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Abstract

In this paper we study the notion of group knowledge in a modal epistemic context.
Starting with the standard definition of this kind of knowledge on Kripke models, we show
that it may behave quite counter-intuitively. Firstly, using a strong notion of derivability,
we show that group knowledge in a state can always, but trivially be derived from each of
the agents’ individual knowledge. In that sense, group knowledge is not really implicit, but
rather ez~plieit knowledge of the group. Thus, a weaker notion of derivability seems to be
more adequate. However, adopting this more ’local view’, we argue that group knowledge
need not be distributed over (the members of) the group: we give an example in which
(the traditional concept of) group knowledge is stronger than what can be derived from
the individual agents’ knowledge. We then propose two additional properties on Kripke
models: we show that together they are suiHcient to guarantee ’distributivity’, while,
when leaving one out, one may construct models that do not fulfill this principle.

1 Introduction
In the field of AI and computer science, the modal system $5 is a well-accepted and by
now familiar logic to model the logic of knowledge (cf. [2, 7]). Since the discovery of S5’s
suitability for epistemic logic, many extensions and adaptions of this logic have been proposed.
In this paper we look into one of these extensions, namely a system for knowledge of m agents
containing a modality for ’group knowledge’. Intuitively this ’group knowledge’ (let us write
GK for it) is not the knowledge of each of the agents in the group, but the knowledge that
would result if the agents could somehow ’combine’ their knowledge. The intuition behind
this notion is best illustrated by an example. Let the formula ~o denote the proposition that
P ~ NP. Assume that three computer scientists are working on a proof of this proposition.
Suppose that ~o follows from three lemmas: ~1, ~P2 and ¢3. Assume that scientist 1 has
proved ¢1 and therefore knows ¢1. Analogously for agents 2 and 3 with respect to ¢2 and
¢3 --- (¢1 A ¢9) -~ ~. If these computer scientists would be able to contact each other 
a conference, thereby combining their knowledge, they would be able to conclude ~. This
example also illustrates the relevance of communication with respect to this kind of group
knowledge: the scientists should somehow transfer their knowledge through communication
in order to make the underlying implicit knowledge explicit.

In this paper, we try to make the underlying notions that together constitute GK explicit:
What does it mean for a group of, say m agents, to combine their knowledge? We start by
giving and explaining a clear semantical definition of group knowledge, as it was given by
Halpern and Moses in [2]. In order to make some of our points, we distinguish between a
global and a local notion of (deductive and semantic) consequence. Then we argue that the
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defined notion of group knowledge may show some counter-intuitive behavior. For instance,
we show in Section 3 that, at the global level, group knowledge does not add deductive power
to the system: group knowledge is not always a true refinement of individual knowledge.
Then, in Section 4, we try to formalize what it means to combine the knowledge of the
members of a group. We give one principle (called the principle of distributivity: it says that
GK that is derived from a set of premises, can always be derived from a conjunction of m
formulae, each known by one of the agents) that is trivially fulfilled in our set-up. We also
study a special case of this definition (called the principle of full communication), and show
that this property is not fulfilled when using standard definitions in standard Kripke models.
In Section 5 we induce two additional properties on Kripke models; we show that they are
sufficient to guarantee full communication: they are also necessary in the sense that one can
construct models that do not obey one of the additional properties and that at the same time
do not verify the principle under consideration. In Section 6 we round off.

2 Knowledge and Group Knowledge
Halpern and Moses introduced an operator to model group knowledge ([2]). Initially this
knowledge in a group was referred to as ’implicit knowledge’ and indicated with a modal
operator I. Since in systems for knowledge and belief, the phrase ’implicit’ already had
obtained its own connotation (cf. [5]), later on, the term ’distributed knowledge’ (with 
operator D) became the preferred name for the group knowledge we want to consider here
(cf. [3]). Since we do not want to commit ourselves to any fixed terminology we use the
operator G to model the ’group knowledge’. From the point of view of communicating agents,
G-knowledge may be seen as the knowledge being obtained if the agents were fully able to
communicate with each other. Actually, instead of being able to communicate with each
other, one may also adopt the idea that the G-knowledge is just the knowledge of one distinct
agent, to whom all the agents communicate their knowledge (this agent was called the ’wise
man’ in [2]; a system to model such communication was proposed in [8]). We will refer to
this reading of G (i.e., in a ’send and receiving context’) as ’a receiving-agent’s knowledge’.

