
A Structural Knowledge-Based Simulation Methodology
for Distributed Systems

Chuchang Liu Mehmet A. Orgun

Department of Computing, Macquarie University, NSW 2109, Australia
E-mail: { cliu, rnehmet } (~.krakatoa. mpc.e, mq. e&l.. au

Abstract

This paper pre.sents a structural knowledge-based
simulation methodology based on temporal logic
that can be used for building a simulation envi-
ronment for distributed computations. The main
contributions of the paper are: (l) to propose
structural knowledge representation method suit-
able for describing simulation systems; (2) to pro-
vide several techniques for specifying distribut¢~]
conlputations, inehlding a knowledge acquisition
technique azld a constraint mechanism used for
eliciting knowledge about the simulat~xl system;
and (3) to provide ml approach to knowledge-
based sinmlation management.

Introduction
Simulation requircs models of a process to be sinm-
lated and it deals with processes evolving in time. The
notion of time is implicitly built into temporal logic
languages, which is cs.~ntial in sinmlation. They can
also provide support for rule-1)ased and object-ori(mted
paradignls and for powerful knowledge rcl)resentation
schemes. Therefore we claim temporal cxtcnsions of
logic programming are very suitable for knowledge-bmued
sinmlation applications, there are. a uumbcr of pro-
gramming languages ba.sed on temporal logic, such as
Templog (Abadi &. Manna 1989), Tempura (Moszkowski
1986) and Chronolog(MC) (Liu & Orgun 1995).
language Chronolog(MC) is based on the temporal logic
TLC (Liu & Orgun 1996a), which is an extension
linear-tinm tenqmral logic with gramflarity of time. In
this logic, all fornmlae can be clocked and are allowed to
be defined on local clocks. TLC is therefore more flex-
ible in describing the behavior of tllose systems wlmrc
dynamic changes are essential (Liu & Orgun 1996b).

This paper presents a structural knowledge-based sim-
ulation nmthodology b&sed on TLC and Chronolog(MC),
which can be used for I)uilding a simulation environ-

Copyright (~) 1998, Americml Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

ment for distributed computations. The first contri-
bution of the pape.r is to provide a structural knowl-
edge representation method for describing simulation
systems. We develop a modeling fornmlism to represent
the initial structural re.presentation of a system as well
as a nmthod to use in determining the next representa-
tion of the structure. The second contrilmtion is to pro-
vide s(.weral techniques fur specifying distributed com-
putations, including a knowledge acquisition tcclmique
and a constraint mcchanisnl used ibr eliciting knowledge
in sinmlating distributed systems. Constraint mech-
anism is also well-structured. The third (’ontribution
is to provide an approach to knowledge-based simula-
tion management. This methodology providc’s an inte-
gration of nlo(leling formalism, nlodeling environment,
knowledge-base ulanagement and processing of the model
in simulation.

The structure of the paper is as follows. After a
brief introduction to the logic TLC and the language
Chronolog(MC), we outlirm the franlework of our
knowledg~l)ased simulation methodology. Then a struc-
tural knowledge representation nmthod suitable for do-
scribing simulation systems is discussed. We also dis-
cuss specificat ion techniques for constructing knowledg(~
bases in sinmlating distributed computations and our
,q)proach to knowledge-based sinlulation managenmut.
Finally. wxe conclude the paper with a brief discussion.

Temporal Logic TLC

We first give a brief introduction to the telnporal logic
TLC, including the definition of local clocks, its ax-
ioms and inh, rence rules (Liu &: Orgun 1996a). We also
introduce the language Chronolog(MC), which is an ex-
tension of logic programming b~qe.d on TLC.

