
A Plan-Based Personalized Cognitive Orthotic

Colleen E. McCarthy
Department of Computer Science

University of Pittsburgh
colleen@cs.pitt.edu

Martha E. Pollack
Computer Science and Engineering

University of Michigan
pollackm@umich.ed

Abstract

The majority of reminder systems are inflexible; reminders
are issued at static, prespecified times. To be effective, cogni-
tive orthotics should reason about what reminders should be
issued and when. This paper describes the personalized cog-
nitive orthotic (PCO), a system that uses plan-based reason-
ing to attain flexibility. PCO relies on local search techniques
to generate high-quality reminder plans based on knowledge
of the user’s plans and her typical behavior. PCO is being
developed in concert with other technologies aimed at im-
proved plan management, including systems that update a
user’s plans and track action execution. We describe the PCO
as it is implemented in the Nursebot application: where it
provides timely and relevant reminders to elderly people who
have cognitive decline that necessitates assistance in manag-
ing their daily activities.

Introduction
It has become common practice to use personal organizers
to manage our daily activities. Most systems are equipped
with reminder capabilities, but these tools are generally in-
flexible; reminders are issued at static, prespecified times.
The goal of our current work is to develop better personal
cognitive orthotics, or more generally, better plan manage-
ment tools. Cognitive orthotics should reason about what
reminders should be issued and when, so as to balance the
need to (i) ensure that the user is aware of planned activities;
(ii) avoid introducing inefficiency into the user’s activities
(iii) avoid annoyance; and (in some cases) (iv) avoid making
the user overly reliant on the reminders.

This paper describes the Personalized Cognitive Orthotic
(PCO), a system that uses plan-based reasoning to achieve
these goals. PCO relies on local search techniques to gen-
erate high-quality reminder plans based on knowledge of
the user’s daily plan and her typical behavior. PCO is
being developed in concert with other technologies aimed
at improved plan management, including systems that up-
date a user’s plans and track action execution. Currently,
PCO is designed to interact with these systems in an over-
all plan-management system called Autominder (Pollack et
al. 2001). We describe the PCO in a particular application,
the Nursebot project: where it provides timely and relevant

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

reminders to elderly people who have cognitive decline that
necessitates assistance in managing their daily activities.

Motivation

The proportion of elderly people in the United States is
growing at a phenomenal rate. Currently, 12.5% of the pop-
ulation is age 65 or older; by 2030, this fraction is projected
to surpass 20% (Census 1997). In the same time frame, the
number of persons residing in nursing homes will double
or triple (Rivlin & Wiener 1988). It is generally accepted
that quality of life is usually better for people who are liv-
ing in their own homes, provided they are capable of doing
so. However, due to the decline of cognitive function often
associated with aging, this option is not always available.
The Initiative on Personal Robotic Assistants for the Elderly
(Nursebot 2000) is a multi-university research effort1 aimed
at investigations of robotic technology for the elderly. Its ini-
tial focus is on the design of an autonomous mobile robot,
currently called Pearl, that will “live” in the home of an el-
derly person and assist in the management of her daily plan.

A central software component of Pearl is Autominder, an
automated agent designed to serve as a “cognitive orthotic,”
assisting an elderly client in carrying out the required activ-
ities of daily life (ADLs) by providing her with timely and
appropriate reminders. Autominder stores and updates plans
representing a user’s ADLs, tracks their execution, learns
the typical behavior of the client with regard to the execu-
tion of these plans, and provides carefully chosen and timed
reminders of the activities to be performed.

Autominder differs from most of the technology-based re-
minder systems in the medical domain. First, most of these
systems are geared towards aiding the doctors and caregivers
(Cannon & Allen 2000), but even those systems that do ad-
dress the needs of the patient generally use simple, scripted
reminders to prompt the user at prespecified times. They
do not adapt to changes such as the introduction of a new
plan, or the execution of activities. In general, the current
suite of cognitive orthotics lack the power to reason about
the relevance, timing, and/or interaction of reminders. Most
existing systems lack one of more of the following key ca-

1The initiative includes researchers from the University of Pitts-
burgh, Carnegie Mellon University, and the University of Michi-
gan.

