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Abstract
A robust parallel multichannel filtering method for
modelling preattentive vision is presented in this paper.
Our aim is to achieve an artificial perception such that its
pertbrmance rather than its working be as close as possible
to that of human vision. In establishing a rigorous
theoretical basis tbr constructing original and efficient
operators to be incorporated in a robust computer vision
system, we drew our inspiration from existing computer
methods, which mevttably imply approximate functionning,
and also from the experimental results on the mechanisms
of human vision, which a priori may be considered as
optimum. Our model implemtmts a "homothetic-filter
bank" (IIFB) where each filter is selectively sensitive to 
frequency-and-orientation pair just like a visual single cell.
This model verifies both the Shannon theorem and what is
known of the properties of human vision. The proposed
system is independent of rotations and scale changes.
Moreover, an appropriate choice of the frequaney-filter
function with its parameters allows us to provide tbr
parallel prt~essing using ca.~;ade computations.

Biological Basis

The perception faculty corresponds to the first stages of
data processing b.v the visual system and corresponds to
the so-called "preattentive vision" (Neisser 1967). In 
performing artificial vision s3.’stem, three important
problems are to be solved: the rigorous sampling of the
spatial frequencies, the scale related problem and parallel
processing for real time applications. Experiences of
b~olog~sts have shown thai the perception of some
phenomenons, such as textures, seems to be made
instantaneously - in parallel - by neurons localized in area-
17 of the visual cortex (Julesz 1975). That preattentive
vision is handled by single visual cells. It is generally
admitted that these cells behave like filtering channels that
are selectively sensitive to frequency-and-orientation pairs
and that the frequent sensitivi.ty is independent of the
orientation sensitivity (Westheimer 1984). It has been
shown that anisotropie single visual-cells sample
orientations with a period of about ten degrees (Schiller,
Finlay and Volman 1976). The angular bandwidth of each
channel is between 30° and 50°, the average bandwidth
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being equal to 40°. It has been also established that the
spatial-frequency bandwidth is between 0.6 and 2 octaves,
the frequency, range being about 6 octaves (Movshen,
Thompson and Tolhurst 1978). The average value of the
spatial frequencT bandwidth of single visual cells is
slightly above one octave.

Whereas the angular sampling is relatively well-known,
the frequency sampling is not yet cleared up and the
changeover from I-D to 2-D models raises some questions.
In particular, we do not know any convincing experiment
describing the interdependence between spatial
frequencies and orientations. It has been observed that the
sensitivity to frequency-and-orientation pairs does not
imply any correlation between these two parameters. Since
the construction of filters separable in frequencies and in
orientations is not forbidden by any theoretical
consideration, we have opted for that approach to build
our model of vision.

Mathematical Model of Visual Perception

Our approach allows us to use, if necessary, different kinds
of filters which could help lessen the computing
complexi~’. Taking into account the research work done
~’ psy. chophysiologists, who have shown thai the visual
cells sensitivities to frequencies are independent of their
angular sensitivities, we investigate separately the
frequency, behaviour of our proposed filters and their
angular properties. We have first emphasized properties of
the I-D filters within the scope of frequent’ processing. It
has been shown that the filter bandwidth to be considered
will always be nearly proportional to its "preferential"
(central) frequency and it was proposed to use real even
functions corresponding to the real part of a Gabor
function (Pollen and Ronner, 1983). We have shown that
this kind of filter belongs to the more general following
model. We call "homothetic filter bank" (HFB) any family
of filters ~(x)}, where i belongs to an interval I of non-
negative integers, having Fourier transforms l~(u), 
belonging to L that verify the following relations:

..~’-F: R---~Cand "vie]...~,eRandpiER:Fi(u) ciF(p,u).(I)
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We call "profile of the filter bank" such a function F
and we say that the HFB is generated by F. Reciprocally,
let F(u) be a continuous function defined in R with values
in C being the Fourier transform of a function f(x),
application of R into C If F(u) has a maximum value at
u ~u= and defines a bandpass as wide or lightly broader
than u,~ then the I-WB engendered by F(u) can 
considered for modelling "all single visual cells. As a
matter of fact, the filters j~(x) belonging to this I-IFB have
bandwidthes of about 1 octave. Subsequently, this set of
filters is refered to as a "visual filter bank".

Most approaches using multiclmnnel-filtering make use
of energy measures after having filtered the image by
Gabor functions for it has been shown that those functions
allow an excellent localization in both image and
frequency spaces (Bovik, Clark and Geisler 1987). Our
model contains a product of I-D functions which are
frequency-and-orientation separable. Our system can be
run with either Gabor functions or any other function
provided they, are well-fitted to frequency filters. We can
prove that our model allows for optimal characterization.
Our approach consists in characterizing images by energy
measures taken as the output of a filter bank whose
properties are the same as those of single visual cells.