We start by defining the language that we use.

Definition 2.1 Let II be a non-empty set of propositional variables, and m E N be given.
The language £ is the smallest superset of II such that:

if ~, ¢ E f then --to, (~ ^ ¢), Ki~, G~ E £ (i < 

The familiar connectives V,-% +-~ are introduced by definitional abbreviation in the usual
defway; T ----- p V --p for some p EII and .1.def

The intended meaning of Ki~ is ’agent i knows ~’ and G~ means ’~ is group knowledge
of the m agents.’ We assume the following ’standard’ inference system S5m(G) for the multi-
agent $5 logic incorporating the operator G.

Definition 2.2 The logic S5m(G) has the following axioms:
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any axiomatization for propositional logic

--+

^ Gz#
G~ -~ ~

G~ -+ GG~

~G~ -+ G~G~

On top of that, we have the following derivation rules:

R1 I-~o,~-~-~¢ =~-¢

R2 I- ~ =~ I- K~o, for all i _< m

In words, we assume a logical system (AI, RI) for rational agents. Individual knowledge,
i.e., the knowledge of one agent, is moreover supposed to be veridical (A3). The agents are
assumed to be fully introspective: they are supposed to have positive (A4) as well as negative
(A5) introspection. In the receiving-agent’s reading, the axiom A6 may be understood 
the ’communication axiom’; what is known to some member of the group is also known to
the receiving agent. The other axioms express that the receiver has the same reasoning and
introspection properties as the other agents of the group. In the group knowledge reading, A6
declares what the members of the group are, the other axioms enforce this group knowledge
to obey the same properties that are ascribed to the individual agents.

The derivability relation I-SS,~(G), or I- for short, is defined in the usual way. That is, a
formula ~o is said to be provable, denoted F- ~, if ~o is an instance of one of the axioms or if

follows from provable formulae by one of the inference rules R1 and R2. We define two
variants of provability .from premises: one in which necessitation on premises is allowed and
one in which it is not.

Definition 2.3 Let ¢ be some formula, and let ¯ be a set of formulae. Using the relation
~- of provability within the system SS,,(G) we define the following two relations ~-+ and
t--C_ 2r x £:

@ i -+ ~b (@ ~-- ~) ~ 3~1,..., ~, with ~, = ~, and such that for all 1 < i < 
¯ either ~i E
¯ or there are j, k < i with ~oi = ~o~ -~ ~
¯ or ~ is an SS,~(G) axiom
¯ or ~i = K~a where a is such that

a = ~oi with j < i. in case of I-+
~- a in case of t--

So, the relation ~-+ is more liberal than ~-- in the sense that I -+ allows for necessitation
on premises, where I-- only applies necessitation to SSm(G)-theorems. From a modal logic
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Definition
a model

~,s ~-~

A4, s ~ G~

For a given ~ $ £ and .14
defined by: .~4, s ~ {I}
/c-model.

point of view, one establishes:

I"(~IA...A~n)--~¢ ~ %ol,...,9~nI--~b =~ %Ol .... ,%OnN’+Y)

Also, one can prove the following connection between the two notions of derivability from
premises ([6]):

Kl%Ot,...,Km%Ol,...,Kt~,,...,Km%On F’- ¢ ~ %Ot,...,%O, ~-+

From an epistemic point of view, when using ~--, we have to view a set of premises ̄  as
a set of additional given (i.e., true) formulae, whereas in the case of -+, { I} i s aset of known
formulae.