AIPS 2002 243

pabilities:

Automatic scheduling
A cognitive orthotic should decide what to reminders to
issue and when. Some activities are central to the safety
and well-being of the user so there must be some guar-
antee that the orthotic will issue a reminder for them.
However, less critical activities do not always require a
reminder, especially if the user typically remembers the
activity on her own. In addition, the addition and deletion
of reminders should coincide with new user goals and user
activity.

Utilization of multiple information sources
In developing a plan of action, the cognitive orthotic
should be able to combine information from many
sources, including both hard constraints on activity execu-
tion and interaction, or the soft constraints of user habits
and preferences.

Plan quality assessment
There are many aspects to a high quality plan. Just some
of the reminder plan qualities that a cognitive orthotic
should address are:

• The spacing between reminders - Reminders are often
more effective when they are not issued in quick suc-
cession (IPAT 1999).

• Shared properties inherent in the activities, such as lo-
cation or timing - Reminders for proximal activities
should be merged into a single reminder when appro-
priate.

• Potential overlap between activities - The cognitive or-
thotic should identify and avoid issuing reminders dur-
ing the execution of other activities.

The focus of this paper is a new system, the Personal-
ized Cognitive Orthotic (PCO). The PCO was developed to
fulfill the requirements above, and to do so efficiently in a
dynamic environment. The PCO: identifies those activities
that require reminders based on importance and likelihood
of being forgotten; determines effective times to issue the
reminders; and adapts to environmental changes. The PCO
is an integral part of the Autominder system so we use the
next section to provide an overview of the Autominder ar-
chitecture and explain how the PCO interacts with the other
components of the system. We then proceed with a detailed
description of the PCO algorithm and its implementation

Autominder
As already noted, Autominder is responsible for Pearl’s plan
management and reminder capabilities. Autominder relies
on a number of AI techniques, including interleaved plan-
ning and execution, sophisticated temporal reasoning, and
reasoning under uncertainty. Figure 1 shows the Automin-
der architecture. Note that there are three main modules: a
Plan Manager (PM), a Client Modeler (CM), and the PCO.

The example we will use throughout this paper involves a
day in the life of a typical user who we will call Rose. Rose
usually wakes up by 7:00am. She eats breakfast, lunch, and

Figure 1: The Autominder Architecture

dinner, and takes medication twice a day2. Her caregiver has
recommended that she drink water at least 8 times a day and
perform her rehabilitation exercises 3 times a day. Rose has
a favorite television show at 11:00am, and attends the daily
Bingo game at 3:00pm. Updates to Rose’s plan (e.g., a new
doctor’s appointment) can be made by her caregiver. Fig-
ure 2 shows a simplified version of these activities, omitting
causal and temporal constraints for presentational clarity.

The information provided by the caregiver is used by the
Autominder Plan Manager (again, see Figure 1). The PM
is an extension of the Plan Management Agent, a prototype
intelligent calendar tool (Pollack & Horty 1999). The PM
stores Rose’s plans, updating them as activity constraints are
added, deleted, or modified, and/or as Rose executes activ-
ities. A central task for the PM is to ensure that there are
no conflicts amongst the user’s plans, suggesting alternative
ways to resolve any potential conflicts it detects (e.g., sug-
gesting the use of the toilet before leaving for the doctor’s
office).

Although Figure 2 only shows a simple list of activi-
ties, in fact, within Autominder, the daily activities are rep-
resented as Disjunctive Temporal Problems (DTP) (Oddi
& Cesta 2000; Stergiou & Koubarakis 1998; Tsamardinos
2001). A DTP is an expressive framework for temporal rea-
soning problems that extends the well-known Simple Tem-
poral Problem (STP) (Dechter, Meiri, & Pearl 1991) and the
Temporal Constraint Satisfaction Problem (TCSP) [ibid.] by
allowing arbitrary disjunctions; e.g read the newspaper be-
fore noon or watch the news at 5 p.m. The user plan is also
able to support a rich set of temporal constraints between the
activities, including relative start time, duration, and mini-
mum and maximum time between activities. The PM uses
efficient, constraint-based reasoning algorithms for DTPs to
update the users’s plans by recording the time of execution

2In the early versions of the Autominder, we are not directly is-
suing reminders about medicine-taking, due to safety concerns: we
want to ensure the correctness of Autominder before seeking FDA
approval to include medicine reminders. We do however include a
range of other modeled activities.