Clocks, syntax The global clock (denoted as !lck) is
the increasing sequence of natural munl~ers: {0,1,2,...),
and a local clock is a subsequence, of the. global clock.
In other words, a local clock is a strictly increasing
se(pmnce of naturM numbers, either infinite or finite:
(to~tt,tz,...). Let CK: be the set of all clocks mxd F
be au ordering relation on the elements of Ck;. For any

12 Uu

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

ckl, ck2 E C]C, we define that

chl n ck2 d,j g.l.b.{ckl, ck2}ckI [..[ck2 deJ ~.~.b.{Ckl ’ ok2}

where ckl,ck2 E CIC, g.l.b, stands for "the greatest
lower bound" and l.u.b, for "the least upper bound"
under the relation _E.

In TLC, there are two temporal operators, first and
next, which refer to the initial and the next moment in
time with respect to given clocks respectively. TLC for-
nmlas are constructed by the following rules: (1) Any
formula of first-order logic is a formula of TLC; (2)
A is a formula, so are first A and next A.

We use a clock assignment to assign a local clock
for each predicate symbol. A clock assignment ck is
a map from the set of predicate symbols to the set of
clocks. The clock associated with a predicate symbol p
is denoted by ck(p).

Let A be a formula and ch a clock assignment. The
local clock associated with a formula A over ck, denoted
as ckA, is defined inductively as follows:

- If A is an atomic formula of the form p(xl,... ,x,),
then ckA = ck(p).

- If A = -~B, first B or (Vx)B then CkA ---- ckB.

- If A : B A C, then CkA = ckB f7 ckc.

- If A --= next B, then (1) ckA = (to,tl,...,t,-1)
when ekB = (to, t1,... ,t,) is non-empty and finite;
(2) ckA = ckB when cks is infinite or empty.

When ckA is finite, Ck~oxtA is generated just by deleting
last element in CkA because the last element, t, does not
have a next moment defined for it.

Given a local clock ck~ = (to, tl, t2,...), we define the
rank of tn on ck~ to be n, written as rank(t,, cki) = n.
Inversely, we write t, _,.(n) which means that t,
the moment in time on cki whose rank is n. Obviously,
for any given formula A, it t E ck~..tA, then we have
that rank(t, ck A) = rank(t, CknextA).

In TLC, the semantics of formulas with logical con-
nectives are defined in the usual way, but with respect
to local clocks (Liu & Orgun 1996a). Here we only give
the meaning of temporal operators:

¯ For any t E ckA, firstA is true at t if and only if A

is true at ck(~).

¯ For any t E ckno=zA, next A is true at t if and only if

A is true at ck~+1), where i = rank(t, CkA).

Axioms and Inference Rules In TLC, all theorems
of the form ~- A are assumed to hold on the local clock
associated with the formula A. The axioms and rules of
inference of TLC are summarized below:

AI. ~ first first A ~ first A.

A2. ~ next first A ~ first A.

A3. ~ first (~A) ~ ~(first

A4. F- next (~A) ~ -~(next

AS. ~ first (Vx)CA) ~-* (Vz)(first

A6. F next (Vx)(A) ~ (Vx)(next

A7. F- first(AAB)*-*(first A)A(first B),
ck (A°) = ck (~)

A8. t- next (AAB)*-* (next A)A(next B),
ckA : cks.

There are three inference rules:

111. If ~- A --* B and ~- A, then J- B, when ckA = cko.

112. If ~- A, then ~- first A, when ckA is non-erupt3:

113. If t- A, then t- next A, when Ckn.~tA is non-empty.

Chronolog(MC) A Chronolog(MC) program consists
of a clock definition, a clock assignment and a program
body. The program body consists of rules and facts.
The clock definition is an ordinary Chronolog progranl
and it specifies all the local clocks involved in the pro-
gram body. All the predicates specified in the clock
definition are defined over the global clock. The clock
assignment assigns clocks for all the predicate symbols
appearing in the program body.

The following simple Chronolog(MC) program spec-
ifies a computational system consisting of two indepen-
dent processes p and q running on their own local clocks.
Note that program clauses are interpreted as assertions
true at all moments in time on their local clocks.