Definition 2.4 A Kripke model ~4 is a tuple .~A = (S, lr, R1,..., R,n) where
1. S is a non-empty set of states,
2. ~r : S ~ II ~ {0,1} is a valuation to propositional variables per state,
3. for all 1 < i < m, P~ C_ S x S is an equivalence relation. For any s E S and i < m, with

R4(s) we mean {t e IR4st}.
We refer to the class of these Kripke models as/cm, or, when m is understood, as IC.

2.5 The binary relation ~ between a formula ~ and a pair .~4, s consisting of
and a state s in .t4 is inductively defined by:

~=~ lr(s)(p) 
¢~ .~4, s ~ %O and .~4,s ~ ¢

.14, t ~ %O for all t with {s, t) ¯ 1~
j~4, t ~ %O for all t with (s, t) ¯ Rt n... Iq 

e/C, [~o] = {t IJ~l, t ~ ~}. For sets of formulae {I}, ,~t, s ~ {I} is
.~t, s ~ %O for all %O ̄ {I}. In this paper, a model ¢~1 is always a

The intuition behind the truth-definition of G is as follows: if t is a world which is not an
epistemic alternative for agent i, then, if the agents would be able to communicate, all the
agents would eliminate the state ~. This is justified by the idea that the actual, or real state,
is always an epistemic alternative for each agent (on/C-models, R~ is reflexive; or, speaking
in terms of the corresponding axiom, knowledge is veridical). Using the wise-man metaphor:
this man does not consider any state which has already been abandoned by one of the agents.

A formula ~ is defined to be valid in a model .~4 iff ¢~t, s ~ %O for all s ¯ S; 9~ is valid
with respect to/C itt .M ~ ~ for all ~%4 ̄/C. The formula %O is satzsfiable in ,~l iff ~, s ~ 9~
for some s ¯ S; %O is satisfiable with respect to /C iff it is satisfiable in some ¢~A ̄  /C. A
set of formulae {I} is valid with respect to ~4//C iff each formula ~ ̄  {I} is valid with respect
to ..~//C. We define two relations between a set of formulae and a formula: {I} ~+ ~o iff
VYl/l(~ I= {I} =~ ~4 I= %O) and ¢ I=- ~ iff Vc~4Vs(A4, s ~ {I} =~ .A,’I, s ~ 9~).

Theorem 2.(} [Soundness and Completeness] Let %O be some formula, and let {I} be a set of
formulae. The following soundness and completeness results hold.

¯ I-%O ~ ~%O
¯ {I,l-+.~ .~ {I:,l=+ ~
¯ ~1-- %O ~ ¢~-~
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3 Group Knowledge is not always Implicit
As presented, within the system SSm(G), all agents are considered ’equal’: if we make 
additional assumptions, they all know the same.

Lemma 3.1 For all i,j <_ m, we have: I- K~ ~1- Kj~.

Remark 3.2 One should be sensitive for the comment that Lemma 3.1 is a meta statement
about the system SSm(G), and as such it should be distinguished from the claim that one
should be able to claim within the system S5,n(G) that all agents know the same: i.e., 
do not have (nor wish to have) that F- Ki~ ~-+ Kj~, if i ~ j. Considering ~- ~ as ’~ 
derivable from an empty set of premises’ (cf. our remarks following Definition 2.3), Lemma
3.1 expresses ’When no contingent fact is known on beforehand, all agents know the same’. In
fact, one easily can prove that ’When no contingent facts are given, each agent knows exactly
the S5,~(G)- theorems’, since we have, for each i < m: I-- ~ ~=~ ~- Ki~ 

Interestingly, we are able to prove a property like the one in Lemma 3.1 even when the G
operator is involved.

Theorem 3.3 Let X and Y range over {K1,K2,..., K~, G}. Then: ~- X~ ~ I- Y~

Theorem 3.3 has, for both the reading as group knowledge as well as that of a receiving agent
for G, some remarkable consequences. It implies that the knowledge in the group is nothing
else than the knowledge of any particular agent. Phrased differently, let us agree upon what
it means to say that group knowledge is implicit:

Definition 3.4 Given a notion of derivability I-a, we say that group knowledge is strongly
implicit (under t-a) if there is a formula ~ for which we have t-G G~, but for all i <_ m ~a Ki~.
It is said to be weakly implicit under ~-a if there is a set of premises ̄  for which ̄  ~-a G~,
but ¯ Va Ki~, for all i < m.