244 AIPS 2002

Figure 2: Library of Daily Activities (Causal & Temporal
Links Omitted)

and propagating any affected constraints to other activities
(Tsamardinos 2001). For instance, if Rose is supposed to
take medicine no less than two hours after eating, the time
for medicine-taking can be made more precise upon learn-
ing that the user has begun lunch. Once the constraints have
been propagated and the DTP has been shown to be consis-
tent, a single STP is chosen as the user’s daily plan. Figure
3 shows a user plan extracted from the DTP constructed for
Figure 2. The start and end times of some activities have
been constrained to meet the temporal requirements of the
activities (e.g. Rose can not do all three sets of exercises at
the same time).

An effective cognitive orthotic should be aware of
changes in the environment. In some domains information
about actions may be direct, such as input to a Palm Pilot. In
other domains such as Nursebot, information is obtained via
less direct sensors, such as cameras. While these sensors can
detect information such as the location of the elderly client,
they cannot directly recognize when an activity such as “eat
dinner” has been performed. Autominder’s next component,
the Client Modeler (CM), uses the user plan and sensor in-
formation to infer the probability that a planned activity has
been initiated or has ended (e.g., going to the kitchen around
the normal dinner time may indicate that the user is begin-
ning dinner). This inference is performed using a novel, bi-
level dynamic Bayesian network framework (Colbry, Peit-
ner, & Pollack 2001). Over time, the CM should also con-
struct a model of the user’s expected behavior (e.g., Rose
usually remembers to take medicine in the morning, but fre-
quently forgets in the afternoon); however, this last capabil-
ity (learning) has not been implemented.

The CM and PM provide input to the third component
of Autominder, the Personalized Cognitive Orthotic (PCO).
The PCO is designed to balance user compliance and ef-

Figure 3: Extracted User Plan

ficiency against annoyance and over-reliance. Reminders
should ensure that the user is aware of upcoming activities,
but not at the expense of distracting or annoying the user. In
addition, adherence to a reminder should not lead to ineffi-
cient execution of the user plan, and if possible, the reminder
plan should be structured to prevent overreliance on the sys-
tem. The PCO achieves these goals by using planning tech-
niques and domain knowledge to build and maintain a plan
of reminders. This plan is continously updated to react to
user actions and changes in user preferences and caregiver
recommendations.

PCO
The PCO uses an approach based on the Planning by Rewrit-
ing paradigm (PbR) (Ambite & Knoblock 2001). PbR is an
anytime planning system that uses local search and rewrite
rules to transform suboptimal plans into high quality plans.
PbR consists of four stages: (i) generation of an initial so-
lution, (ii) application of rewrite rules to produce new can-
didate solutions, (iii) evaluation of the candidates, and (iv)
selection of the next solution for further expansion. The
PbR approach is well-suited to the development of reminder
plans since it is easy to generate an initial plan, but harder
to generate a high-quality plan. While the number of dif-
ferent activities in a daily plan may be small, the flexibility
in the timing of the reminders would create a search space
that is prohibitively large for a global search. Using local
search allows the planner to develop high-quality plans (im-
portant for user satisfaction in our domain) but still provides
an anytime property.

The PCO adapts the PbR framework to the requirements
of a cognitive orthotic and extends it to support continued
maintenance of those plans as the environment changes.
Pseudo-code algorithm for the PCO algorithm is given in
Figure 4, and we now consider each stage in turn.

AIPS 2002 245

PCO
1. Generate initial reminder plan P
Loop:

While no interrupt:
2. a. Use all applicable rewrite rules to create a

neighborhood of reminder plans P ′′
1 . . .P ′

n
b. For each plan Pi

i. Repair reminder plan as needed
ii. Check for consistency

c. Evaluate reminder plan quality
d. Choose P ′) with max value

3. If reminder interrupt:
a. Issue reminder;
b. Update reminder plan

4. If other interrupt:
a. Update reminder plan

End Loop

Figure 4: The PCO algorithm

To create an initial reminder plan, the PCO needs only
to set a reminder for the earliest start time of every activity.
This information is available from the user plan. Reminder
plans are represented as a graph structure where each node
represents a reminder step and each edge denotes a temporal
or causal constraint between the steps. Each reminder step
has fields representing the associated user plan step(s) and
time of issuance. Causal and temporal information in the
reminder plan are inherited from the user plan because the
reminders must respect the ordering of the activities in the
user plan. As we will discuss later, the reason for maintain-
ing causal structure (in the form of causal links) is to enable
appropriate reminder plan update when there are environ-
mental changes. The goal state in the initial reminder plan is
a reminder for every activity. Figure 5 (next page) shows an
initial reminder plan for our running example, constructed
with reminders at the earliest start time.

