on elevation at
is open, we can’t draw any conclusions about which goals gej |evel:

are common without extensive user tests. On the other , .
hand, in most goals we have looked at, quantified con- VXY :unsignedglev real.

straints result in tree-structured CSPs that trivially obey when(x <XMAX && y<YMAX &&
our assumptions. elev=elevation(xProj(x),yProj(y)))
when (elev > 0) seavalue(x,y) = 255;
6 An Image Processing Example when (elev < 0) seavalue(x,y) = 0;

In this section, we illustrate the entire planning process, in- Regressing this subgoal through thiereshold action, we
cluding generating subgoals through regression, determin- get:

240 AIPS 2002

X',y :unsigned,elev real,3v:unsigned
when(X<XMAX && Y<YMAX &&
elew=elevation(xProj(X'),yProj(y)))

X < in.xSize;

y < in.ySize;

V = in.value(X, y);

when (elev > 0) v'>thresh

when (elev < 0) V' <thresh

We try to satisfy this goal using the initial state; specifically,
letting the imagén be plot.

X,y :unsignedgelev real 3V': unsigneddel’:real
when(X<XMAX && y<YMAX &&
elev=elevation(xProj(X'),yProj(y')))
X < XMAX;
y < YMAX;
vV = hProj(el’);
el’ =elevation(xProj(x’), yProj(y')));
in =plot;
when (elev > 0) v'>thresh
when (elev < 0) V' <thresh

The subgoalel’ =elevation(xProj(x),yProj(y))) is trivially
satisfied by unification ifel’ =elev The subgoals(<
XMAX and y < YMAX are also trivially satisfied. This
can be determined easily by quantified constraint reasoning:
The domain ofX' established by the LHS is [0,XMAX-1],

domain ofhProj(e;) [43 255, resulting in a domain foe;
of (0,), which is consistent with the LHS, so we proceed
to the other forall constraint. Enforcing the LHS sets the do-
main of e, to the interval(—,0]. Propagating the value of
threshin the RHS sets the domain biProj(e,) to [0,42], re-
sulting in a domain of —, 0] for e,. Both forall constraints
are consistent.

An alternative to branching on valuestbfeshwould be
to leave it unassigned and see if we can narrow down the
choices through propagation. Working on the constraint on
e first, we enforce the LHS constraint, setting the domain of
e; to the interval(0,). Propagating the value ef, the do-
main ofhProj(ey) is then[43 255 and the domain athresh
is [42,255. Since enforcing the RHS constraints did not
shrink the domain oé;, the first implication is valid so far.
Enforcing the LHS of the second constraint sets the domain
of e to the interval(—,0]. Enforcing the RHS sets the
domain ofhProj(e;) to [0,42] and restricts the domain of
threshto the singleton 42. The domain ef did not shrink,
and the reduction of the domain tifreshdid not shrink the
domain ofeq, so both implications hold, and the only valid
parameter choice is 42, which i#roj(0), the pixel value
corresponding to sea level.

7 Previous Work
Other planners, including (Golden, Etzioni, & Weld 1994;

and the same domain is established by the RHS. Removing Go|den 1998; Babaian & Schmolze 2000) also support uni-

the satisfied terms, we get:

X',y :unsignedgelev. real 3V': unsigneddel’:real
when(X<XMAX && Y<YMAX &&
elev=elevation(xProj(X'),yProj(y)))
V = hProj(el’);
el'=elev ;
when (elev > 0) Vv'>thresh
when (elev < 0) V' <thresh

which, simplified to it essence, gives us the following two
guantified constraints.

Ver: real. (e1 > 0) =(hProj(e;)>thresh)
Vey: real. (e <0) =(hProj(ez)<thresh)

Recall thathProj is an increasing linear function. Assume

hProj(e)=0.05e+42. Note that although the domainta#roj

is unbounded, the range 8,255, so all values o€ below

-840 map to 0, and all values above 4260 map to 255. Since

we map real values onto integers, we will always round up.
These constraints share the paramtitiersh which needs

versal quantification. The universally quantified statements
in PSIPLAN (Babaian & Schmolze 2000) can include in-
equality constraints, which are used to exclude individuals
from the universe of discourse. However, no prior planning
systems support the ability to determine the validity of uni-
versally quantified constraints that we discuss here.

The Amphion system (Stickelt al. 1994) was designed
to construct programs consisting of calls to elements of a
software library. Amphion is supported by a first-order theo-
rem prover. The task of assembling a sequence of image pro-
cessing commands is similar to the task Amphion was de-
signed to solve. However, the underlying representation we
present here is a subset of first-order logic, enabling the use
of less powerful reasoning systems. The planning problem
we address is considerably easier than general program syn-
thesis in that action descriptions are not expressive enough
to describe arbitrary program elements, and the plans them-
selves do not contain loops or conditionals.

Ginsberg and Parkes (Ginsberg & Parkes 2000) point

to be assigned a value. As discussed above, there are a numeut that the satisfiability encoding of many STRIPS plan-

ber of possible variable ordering strategies we could employ,
the default being to choose a value fareshand then see
if the quantified constraints are satisfied. Say we pick the
value 43. Let's tackle the constraint @ first. Enforc-
ing the LHS constraint sets the domaineafto the interval
(0,0). On the RHS, propagating the valuetbfeshsets the
domain ofhProj(e;) to [44,255. The domain of; then be-
comes(20,). Since the domain o is not the same as it
was according to the LHS, the constraint is violated, so 43
is not a valid assignment tbresh

Now say we pick 42. Once again, the domainegpfis
(0,00) . This time, propagatinthreshin the RHS makes the

ning problems requires creating multiple grounded instances
for axioms of the formvxyz(a(x,y) A b(y,z) = c(x,2),
then performing search over the truth values for all of the
grounded instances. They propose a formulation in which
a(x,y)),b(y,z) andc(x,z) are constraints on variablesy,z
and use this formulation to either search for units or find
good variables to flip in local search. This is a different re-
striction on first-order logic from that we use, and further-
more, the domains of y,z are implicitly assumed to be fi-
nite.