7, CLOCK DEFINITION (ckl, ck2) 7,
first ck1(O).
next ckl(N) <- ckl(M), N is
first ck2(1).
next ck2(N) <- ck2(M), N is M+3.

7, CLOCK ASSIGNMENT (ck)
is_ck(p, ckl).
is_ck (q, ck2)

7, PROGRAM BODY 7,
first p(0).
next p(X) <- p(Y), X is Y+2.
first q(2).
next q(X) <- q(Y), X is

In the clock definition, the first clause for ckl states
that the first value for ckl is 0. The second clause states
that the subsequent values for ckl are determined by
the previous value of ckl plus 2. Therefore, ckl models
the sequence of even numbers over global time. The rest
of the clauses in the clock definition can be explained in
a similar manner. The clock assignment says that the
clock of predicate p is ckl and the clock of predicate q
is ck2. The predicate p represents the sequence of even
numbers over the clock modeled by ckl; the predicate q

AI Applications 13

represents the sequence (2°, 22, 24, 28) over the clock
modeled by ck2.

Now we may pose the following fixed-time goal (goals
within the scope of the operator f irst arc called fixed-
time): <- first (p(X), q(Y)).

By the clocked temporal resolution method (Liu
Orgun 1996a), the answer is "X=4 and Y=4". The con-
clusion can be obtained by the following idea: Due to
the fact. that ckl=(0, 2, 4, 6,...) and ck2=(1,4, 7, 10,...),
the local clock of tile above goal is tile greatest lower
bound of ckl and ck2, that is, (4, 10,.../. Obviously,
both the predicates p(X) and q(y) are defined at
moment on the clock (4, 10). Therefore, to answer
the above query, we need to obtain answers to the fol-
lowing two qlmrics on their own clocks ckl and ck2:

<- first next next p(X).
<- first next q(Y).

Then, the answer to the first, query is "X=4", and the
answer to the second query is "¥--4".

Simulation Framework

TLC provides a powerful mechanism to describe state
and action changes with its temporal operators. There-
fore, it can not only be used for representing declarative
and procedural knowledge, but also can be used for rep-
resenting intcnsional knowledge. In particular, it can be
used for reasoning about the properties of a simulation
system modeUed by a Chronolog(MC) program.

!

Simulation System
i (Cb=onolo¢(l~)]PL-ogzmm)

Figure 1: Knowledge-based simulation methodology

Figure 1 illustrates the main components of our
methodology for simulating distributed systems. For
a given source system, a corresponding model can be
obtained through knowledge abstraction; knowledge ac-
quisition is embarked upon through knowledge gathcr-
ing based on the analysis of the source description of the

14 Uu

system. "Ib obtain a satisfactory knowledge base, which
is essential in behavioral simulation, the following activ-
ities are usually involved: knowledge classification and
structuring, verification and consistency checking, and
updating the knowledge base. Constraint mechanism
can be used in the process of knowledge acquisition
to elicit knowledge for completing a knowledge spec-
ification through testing and verifying its consistency.
Once a satisfactory knowledge base. for the system is ob-
tained, it is then translated into an executable program
of Chronolog(MC).

Modeling Formalisms

In simulation activities (()ten 1987), a dynamic model
a nmdel with time-indexable behavior, which is driven
by investigating behavior change. There are two kinds
of behavior: (1) t~ujectmy behavior consists of a time-
indexed sequence of values for some variables of the
model, and (2) structural behavior is a time-indexed
sequence of the representation of its structure. In both
trajectory and structural sinmlation, one needs to spec-
ify the representation of the state and the state transi-
tion function. In trajectory simulation, we in particu-
lar have to specify the representation of state variables
and state transition function; in structural simulation,
we need to specie" the representation of the model, and
rules to generate the next representation of the model.

The development of modeling formalisms to repr.e-
sent initial representation of the structure of a system
as wcll rules to be used in determining the next repre-
sentation of the structure may facilitate structural sim-
ulation. We now present kmowledge-based models based
on both trajectory and structural simulation to simu-
late distributed computations with Chronolog(MC).