Generating an initial plan

The rewrite rules

It is easy to see that the initial reminder plan may be far
from optimal. In this example, the majority of the reminders
are clustered early in the morning, even though some of the
activities could (and possibly should) be deferred to the af-
ternoon. Therefore, the next step in the PCO algorithm is to
improve the quality of the reminder plan. For this, the PCO
uses rewrite rules to generate a neighborhood of candidate
plans.

For the current Nursebot application, the rules are created
from information about the plan activities and structure, the
user’s habits and preferences, and any caregiver recommen-
dations. The rewrite rules in the current version of the PCO
are designed to:

Rule Type: Time to Issue:

Preferred PR(A) At time recommended by
caregiver

Expected ExR(A) After the expected time
Spreadout SOR(A) At even distribution over time
Conflict CR(A) Before or after conflicting activity
Merged MR(A) In combination with other

reminders
Earliest ER(A) At earliest start time
Latest LR(A) At latest start time

Figure 6: Types of rewrite rules

• use times recommended by the caregiver,

• use times similar or after the expected time of activity ex-
ecution,

• use earliest and latest start times,

• space out activities of similar types,

• delete reminders for activities that are seldom forgotten
by the user, and/or

• merge reminders3.

Rewrite rules consist of an antecedent and an instantia-
tion. The antecedent matches operators, links, and goals
against objects in the reminder plan P . The instantiation
of a rule involves deleting a goal or removing some subplan
Pi from P and inserting a new (possibly empty) subplan
Pj . In Autominder, rewrite rules remove a node designating
a reminder for activity A and replace it with another node
designating one of the reminder types in Figure 6. Sample
rules are shown in Figure 7.

For example, 7(a) shows the useExpected rule, which can
replace a reminder to do some activity A at an arbitrary time
(perhaps earliest or latest), with a reminder ExR(A) for its
expected time. Similarly, the removeReminder rule in 7(b)
also uses information from the user model to transform the
reminder plan. If there exists a very high probability that the
user will remember to perform A on her own, any reminders
for A are removed. However, recall that the goal state of the
initial reminder plan is to remind for all activities. Thus, the
removeReminder rule also deletes this top level goal.

The rules shown above affect only a single reminder step
or goal, but rewrite rules can also alter larger subplans. For
example, one rule in the PCO spaces out reminders for ac-
tivities of the same type. In Figure 8 we show the reminder
plan that results from applying this “SpreadOut” rule to the
hydration reminders in the initial reminder plan of Figure 5.
As you can see, the EarliestReminder steps for Hydration1
through Hydration8 have been replaced by reminders that
spread out the reminder times.

Note that none of the rewrite rules we have described pro-
vide information about how to embed the new subplans into

3This rule has not been implemented in the current version of
PCO.

246 AIPS 2002

Figure 5: Initial Reminder Plan

useExpected(Plan P, Activity A)
{

// Take a subplan from P
ReminderStep X(A) = P.opsList(x);

//Find the step in user plan associated with A
ClientPlanStep S = A.associatedStep;

// Find operator Y that uses expected time
ReminderStep Y = createNewReminder(A,”Expected”);

// If Y exists, remove X and replace with Y
replace(X(A), Y(A), P);

return P;
}

(a)

removeReminder(Plan P, Activity A)
{

// Take a subplan from P
ReminderStep X(A) = P.opsList.get(x);

//Find the step in user plan associated with A
ClientPlanStep S = A.associatedStep;

// Find the probability of S being executed
long Y = getprobability(A);

// If Y exceeds threshold, remove reminder
if (Y > THRESHOLD)

removeFromGoal(S,P);
replace(X(A), null, P);

return P;
}

(b)

Figure 7: Sample Rewrite Rules

the graph structure of the plan, ie., how to add and delete
arcs. However, the PbR approach allows for partially speci-
fied rewrite rules. In such cases, rule application is followed
by invocation of a planner to complete the plan. The current
version of the PCO uses a handcrafted partial-order planner
to correct flaws in the candidate reminder plan, therefore,
the nodes and edges in the plan in Figure 8 are completely
specified.