We have shown that the energy of a signal s(x) can 
expressed as a convolution T(A)*G(A) at & = -logJp.~. In a
"visual filter" bank, each filter Ft(u) of the HFB has its
own frequency selectivity (its bandwidth) and its own
preferential frequency, noted up Assl~ming that uo is the
preferential frequency, of the profile F. the following
results can easily be inferred from the new expression of
the frequency./l = log,(u) and from the signal theow:

po = !/uo (2)

uk uohk (3)

where the sampling period of the function e-~F(e’t) is
AA=log,(h). This sampling period is calculated by
applying the Shannon theorem. The whole filter bank, in
the image space, should be {f,(x)}. k~Z where the
functions fk(x) are the inverse Fourier transforms of the
F~(u) functions. However. it is known that the maximum
extent of the human visual system’s sensitivity field to
spatial frequencies is of six octaves. From these
considerations, it can be deduced that in modelling the
visual system, only the filters with a preferential frequency
lying inside that six-octave range have to be kept so as to
have a finite bank of filters.

The next important point is to treat the orientations
while describing the changeover from the I-D
representation to the 2-D representation. Assuming that an
appropriate function G(~, 0) achieves a low-pass filtering
in the plane (/l, 0). we can again apply the Shannon
theorem, The output energies of the filter bank are then
interpreted as resulting from the 2-D sampling of the

function T(3,0)*G(3,0). Taking into account notes by
physiologists on the sensitivity beth to angles and to
frequencies, we assume that the filter function G(A, 0) is a
separable one:

(5)

where ~. corresponds to the preferential frequency u~, 0j
being the preferential orientation of the filter Go(A, 0). We
choose the sampling ratio A)t of the ,~ values and, from
A~ we infer the frequency-sampling ratio Au exactly as
done in the case of 1-D filters. We also apply the Shannon
condition for selecting the O-sampling ratio as a function
of the width of the Fourier transform of Go(O). This is how
we achieve a discrete representation in polar coordinates
of the function T. i.e. of the energy spectrum in the Fourier
space, where the frequency axis is graduated with
logarithmic values. Owing to that representation, any scale
change corresponds to a simple translation along the
logarithmic fiequency axis and any shift of orientation is
expressed in a translation along the O- orientation axis.

As we axe aiming at practical efficiency, we make a few
simplifications. The filters, constructed in the Fourier
space, are made to be implemented in the image space for
convolution filtering. For that purpose, we have
investigated a good approximation making it possible to
invert the given equations more easily. First, we consider
the specific case where orientation Oo =0. The general
shape of the filter being consU’ucted in the Fourier plane is
then:

FA(u,v) (uoS~)"!~: F[u/(uohD.] Fj[v/(uoh~)]. (6

The expression of such a filter in cartesian coordinates
is very simple. Moreover, this filter has the advantageous
property to be separable in u and v coordinates, which
makes the computation of its inverse Fourier transform
easier, this transform being a simple product of two one-
dimensional functions of x and y. respectively, in the
image plane, instead of a convolution integral. On the
other hand, the approximate filter FA(u,v) is no longer
separable in polar coordinRtes and does not keep constant
characteristics in frequencies or in orientations.
Consequently, the frequency behaviour of the filter
depends on the orientation and, conversely, its directional
behaviour depends on the frequency. Because of this, we
choose the shape of the filter so that its response is
significant both in the neighbourhood of its preferential
frequency and near its preferential orientation, while it
quickly decreases outside of that neighbourhood. Under
these conditions, we admit that the so-obtained
approximation is valid. Filters with orientation 0j will
derive from horizontal ones through a simple rotation 0j.

In a previous paper (Landraud-Lamole and Yum-Oh
1995), in order to make use of phase information, we have
considered a classical I-D complex Gabor function to
represent the ith frequency filter. But here, we show that
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in order to design a parallel vision system, it is more
pertinent to use differences of gaussian functions.

A Parallel Vision System

A difference of gaussian ("dog") functions was suggested
(Wilson and Bergen 1979) to simulate the response
function of symmetrical single ~asual cells:

f(x)= clexpf-x’.,(2crl"’ ~ :)]-c2exp[-x2/(2cr22)J (7)

The filter f(x) is characterized by four parameters: cz,
~, trz and ty:. We shall see that these filters are well
adapted to parallel computing and make it possible to
extract the most useful frequent’ properties of a given
signal. The Fourier transform of equation (7) is:

- [c2cr:(2~/"]exp(-2~o’z2u2) (8)

The response of the filterf(x) to the zero frequency, i.e.
to some constant imagc, is:

So as to make the filter responses independent of the
average grey-level and dependent only on frequencies
present in the image. F,(O) 0 is set. Constants ct and c:
have then to veri~’:

On the other hand, it is assumed that the filter does not
respond to zero frequencies Indeed, in the case of a
bandwidth of one octave centered at the frequency u, the
interval [u-2. 3u 2] never includes the zero frequency. In
order to normalize gaussian functions that occur in each
filter formulafex), the constants cz and c: are defined as:

¢t = c,/[crt(2r~r’:] and c2 = c,/[cr2(2n)I~] (11)

The determination of the standard deviations o-t and cr~
for each of the two gaussian functions forming a filter
makes it possible to infer the constant values c: and c2 by
using equation (11). The choice of or: and ~r: for each filter
depends on its preferential frequency and on the size
selected for its bandpass. A value of about one octave
corresponds to the known properties of visual-cell bands.
For the filterf(x), we set:

u cr:,tTz constant (12)