A distributed computation can be described by thc
execution of a distributed progranl which is performed
by a set of processes. Therefore, from the point of view
of structural simulation, it consists of a collection of
processes and their loc~d clocks.

lb describe the trajectory behavior of the processes
of the system, v,-c need to define state predicates, con-
trol predicates as well as channel state predicates. We
also need define a local clock for each predicate. Tlmre-
fore, the behavior of a system is described through the
specifications of state predicates, control predicates and
channel state predicates, which are related with the
computation. Thus, the behavior of the system is de-
scribed by the rules which describe the state changes
and the control of the system.

In modelling distritmted computations, we first want
to construct domain-specific knowledge bases. In our
method, the initial knowledge base of a given simulation
system is denoted by a 5-tuph~.:

~B =< ~2,Ta, ck,7~,Z >,

where Y is a set of ,~-ariables, P is a set of predicates, ck
is a clock assignment, a map from the set 7~ of predi-

cate symbols to the set C/C of clocks, 7~ is a set of rules
which describe the behavior of each component and in-
teractions between components, and Z is a set of initial
conditions represented as facts which are all true at the
initial moment in time when the system starts.

The rules and initial conditions are expressed as
Chronolog(MC) program clauses. Here are examples:

next get_service(X) <- queue(Q), head(X,Q).
first queue([tom]).

The first clause says that if at the current moment in
time X is the first person in a queue waiting for service,
then at the next moment X will get service; the second
clalme says that at the initial moment Tom is the first
person in the queue.

Specifying Distributed Systems

Computation models Informally, a distributed com-
putation describes the execution of a distributed pro-
gram by a set of processes. The activity of each sequen-
tial process is modeled as executing a sequence of events
(or instructions). An event may be either internal to
process and cause only a local state change, or it may
involve communication with other processes.

There are two models of communication: the sTn-
chronous communication model and the asynchronolm
communication model. In both of the models, we need
to address the following requirements: (1) The vari-
ables of each process are private, i.e., not accessible to
other processes. (2) Message passing is used to pro-
vide interaction between processes. In the synchronous
communication model, explicit send-receive primitives
are used, the messages are not buffered, and commu-
nication is performed by a simultaneous execution of a
send-receive pair. In the asynchronous communication
model, the message exchange is not synchronised, and
communication requires buffering for the messages that
have been sent but not yet received.

~re limit our discussion to the weakest possible model
for an asynchronous distributed system characterized
by the properties. There exist no bounds on the capac-
ity of buffers as well as the capacity of channels, and
there exist no bounds on message delays. The form of
distributed programs we consider is as follows:

parallel: P: [Yl; Pl I[..- I[Ym;P,n]
sequential: Pi : {/~; ¯ l i }, i = 1 m

where PI,...: and Pm are parallel processes of the pro-
gram P, which can be executed concurrently_and the
individual processes are sequential programs; Y1 U..--U
Ym = Y is a set of data variables, and Y1,..-,Ym
are disjoint subsets of data variables private to the pro-
cesses P1,. ̄ ̄ , and Pro,. respectively; l~,. ¯ ̄ , l~k, are sim-
ple instructions.

The types of instructions include skip, assignment
and send and receive. The send and receive instructions
are used to pass messages between processes.

skip: skip
assignment:X := e
receive: c; a T X
send: c; c~ 1 e

Here c is a boolean expression, e is an expression and
X is a variable, and c~ is a channel name. The first two
types of instructions place no restrictions on execution;
a process whose next command is skip or an assignment
instruction is ready and can be executed. The receive
instruction can be performed only when c is true and
it then attempts to receive a value from channel a for
variable X. The send instruction can be performed only
when c is true and it then attempts to send the value
of e along channel a.