The rewrite rules do not always produce (valid) reminder
plans. That is, when a node is removed or replaced, the re-
sulting plan may be inconsistent with respect to the chaining
temporal or causal constraints. For instance, in Figure 9 the
useLatest rewrite rule has been applied to the reminder plan
in Figure 8. By changing the time for Hydrate1 to its latest
possible start time, we have violated the temporal ordering
between Hydrate1 and Hydrate2. All invalid candidate plans
are detected by the planner and discarded by the PCO.

Evaluation
Once a neighborhood of reminder plans is generated and any
invalid plans are discarded, the local search algorithm must
evaluate the remaining candidate solutions. Since there is
no way to directly measure the effectiveness of each possi-
ble individual reminder, we have operationalized evaluation
criterion that “stand in” for our actual goals4.

The first criterion in a reminder plan is that it must include
a reminder for all critical activities or else the value is set
to −∞. After correctness, the quality of the plan is most
greatly affected by the number of reminders, their timing,
and their relative spacing.

Number: In general plans with fewer reminders are as-
sessed more highly. Since the PCO guarantees that crit-
ical activities are accounted for, having fewer reminders
means that unnecessary reminders have been removed
and/or reminders have been merged.

Timing: The timing of a reminder can affect plan quality
in several ways:

• Reminders issued close to the preferred and/or recom-
mended times should increase client and caregiver sat-

4We will later conduct field tests with users and caregivers to
validate this correlation.

AIPS 2002 247

Figure 8: Reminder plan after the application of a SpaceOut rewrite rule

Figure 9: Application of “useLatest”

isfaction.
• Reminders issued after the expected time of activity ex-

ecution should increase client autonomy.

Spacing: The elapsed time between reminders is impor-
tant in two ways. First, to increase efficiency in plan ex-
ecution the overall distribution of reminders should avoid
any clustering and/or overlap. Second, it is often the case
that a single activity should be executed multiple times in
a day, such as the exercises and hydration in our current
example. In such cases it is especially helpful if these par-
ticular activities are performed throughout the day rather
than in rapid succession. In both of these cases there is no
specific time that is preferred for these activities, rather
there exists a preference on the spacing between them.

The relative importance of these different attributes is re-
flected in the evaluation metrics.

We evaluate plans by looking at the individual reminders
and then the plan as a whole. The time associated with each
reminder is compared to any specialized input (expected,
preferred, etc.). The distance between scheduled reminder
times and preferred/expected time is then multiplied by a
weighting factor, wpref or wesp respectively. For repeated
activities, we calculate the difference between the actual
space between each pair of subsequent activities and the op-
timal space. We then sum these and normalize by dividing
by the optimal spacing. We apply similar calculations over
all reminders to check that the reminder plan as a whole is

evenly distributed.
Assume we weigh the value of the preferred,

recommended, and expected times and the value
given to evenly spaced activities and plans,
wpref , wrec, wexp, wdistrib, andwspace respectively. In
addition, we know the number of reminders (#reminders),
number of activities in the client plan (#activities), and the
optimal spacing between the reminders (S). Plan evaluation
is done as follows:

1) Loop through reminders r
If |rtime − preftime| < ε

Plan += wpref ∗ |rtime − preftime|
If |rtime − rectime| < ε

Plan += wrec ∗ |rtime − exptime|
If rtime > exptime

Plan += wexp

2) Plan += Deviation from preferred-spacing * wdistrib

3) Plan += Deviation from S ∗ wspace

4) Plan += (#activities − #reminders) ÷ (#activities)

As an illustration, consider the case where the useLatest
and useExpected rules are applied to the plan in Figure 8.
There are now two new plans to evaluate, shown in Figures
10 & 11. The reminder plan in Figure 10 was created by ap-
plying the rule useLatest; by moving the time for Exercise3

248 AIPS 2002

Figure 10: Another application of “useLatest”

Figure 11: Application of “useExpected”

to 8:30pm. In this scenario the value of the plan increases
because average spacing of the plan has improved. In Figure
11 the application of useExpected rewrite rule incorporates
user information into the reminder plan by moving the re-
minder for Lunch to 1:30. This increases Note that the ap-
plication of a single rewrite rule can affect the plan value in
multiple ways. For instance, moving a reminder to its latest
time might fortuitously satisfy some criteria not fulfilled in
an earlier plan (i.e. the preferred time is also 8:30pm), and
vice versa (the preferred time to eat lunch is 12:00pm).