Thus, Theorem 3.3 tells us that, using I- of SS,n(G), group knowledge is not implicit!
Although counterintuitive at first, Theorem 3.3 also invites one to reconsider the meaning
of t- ~ as opposed to a statement ~ I -+ ~. When interpreting the case where ~ - 0 as
’initially’ or, more loosely, ’nothing has happened yet’ (in particular when no communication
of contingent facts has yet taken place), it is perhaps not too strange that all agents know the
same and thus that all group knowledge is explicitly present in the knowledge of all agents.

With regard to derivability from premises, we have to distinguish the two kinds of deriva-
tion introduced in Definition 2.3.

Lemma 3.5 Let ~ be a formula, ¯ a set of formulae and i some agent.
¯ ~F"+G~I-+Ki~

¯ ~--K~=~--G~
¯ ~--G~--K~

The first clause of Lemma 3.5 states that for derivability from premises in which neces-
sitation on premises is allowed, group knowledge is also not implicitly but explicitly present
in the individual knowledge of each agent in the group (thus ¯ may be considered an initial
set of facts that are known to everybody of the group). The second and third clause indicate
that the notion of group knowledge is relevant only for derivation from premi.~es in which
necessitation on premises is not allowed. In that case, group knowledge has an additional
value over individual knowledge. A further investigation into the nature of group knowledge
when necessitation on premises is not allowed, is the subject of the next section.
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4 Group Knowledge is not always Distributed
In the previous section we established that group knowledge is in some cases not implicit,
but explicit. In particular for provability per se and for derivation from premises with ne-
cessitation on premises, group knowledge is rather uninteresting. The only case where group
knowledge could be an interesting notion on its own, is that of derivability from premises with-
out necessitation on premises. For this case, we want to formalize the notion of distributed
knowledge. Although intuitively clear, a formalization of distributed knowledge brings a num-
ber of hidden parameters to surface. Informally, we say that the notion of group knowledge
is distributed if the group knowledge (apprehended as a set of formulae) equals the set 
formulae that can be derived from the union of the knowledge of the agents that together
constitute the group.

The following quote is taken from a recent dissertation ([1]):

Implicit knowledge is of interest in connection with information dialogues: if we
think of the dialog participants as agents with information states represented by
epistemic formulae, then implicit knowledge precisely defines the propositions the
participants could conclude to during an information dialogue ...

Borghuis ([1]) means with ’implicit knowledge’ what we call ’group knowledge’. We will
see in this section, that using standard epistemic logic, one cannot guarantee that group
knowledge is precisely that what can be concluded during an information dialogue.

To do so, we will first formalize the notion of distributivity: the following definition makes
some of the hidden parameters explicit.

Definition 4.1 Let ¯ denote a set of formulae, and ~ a formula. Given two notions of
derivability l-a and I-b,

¯ we say that I-a-derivable group knowledge is strongly sound with respect to t-b-conse-
quences, if, for all ¯ and ~:

Fb (~ A... A ~m) --~ ~] (1)
¯ I-a-derivable group knowledge is said to be strongly complete with respect to I-b-conse-

quences, if we have for all ¯ and ~a,
¯ l-aG~ ¢=3~1,...,~a,~: [~l-nK1991,...,~l-aK, n~,~&

’~ l-b (~ A... A ~m) --’ ~] (2)
¯ If both (1) and (2) hold for all ~ and ~a, t-a-derivable group knowledge is said to 

strongly distributed (over the m agents) with respect to l-b. If (1) only holds for ¯ 
l-a-derivable group knowledge is weakly sound with respect to l-b-consequences; weak
completeness and weak distributivity are defined similarly. If l-a or l-b is understood
from context (for instance, if l-a=l-b= SSrn(G)), it is left out.