Processes communicate by sending and receiving mes-
sages along channels. Each channel connects a sending
process and a receiving process. We use the notation
chpj_p, to denote the channel that connects the send-
ing process P~ and the receiving process Pj.

Specification Techniques We propose the following
techniques in the specification of distributed computa-
tions: (1) a knowledge acquisition technique based
the structural representation method; and (2) a con-
straint mechanism used for cliciting knowledge about
the simulated distributed system.

Given a distributed computation as above, its ini-
tial structural representation is a knowledge base of the
form /CB =< ~,7~,ck, T~,~ >, that can be obtained
through the analysis of the system itself and its imple-
mentation environment.

The set P consists of aU private variables of all pro-
cesses and their control variables and the variables rep-
resenting the status of the channels. For each process
Pi (i = 1,2,...,m), we may need to define several
predicates which are local to the process and several
predicates to describe the status of the channels re-
lated to the process. Thus, the set 7) contains process
state predicates, such as state_Pi(U1 U~), pro-
cess control predicates, such as cl_Pi(S), assignment
predicates, such as assign_p~ (U, E), channel state pred-
icates, such as chp#_p~ (L), and channel value change
predicates, such as ±n_change_chpj_p, (L,E) and
out_change_chp~ _p~ (L, E).

States of process Pi are assignments of vahms from
the appropriate domains to variables UI,...,U~k. The
control predicate cl_Pi (L) means that the control
the statement execution in process Pi has been moved
to the instruction whose label is S, in other words,
the process is executing the instruction S. chp,_~: (L)
means that, the value of channel chi,~-p, is the list
L. in_change_chp#_p~ (L,E) means that the value
channel chp#_l~ is changing by incoming data E and
out_change_chp~_ p, (L, E) Ixmans that the value of chan-
nel chpj_p, is changing by outgoing data E.

A predicate related to communications may be in-

AI Applications 15

voh, ed in more than one process, mid those processes
may have different "local times". Therefore, such predi-
cates should be investigated from a global point of view,
and, therefore, they may be defined on the global clock.
The other predicates may be defined on local clocks
based on the environment provided. For the above
predicates, state_p~, cl.Pi and assign_p~ may be de-
fined on the local clock of process P,. Tile rest of the
predicates are defined on the global clock gck.

The allocation of time for each process determines
the clocks a.ssociated with the predicates. Therefore,
the component ck of the specification depends oll the
environment of the distributed computation.

The rules describing the behavior of the computation
can be automatically produced based the instructions
of each process. The initial conditions represent the
initial states of the system, including initial values of
variables, and the initial states of control and chammls.

To inlprove the quality and reliability of the knowl-
edge base as a specification of a distributed system
in simulating it, we propose a constraint mechanisln
used for eliciting knowledgc in the knowledge acquisi-
tion process (Liu & Orgun 1997). Due to the ~ll-
structural representation of knowledge b~ses, the con-
straint mechanism is also well-structured. Constraints
include: variable constraints, predicate generation con-
straints., clock constraints, and time-dependent relation
constraints. Liu and Orgun (1997) have given a general
discussion on these types of constraints. We now" di~
cuss how to formalize and use time-dependent relation
constraints to obtain the set of rules 7~ and the initial
condition set Z in a knowledge base.

The rules come from the instructions of the system
that we want to specify. There are two kinds of in-
structions: one has a simple action, such as skip and
assignment instructions; the other has an action with
a condition, which are involved in message communica-
tion. such as the instructions send and receive.

We have the following tim~dependent relation con-
straints on the execution of instructions to obtain rules
describing the behavior of a distributed system.

¯ If the process p is currently executing L which is a
single action, then it will execute the next instruction
at the next moment in time.

¯ If the process p is currently executing L which is an
action with a condition c, then it will execute the
next instruction at. the next moment in time when c
is true, otherwise it waits until c becomes true.