Selection
The final step in the local search of PCO is to choose the
reminder plan with the highest value. If the plan quality has
exceeded a given threshold, the PCO will pause, otherwise
the loop is continued. However, two types of events will
cause the algorithm to break the pause or loop: the issuance
of a reminder, or an interrupt from the Autominder indicat-
ing that there has been a change in the environment. The
PCO must react to these changes in order to ensure the va-
lidity of the reminder plan and increase user satisfaction.

Reacting to change
As reminders are issued and activity constraints are added,
deleted, or modified, and/or as the user executes activities,
the reminder plan may need to be updated. At the start of
the day, many temporal constraints on the daily activities are
extremely flexible, but as time progresses, a number of these

constraints will tighten. For example, eating lunch can affect
the time bounds for taking medication. If the PCO does not
react appropriately to change, reminders may be issued at
incorrect times.

Hard constraints in a plan are all the constraints that, when
changed, require re-evaluation of, and possible modifica-
tions to, the plan. In Autominder, the client plan may change
when a new activity is added or time bounds are modified.
These changes introduce in hard constraints in the reminder
plan, which, after all, must reflect the client’s scheduled ac-
tivities. All changes in hard constraints must be addressed:
and the PCO must check whether the reminder plan is still
valid, and if necessary, replace any invalidated reminders in
the current reminder plan with EarliestReminders (see Fig-
ure 12 for algorithm details).

The PCO also handles changes in soft constraints (pref-
erences, recommendations, client model information, etc.).
Soft constraints affect the quality of the reminder plan, but
not the validity. Consider the case in which the user indicates
that she would like to change her preferred reminder for
lunch from 11:30am to 12:30pm. Because the time bounds
on lunch have not changed, the PCO has the option of ignor-
ing the preference change in time critical situations. The cur-
rent reminder plan may not reflect the new soft constraints,
but it is still valid. However, as shown in Figure 13, if the
PCO updates the ExpectedReminder to reflect this new pref-
erence, the reminder plan must be checked to ensure that the
new reminder time is within the valid time bounds of the

AIPS 2002 249

Change in hard constraint

1. If change is plan addition A
a. add new goal A to reminder plan
b. add EarliestReminder for A to plan;

2. If time bound change for A
a. change reminder step to reflect

newest start or execution time
b. check that plan is still valid with newly

changed reminder step and bounds,
i. if not, replace with EarliestReminder

Figure 12: Reacting to changes in hard constraints

Change in soft constraint

1. If Change in preference P
a. If time-critical

i. ignore
else
b. update operators affected by P
c. check that plan is still valid with newly

changed operators,
i. if not, replace operator with useEarliest

Figure 13: Reacting to changes in soft constraints

user plan. That is, the validity of the soft constraint must be
ensured.

Related Work
As described earlier, the Planning by Rewriting (PbR)
paradigm (Ambite & Knoblock 2001) is a planning system
that uses local search to generate plans. It works by quickly
generating an initial plan and then performing incremental
improvement to increase the quality of the plans. PbR offers
a number of advantages: it is domain-independent, accepts
complex quality metrics (as opposed to quality based only
on plan length), and is an anytime algorithm. In addition
PbR the uses declarative plan-rewriting rules. PbR balances
efficiency and quality and has been shown to generate high-
quality plans quickly; PbR was one of only three planners
able to solve some of the problems at the 2000 AIPS plan-
ning competition (Bacchus Fall 2001). To date, PbR has
been used primarily in the domains of query processing and
logistics. The PCO extends the PbR algorithm by interleav-
ing planning and execution. As noted above, changes in the
environment are handled by the application of rewrite rules
or a quick repair to the current reminder plan. The rewrite

rules in the PCO can also adjust the goal state as opposed to
only the intermediate plan steps.