L'Homme (UHomme 1993) and Marriott and Stuckey
(Marriott & Stuckey 1998) both describe methods of pre-

AIPS 2002 241

serving an interval representation of variables involved in

arithmetic constraints while eliminating infeasible values.

However, they explicitly assume that the interval representa-
tion is an unsound approximation to the domain of feasible
values. Benhamou and Goualard (Benhamou & Goualard
2000) describe a method of sound but incomplete approxi-
mate propagation of infinite domains. Since we require both

soundness and completeness in cases where that set may be

infinite, we have made stronger restrictions on the types of
reasoning performed.

8 Conclusions and Future Work

We have described a planning methodology for softbots
that supports universal quantification, incomplete informa-
tion, and constraints on variables with very large or infinite
domains. We restrict the form of both goals and effects,
while preserving the ability to express conditional effects
and reason about incomplete information. Our approach
uses a combination of unification and constraint reasoning
to demonstrate entailment. We described an algorithm for
proving or disproving entailment for constraints over finite
domains, and identified a subclass of constraints for which
the same algorithm can prove or disprove entailment for
variables with infinite domains. This class of constraints has
proven useful in the domains of planning for image process-
ing and managing file archives.

When describing the algorithm to validate quantified con-

ternational Conference on the Principles and Practices of
Constraint Programming67—-82.

Chien, S.; Fisher, F.; Lo, E.; Mortensen, H.; and Greeley,
R. 1997. Using artificial intelligence planning to automate
science data analysis for large image databasePrd.
1997 Conference on Knowledge Discovery and Data Min-
ing.

Etzioni, O., and Weld, D. 1994. A softbot-based interface
to the InternetC. ACM37(7):72-6.

Etzioni, O.; Golden, K.; and Weld, D. 1997. Sound and
efficient closed-world reasoning for planning. Artificial
Intelligence89(1-2):113-148.

Freuder, E. 1982. A sufficient condition for backtrack-free
search.Journal of the Association for Computing Machin-
ery29(1):24-32.

Freuder, E. 1990. Complexity of k-tree structured con-
straint satisfaction problems. Proceedings of the 8th Na-
tional Conference on Artificial Intelligencd—9.

Ginsberg, M., and Parkes, A. 2000. Satisfiability algo-
rithms and finite quantification. IRroceedings of the 7th
Conference on Knowledge Representation

Golden, K.; Etzioni, O.; and Weld, D. 1994. Omnipotence
without omniscience: Sensor management in planning. In
Proc. 12th Nat. Conf. Al1048-1054.

Golden, K. 1997Planning and Knowledge Representation
for Softbots Ph.D. Dissertation, University of Washington.

straints, we assumed that all parameters of the actions were ayajlable as UW CSE Tech Report 97-11-05.

assigned before validation occurs. As described in Section
6, there are times when it is worth deferring the decision
about parameters to actions, because propagation will limit
the possibilities. Exploiting these possibilities is the subject
of future work.

We can potentially weaken the conditions on quantified
constraints required to reason about variables with infinite
domains.The condition thatb andW¥ share only one vari-
able can be relaxed when there is a procedure for check-
ing the validity of the constraint without checking infinitely
many values. One case is when all of the constraints de-
scribe linear equations or inequalities. In addition, it may
be possible to generalize thenditions under which consis-
tency enforcement allows us to conclude that all the values
of a variable participate in solutions to a CSP. Finally, we
can try to find more constraints on which we can enforce
consistency when domains are infinite.

Acknowledgments We would like to thank Tania Bedrax-
Weisss, Ari Jénsson, Wanlin Pang, Robert Morris and Ellen
Spertus for their helpful comments and contributions to this
work. This work was supported by the NASA Intelligent
Systems program.

References

Babaian, T., and Schmolze, J. 2000. Psiplan: Open world
planning with-forms. InProceedings of the 5th Confer-
ence on Atrtificial Intelligence Planning and Scheduling

Benhamou, F., and Goualard, F. 2000. Universally quan-
tified interval constraints. IfProceedings of the 6th In-

242 AIPS 2002

Golden, K. 1998. Leap before you look: Information gath-
ering in the PUCCINI planner. IRroc. 4th Intl. Conf. Al
Planning Systems

Lansky, A. L., and Philpot, A. G. 1993. Al-based plan-
ning for data analysis tasks. Proceedings of the Ninth
IEEE Conference on Atrtificial Intelligence for Applications
(CAIA-93)

L'Homme, O. 1993. Consistency techniques for numeric
csps. InProceedings of the 13th International Conference
on Artificial Intelligence

Marriott, K., and Stuckey, P. 1998Programming with
Constraints: An IntroductionThe MIT Press.

Pednault, E. 1989. ADL: Exploring the middle ground be-
tween STRIPS and the situation calculus.Pihoc. 1st Int.
Conf. Principles of Knowledge Representation and Rea-
soning 324-332.

Penberthy, J., and Weld, D. 1992. UCPOP: A sound, com-
plete, partial order planner for ADL. IAroc. 3rd Int. Conf.
Principles of Knowledge Representation and Reasqgning
103-114. See alsbttp://www.cs.washington.edu/
research/projects/ai/www/ucpop.html.

Stickel, M.; Waldinger, R.; Lowry, M.; Pressburger, T.; and
Underwood, I. 1994. Deductive composition of astronom-
ical software from subroutine libraries. FProceedings of
the 12th Conference on Automated Deduction