These constraints Call be formalized by the following
rules which describe the changes of controh

cl_p(1) -~ next cl_p(l’).
el_p(1) A c is true --* next cl_p(l’).
el_p(1) A ~(c is true) --* next el_p(1).

Here l’ is the next instruction which will be executed.

The rules that describe the changes of’ process states

16 Liu

and channel states can be obtained based on individual
instructions. For each kind of ,’m instruction, we have
a standard rule pattern. For instance, tlm rule pattern

cl_P~(l)hstate_pi (UI Uv, ̄ ¯ ¯ ,U~)---*
next state-Pi(U1,...,E,...,U~).

is for assignment instructions of the form h U,~ = E.

For message cornmunication, we have the following
rule patterns:

(1) Send .message: l: c; chp,_p# I E

cl_Pi (l) Atrue (c) hchpj _ p~ (L) --*
in_change_chpj_p~ (L, E).

chpj -i~ (L1) Ain_change_chl, _p, (L ,El ALl=L,E--*
next chpj_i,, (Ll).

(2) Receive message: h c; chp,_pj T U

c l--Pi (1) Atrue (c) Ache, _pj (L) AE=head (L)
out_change_chp,_F# (L, E).

out_change_che~ -I~ (L ,El ALl=tail (L)
next chp,_pj (L1).

cl-Pi (1) Aout_change_ch/~ _ t~ (L, E)
state_Pi (U; U Uik)-~

next state_Pi(Ul,...,E,...,Uik).

IIere we assume that the time for executing each in-
struction is 1 unit of time. Note that there are several
new predicates such as head(L), tail(L) and true,
whose nmanings are obvious. Because of’ space lilnita-
tions, we omit their explanation.

All rules describe the dynamics of tile computation,
inchlding the changes of control and the changes of pro-
cess states and channel states. These rules form the set
T~ under the structural representation.

The set. 2: of initial conditions includes the facts that
are true at the initial moment. They include the ini-
tial state of each process which is represented by its
state predicate and the initial control state. Fox" exam-
ple, we may have the initial conditions as follows: At
the beginning, the control of the process Pl has been
moved to the instruction ll, the initial value of the state
variable X of the process pl is 0, and the empty list
is the initial value of chl. They c~m be fi~rmally rep-
resented as first cl-pl(/1), first state_pl(O),
first chi({ }).

Simulation System Management
Suppose that we have obtained the initial structural
representatkm of a given distributed computatiou and,
at some moinent in time, the knowledge ba,se for the
computation is < V,7),ck,7~.Z > and there arc’ no
changes with the computation, then, at the next mo-
ment in time, the knowledge base is still the same.
However, if there is a change at some stage of the com-
putation, when, for instance, a new process is produced,
then several new predicates may be needed and there-
fore some new local clocks as wcll as some new rules

may need to be placed into the knowledge base. Thus,
at the next moment in time, a new structural repre-
sentation is generated. Since the knowledge base has a
straightforward structure, it can easily be modified to
obtain a new knowledge base from it.

To describe structural changes of the knowledge base,
we define the following meta-predicates which bill never
appear in the specification of the simulation system:

kb(S): S is a knowledge base for the sFstem.
add_pr (X): Process X is added to the system.
assert_cod(X): A initial condition X is asserted.
Sni_set (I): I is the set of initial conditions.

At the management level, we have rules to generate
the next structural representation. These rules can be
represented as meta-Chronolog(MC) program clauses.
For example, we assume that, when a new process p is
currently produced, a new state variable X and con-
trol variable m private to the process are added, new
predicates Q1 and Q2 are defined, a new local clock ck~
may therefore be defined with ok(Q1) = ck(Q2) =
We also assume that a set {rl , rk} of new rules may
therefore need to be added into the set of rules. To do
this, we may use the following rule:

next kb(V1,~°l, ckt,7~I,2 ") <-
kb(V, ~, ck, T~,2-), add_pr (p),
%)’ = 1)U{X, m}, ~’ =7~U{Q1, Q2},
ck’ = ck u {ck(Q1) = ck~,
ck(Q2) = ckJ, n’ = nU{rl,... ,r~}.