Execution Systems

Another relevant class of systems oversees plan execution
(Pell et al. 1996; Bonasso et al. 1997). These systems
typically include a plan deliberation component to produce
plans that are then dispatched to an execution component,
or executive, which is responsible for the performance of
the actions in the plan. Similar to reminder systems, dis-
patch systems are responsible for ensuring the timely com-
pletion of activities. Efficient algorithms for dispatch have
been studied for plans represented as Simple Temporal Prob-
lems (STPs) and Temporal Constraint Satisfaction Problems
(TCSPs) (Muscettola, Morris, & Tsamardinos 1998). How-
ever, these systems don’t reason about the necessity of the
reminders or their timing. Instead, all activities are executed
at the earliest possible time.

Medical reminder systems

There has also been important work done that directly ad-
dresses issuing reminders. Kirsch and Levine (Kirsch et
al. 1987) developed an automated cuing system intended to
achieve goals similar to our own. In their system, caregivers
input a detailed sequence of steps for target activities and the
system provides cues to an individual user about these struc-
tured tasks. Their system also monitored time in order to re-
focus the user in the case of interruption (Kirsch & Levine
June 1988). Parente (Parente 1991) also addressed the need
for software to assist persons with memory disorders by us-
ing expert system techniques to provide cues for complex
activities. Like the activities used by Kirsch and Levine, the
tasks modeled by Parente are hierarchical. Note that in both
of these systems, the reminders are prescriptive – there is no
reasoning about the selection or timing of reminders.

The PEAT system (Levinson 1997) goes beyond most
other automated medical reminder systems. PEAT uses AI
planning technology on a PDA to assist users with trau-
matic brain injury in planning and executing daily activi-
ties. PEAT uses an AI planning system called PROPEL,
the PROgram Planning and Execution Language (Levinson
1995). In PROPEL, user-defined scripts are used to guide
the planner and execution monitor. Planning involves simu-
lating the script before it is executed. The planner evaluates
each simulation with respect to the goals, and it searches
for program variations that maximize goal achievement. Fi-
nally, the planner generates advice rules that are used during
execution to prompt the user through each plan step. PEAT
is able to propagate temporal information, but the reminder
system is neither selective nor adaptive. Reminders are is-
sued for all activities and the relative time of issuance does
not change.

Conclusions
The PCO as described in this paper is fully implemented
and integrated with the current Autominder platform. Un-
like traditional reminder systems, the PCO uses planning

250 AIPS 2002

techniques to generate high quality reminder plans that inte-
grate information about plan structure, caregiver recommen-
dations, and user preferences. The PCO generates timely,
relevant reminders. When it is time for a reminder to be
issued, a text string is sent to Pearl (the robot platform on
which Autominder is deployed). Pearl then does text-to-
speech translation and relays the reminder to the user. The
PCO is designed to enable the generation of justifications
for reminders, in hopes that user adherence to plans may be
improved when the reasoning behind the existence and tim-
ing of a reminder is provided. For example, a reminder of
the form “If you take your medicine now, you will not have
to do it in the middle of your TV show,” may be more com-
pelling than the generic message “Time for medicine.” In
generating a justification for a reminder, the PCO will make
use of the underlying user plan, the preferences of the care-
giver and the user, and the particular rewrite rules used in
creating the current reminder plan.

The PCO has been tested on a library of plans created
with the help of healthcare professionals from the Nursebot
team. The PCO runs on a Pentium III 933 MH processor
with 262 MB of RAM and the time to generate and main-
tain small plans has been insignificant. Due to a limited plan
library, testing on the speed of the PCO for large domains
has not yet been done. A near-term goal is to conduct exten-
sive interview with residents and caregivers at a retirement
community. This will not only aid in evaluating our quality
metrics, it will also provide additional knowledge acquisi-
tion.

Future work on the PCO will include additions to the
current corpus of rewrite rules. In particular, the inclusion
of rules that will combine activities that share common re-
sources must be completed. Activity priorities need to be
implemented in the system as well. Finally, the PCO does
not currently exploit the full flexibility of the plans encoded
in the PM. Where the PM handles disjunctive constraints,
the PCO bases the reminders only on the STP chosen as the
current daily plan. Allowing disjunctions would require a
new initial plan generation scheme. We are investigating
the user of work on flexible dispatch of DTPs (Tsamardi-
nos, Pollack, & Ganchev 2001) amongst other solutions to
address this problem.