Note that l-+ is both strongly and weakly distributed with respect to itself. Note furthermore
that the definition of distributivity as given above already distinguishes sufficiently many
parameters and is a fairly general one, of which we consider only specific cases in this paper.
Still an even more general definition of distributivity could be given:

F(~) l-a G~ ,~ 3~1,..., ~m : [Hx(~) l-1 Klan,..., Hm(~) l-,~ IC,~,~ 
J(~) l-b (~I A... A ~m) -, (3)
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where F, H1,..., H~ : ~o(E) -+ ~o(E) are functions that, for each agent, manipulate the set 
premises ̄  to a set that is allowed to be used by the agent. Moreover, J may restrict the
premises to be used for the derivation of ~o from the ~oi’s. Thus, the scheme (3) allows for
situations in which each agent has access to a specific part of the initial set of premises, and
in which each of the agents uses its own logic. Moreover, it allows the derivation of ~o from
the formulae ~ol, ..., ~m to be done in a distinguished logic, possibly using some fixed set of
formulae J(~).

Summarizing, scheme (3) is a general way to formalize our intuition that group knowledge
is distributed if a formula is somehow declared to be group knowledge relative to some set of
premises if and only if it follows in some sense (using some related set of premises) from the
conjunction of 7r~ premises; and of each of these premises it can be somehow derived (again,
using appropriate sets of formulae) that it is known by one of the agents.

Observation 4.2 Using only I--, group knowledge is strongly sound, but not strongly
complete. However, under F--, group knowledge is weakly distributed.

Proof: The proof of the first observation is easy: from ~ I-- G~ it follows by axiom A8 and
Modus Ponens that ¯ I-- ~. From this we derive @ I-- (T A... T) -~ ~o. By m applications
of R2 we have ̄  I-- K1T,..., ¯ t-- KmT which suffices to conclude that the claim indeed
holds. Group knowledge is seen to be not complete under t--, by considering a suitable model,
which we omit here. Finally, we argue that, under I--, group knowledge is weakly distributed.
Weak soundness is implied by strong soundness, in order to prove weak completeness, since

is empty, we may use Theorem 3.3: thus I-- G~ implies I-- Kl~o, which immediately yields
the right hand side of (2). 

The proofs of the positive claims of Observation 4.2 tell us that they are obtained rather
trivially. First of all, note that in order to prove weak distributivity, we used the fact that
group knowledge is not implicit. (Thus, Lemma 3.5 also immediately gives weak soundness
of group knowledge under I -+ and ~-.) Secondly, recall from the proof of Observation 4.2 that,
using only I--, group knowledge is trivially proven to be strongly sound: If G~ follows from
a given set of true premises ~, the formula ~o itself follows from this set ~, and there is no
point in seeking for ’reasons’ for this formula ~o in the knowledge of the individual agents. It
seems more reasonable to require that ~ follows independently .from the given set of premises
from a set of formulae known by the agents:

Recall from Definition 2.3 that in fact there is no point, nor any harm, in writing the
- with the last occurrence of ’~-’, if there are no premises involved, we may just write ’l-’.
Thus (4) expresses the fact that, under I--, group knowledge is strongly sound under plain
S5m(G)-consequences. Let us try and rephrase equation (4) semantically.

Definition 4.3 Let A4 be a Kripke model with state s, and i < m. The knowledge set of i
in A4, s is defined by: K(i, ,A4, s) = {~o I .A,I, s ~ Kilo}.

Now, the semantic counterpart of (4) reads as follows:
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Property (5) expresses that G-knowledge can only be true at some world s if it is derivable
from the set that results when putting all the knowledge of all the agents in s together.

For multi-agent architectures in which agents have the possibility to communicate (like for
instance [8]) the principle (5) is rather relevant. This so called principle o//uU communication
captures the intuition of/act discovery (cf. [4]) through communication. The principle of full
communication formalizes the intuitive idea that it is possible for one agent to become a
wise man by communicating with other agents: these other agents may pass on formulae
from their knowledge that the receiving agent combines to end up with the knowledge that
previously was implicit. As such, the principle of full communication seems highly desirable a
property for group knowledge. It is questionable whether group knowledge is of any use if it
cannot somehow be upgraded to explicit knowledge by a suitable combination of the agents’
individual knowledge sets, probably brought together through communication. Coming back
to the example of the three computer scientists and the question whether P ~ NP; if there
is no way for them to combine their knowledge such that the proof results, it is not clear
whether this proof should be said to be distributed over the group at all.