When updating a knowledge base, we also have to
check whether the change is consistent with the exist-
ing knowledge. In order to ensure that. the knowledge
in the knowledge base of a simulation system is both ac-
curate and consistent, we use knowledge representation
techniques, including the constraints mechanism (Liu
Orgun 1997) and the feedback from the experts to per-
form consistency checking. At any moment in time, if
the knowledge base for a given distributed computation
is consistent and satisfactory, we can first translate it
into a Chronolog(MC) prograrn and then run it to ob-
tain simulation results.

Discussion
There are also other knowledge-based modeling and
simulation tools, such as Simulation Craft (Sathi et
al. 1986), MASCOT(Mackulak & Cochran 1989),
SimKit (Silverman & Stelzner 1989). Most of these sys-
team and tools are based on first-order logic which does
not support time directly. Knowledge-based simulation
methods based on first-order logic nmst therefore pro-
vide an explicit support for timing requirements. Our
methodology is based on temporal logic which can natu-
rally handle timing requirements. Compared with other
simulation languages, Chronolog(MC) is more flexible
in describing those systems where multiple granularity
of time is essential.

Model development and application of expert knowl-
edge are fundamental problems common to simulation
methodology (Mackulak & Cochran 1989). In our
methodology, the knowledge base of a simulation sys-
tem is represented in a well-classified structural tbrrn
and can be automatically transformed into a
Chronolog(MC) program, which can be read declara-
tively and can be executed. Therefore, the user of the
methodology can easily handle the above problems.

Acknowledgements
Thc work presented in this article has been supported in
part by an Australian Research Council (ARC) Grant.
C. Liu has been supported by an Australian Postgrad-
uate Award (APA) and an MPCE Postgraduate Re-
search Scholarship at Macquarie University.

References
Abadi, M., and Manna, Z. 1989. Temporal logic pro-
gramming. Journal of Symbolic Computation 8:277-
295.
Liu, C., and Orgun, M. A. 1995. Chronolog as a
simulation language. In Fisher, M., ed., Proceedings
of lJCAI-95 Workshop on Executable Temporal Logics,
109-119.

Liu, C., and Orgun, M. A. 1996a. Dealing with multi-
ple granularity of time in temporal logk’, programming.
Journal of Symbolic Computation 22:699-720.

Liu, C., and Orgun, M.A. 1996b. Execut-
ing specifications of distributed computations with
Chronolog(MC). In Proceedings of A CM Applied Com-
puting 1996, 393-400.

Liu, C., and Orgun, M. A. 1997. A constraint, mecha-
nism for knowledge specification of simulation systems
based on temporal logic. In Sattar, A., ed., Advanced
Topics in Artificial Intelligence, 485-495. Springer.

MacXulak, G. T., and Cochran, J. K. 1989. Mas-
cot: A Prolog-based simulation rnodclling and train-
ing environment. In M.S. Elms, T. O., and Zeigler, B.,
eds., Modelling and Simulation Methodology, 145-159.
North-Holland.
Moszkowski, B. 1986. Executing Temporal Logic Pro-
grams. Cambridge University Press.

Oren, T. I. 1987. Simulation: Taxonomy. In Singh,
M. G., cd., Systems and Control Encyclopedia, 4411-
4414. Oxford, England: Pergamon Press.

Sathi, N.; Fox, M.; Bas ’karan, V.; and Bouer, J. 1986.
Simulation Craft: An artificial intelligence approach
to the simulation life cycle. In Proceedings of the SCS
Summer Simulation Conference.
Sih, erman, D., and Stelzner, M. 1989. SimkitTM:
Knowledge-based simulation tools. In M.S. Elas,
T. O., and Zeigler, B., eds., Modelling and Simulation
Methodology, 189-197. North-Holland.

AI Applications 17