Acknowledgments

This research was supported by the Air Force Office of Sci-
entific Research (F49620-01-1-0066), the National Science
Foundation (115-0085796), and a fellowship from the Na-
tional Physical Sciences Consortium. The views and con-
clusions herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of AFOSR or
the U.S. Government.

References

Ambite, J. L., and Knoblock, C. 2001. Planning by rewrit-
ing. Journal of Artificial Intelligence Research (JAIR)
15:207–261.

Bacchus, F. Fall, 2001. AIPS’00 Planning Competi-
tion: The Fifth International Conference on Artificial In-
telligence Planning and Scheduling Systems. AI Magazine
22(3).

Bonasso, R. P.; Kortenkamp, D.; Miller, D.; and Slack, M.
1997. Experiences with an architecture for intelligent, re-
active agents. Journal of Experimental and Theoretical Ar-
tificial Intelligence 9(1).

Cannon, D. S., and Allen, S. N. 2000. A comparisons of the
effects of computer and manual reminders on compliance
with a mental health clinical practice guideline. JAMIA
7:196–203.

Census. 1997. Aging in the United States: Past, present,
and future. Technical report, National Institute on Ag-
ing and United States Bureau of the Census. Available at
http://www.census.gov/ipc/prod/97agewc.pdf.

Colbry, D.; Peitner, B.; and Pollack, M. 2001. Execu-
tion monitoring using quantitative temporal dynamic bayes
nets. Submitted.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.

IPAT. 1999. Solutions: Assistive technology for people
with hidden disabilities. Available at www.ndipat.org.

Kirsch, N., and Levine, S. P. June 1988. Improving func-
tional performance with computerized task guidance sys-
tems. In Proceedings Compe Rendu Internatinoal Confer-
ence of the Association for the Advancement of Rehabilita-
tion Technology ICAART 88, 564–56.

Kirsch, N.; Levine, S. P.; Fallon-Krueger, M.; and Jaros,
L. A. 1987. The micorcomputer as an ‘orthotic’ device for
pateints with cognitive deficits. Journal of Head Trauma
Rehabilitation 2(4):77–86.

Levinson, R. 1995. A general programming language for
unified planning and control. Artificial Intelligence. 76.

Levinson, R. 1997. PEAT – The Planning and Execution
Assistant and Trainer. Journal of Head Trauma Rehabili-
tation.

Muscettola, N.; Morris, P.; and Tsamardinos, I. 1998. Re-
formulating temporal plans for efficient execution. In Pro-
ceedings of the 6th Conference on Principles of Knowledge
Representation and Reasoning.

Nursebot. 2000. Nursebot project: Robotic assistants for
the elderly. Available at http://www.cs.cmu.edu/ nursebot/.

Oddi, A., and Cesta, A. 2000. Incremental forward check-
ing for the disjunctive temporal problem. In European
Conference on Artificial Intelligence.

Parente, R. 1991. Personal communication.

Pell, B.; Gat, E.; Keesing, R.; Muscettola, N.; and Smith,
B. 1996. Plan execution for autonomous spacecraft. In
AAAI Fall Symposium Series: Plan Execution: Problems
and Issues, 109–116.

Pollack, M. E., and Horty, J. F. 1999. There’s more to life
than making plans: Plan management in dynamic environ-
ments. AI Magazine 20(4):71–84.

AIPS 2002 251

Pollack, M. E.; McCarthy, C. E.; Tsamardinos, I.; and et al.
2001. Autominder: A planning, monitoring, and reminding
assistive agent. Submitted for publication.
Rivlin, A. M., and Wiener, J. M. 1988. Caring for the
disabled elderly: Who will pay?
Stergiou, K., and Koubarakis, M. 1998. Backtracking al-
gorithms for disjunctions of temporal constraints. In 15th
National Conference on Artificial Intelligence (AAAI).
Tsamardinos, I.; Pollack, M. E.; and Ganchev, P. 2001.
Flexible dispatch of disjunctive plans. In To appear in the
6th European Conference on Planning.
Tsamardinos, I. 2001. Constraint-Based Temporal Rea-
soning Algorithms, with Applications to Planning. Ph.D.
Dissertation, University of Pittsburgh, Pittsburgh, PA.

252 AIPS 2002