Unfortunately, in the context of S5m(G), the principle of full communication does not
hold. The following counterexample describes a situation in which group knowledge cannot
be upgraded to explicit knowledge (thereby answering a question raised in [8]).

Counterexample 4.4 Let the set II of propositional variables be given by the singleton set
{q}. Consider the Kripke model j~t such that

¯ S = (xl,x2,Yl,Y2,Zl,Z2},
¯ 7r(q, xj) = 1, r(q, yj) ---- 1,Tr(q, zi) ---0 forj = 1,2,
¯ 1~1 is given by the solid lines in figure 1, and R2 is given by the dashed ones.

! ¯
! ¯

%

~ "~ 2
| ¯

Figure 1: The epistemic accessibility relations.

Observation 4.5 It holds that:
¯ K(1,./~4,xl) = K(2,2~4,xl)
¯ J~,xl ~ Gq
¯ q ~ K(1,,~A,xl) K(2, J~A, xl ) = K(1, j~ ,xl)
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Prom this last observation it follows that the principle of full communication does not
hold in this model: although the formula q is gto~up knowledge, it is not possible to derive
this formula from the combined knowledge of the agents 1 and 2. Thus it is not possible
for one of these agents to become a wise man through receiving knowledge from the other
agent. In terms of Borghuis: the modelof Counterexample 4.4 shows that one can have group
knowledge of an atomic fact q, although this group knowledge will never be derived during a
dialogue between the agents that are involved.

Corollary 4.6 Using F-, group knowledge is not strongly sound with respect to SSm(G)-
consequences, i.e., property (5) does not hold.

Summarizing, we have seen that b--derivable group knowledge is weakly distributive over
H--consequences in a trivial manner, but it is not sound with respect to a more interesting
notion of derivability: it is not always the case that group knowledge is derivable from all the
agent’s knowledge together.

5 Models in which Group Knowledge is Distributed
In this section, we wi~l characterize a class of Kripke models,in which G-knowledge/s always
distributed. To be more precise, the models that: we come ~p with will satisfy

A4, s ~ G~o ~ UK(i, A4, s) ~- (6)
i

Definition 5.1 A Kripke model A4 = (S, lr, R1,...,P~) is called finite if $ is finite;
moreover it is called a distinguishing model if for all s, t E S with s # t, there is a ~os+ t- such
that ~, s ~ ~oa+ ~- and ~, t ~ ~oa+,z-.

When considering an S51-model as an epistemic state of an agent, it is quite natural
to use only distinguishing models: such a model comprises all the different possibilities the
agent has. One can show that in the 1-agent case, questions about satisfi~:bilhy of finite
sets of formulae, and hence that of logical consequence of a finite set of premises, can be
decided by considering only finite distinguishing models. In fact, one only needs to require
such models to be distinguishing at the propositional level already: any two states in such a
simple S::5:model differ in assigning a truth value to at :least one atom ~see, e.g. [7], Section
1:7). In the multiple-agent case, this distinguishing requirement needs to be liRed from the
propositional level to the whole language £.

The nice feature of finite distinguishing models is that sets of states can be named:

Lemma 5.2 Let ~ -- (,~,...) be a finite distinguishing model. Then:

VX c ,9 3ax ~ £ Vx, ~ S (Aa,z ~ ax ~ z E X)

For a given set X, we call ax the characteristic formula for X.

Lemma 5.3 Let A4 ---- (S, lr, R1,...,Rm) be given, with s E S. Suppose that Z _C 8 
such that for allz E Z we have ~/f,z ~ ~. Moreover, suppose X1,... ,X~ C_ 8 are such that
Ri(s) C_ (X1 U... U Xn U Z). Then

.M, (... ¢)...)))
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