The value a is the same for all the filters considered so
that the bandwidth is constant, t~(u) is then written as:

F,(u) c,[expt-2n’cr,’u’) exp(-,n2agcrf’u’)] (13)
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where ~ stands for the parameter ~rj of Eq. (7). According
to the theory presented above, the set ff~(x)) of real
functions of a real variable x. having Fourier transforms
{Fffu)} is a homothetic filter bank generated by the
following profile F:

F(u) = exp(-2 nguz) - exp(-2 gz du2) (14)

such that:

F~(u) = c~(o~ (15)

Let us recall that these filters are to be used for
characterizing filtered images by energy measures. The
filters are normalized so that their responses to a white
noise are always the same. In this way, none of the filters
has a preponderant weight over the others. That
normalization leads to the following result:

c~ =(t~.)t~ (16)

We have found that the value of the bandwidth lies
between 0.6 and 2 octaves for:

!.0625 _< a_<2 (17)

and that the optimal value of at is about 1.5. We choose the
value a =~ because it also allows us to implement a
parallel vision system, as we shall see later.

Once the frequency filters are created, we build the 2-D
separable filters by. bringing in orientations which are to
he sampled according to the conditions of the signal
theory. Then at 0o=0, when the filter axis and the
horizontal x-axis are identical, the general shape of the 2-
D filterf(x, y) in the spatial domain is defined as:

f(x.y) 

(2~-~.’~ {(cr,,.t)-t exp[_x2/(2~z)] - ,. ¯
(~,9 exp[-x’/(2cr,:’)} 

(2~’t~2{(~)’t exp[-yz /(2~2)]} (18)

We have chosen the standard deviations so that, for all
values i belonging to the set I: ~ /~ .. a = constant and
t~ /t~z = fl = constant. The constant fl depends on the
number of orientations being processed. By giving the
value v~ to the constant t~ a constant spatial-frequent,
bandwidth can be achieved, its width being slightly above
one octave, according to visual system properties and to
the signal theory. Moreover, this value v’2is the most
suitable for computing convolutions, as recalled hereafter.
The first gaussian function, with standard deviation t~t is:

goi.~o(x) " (2tO"t/~{(~)’] exp[-x~ / (2~z)]} (19)

The filter can then be expressed as:

fo~.oo(x) = [go~.~(x) - g,,o~,~(x)] . gao~.~,(y) (20)



These filters, with an orientation 0o = 0, are notedly(x, y)
orf~(x, y) indifferently changing expression (20) into:

with:
f,~(x, y) = lg,n(x) -g~,.(x)]. (21)

The filters corresponding to any preferential orientation
0j are deduced from filters with a zero preferential-
orientation ~" executing a simple rotation of angle 0j and
are written f~.q(x, y). Subsequently, the filter f~(x, y) is
written as a difference of two gaussian lowpass-filters:

f.~x, y) = fz.o,(x, y) "A,~(x. (22)

Image lo(x.y)
Input

*g(x) ~’
0

.g(y)

T
Image Io(x,y)
filtered by 1’1

*g(x)

*g(y)

*[g(x)*g(x)l

¯ g(x)

~1[

:: by fm(x,y)

* *[g(x)*g(x)]Image I, filtered I

I
by (fl*f~)

(2 steps) "

0

Image Io(x.y)
filtered by. t’2

,[g~’),gt.v)l
Image Io filtered by f,=,v,t2(x,y) I

,J Image Io filtered
by. (f2*f2)

’~ ,[g(x),g(x)l
Inmge 1,, filtered I .J Image Io filtered

by t"l*fl*fl*fl
I q by f2*f2*f2*f2

I Image I° filtered by f~’2(x’y) I

etc.+

Sketch of cascade filtering
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with: ]i.~(x, y) - g~(x), gp~(.~) (23)

and: f2.=(x, y) :: g~o,(x) . gpm(.g) (24)

Three basic properties of the convolution integral
make an interesting implementation of our filtering
processes possible. First is the associativeness of the
gaussian functions, whether f, g and h are 1-D or 2-D
functions:

/~(g,h). ¢f,g),h (25)

The two-dimensional convolution of separable functions
is such that:

[f~(x)gKv).l*L~(x)g2~v)/ /f~(x)*.~(x).l.[gz(.v)*ge(y)J (26)

The last is, the convolution of a gaussian function by
itself is a similar gaussian function with a standard
deviation multiplied b.v v~:

go(x) *go(x) g,~,~x) (27)

From these properties, the possibility of cascade
filtering is infered. Consider expressions (23) and (24) 
the filtersfi andA and let us take into account the filter
separableness. A convolution by fi (or by J}) can be made
in two steps: a convolution of the image lines ~" g~(x)
followed by a convolution of the image columns by
gpo~(x). Selecting the value v2 for the parameter a is reD’
appropriate for we can then write:

g,o~(x) ̄  g~ ~,(x) " g~(x)*goi(x). (28)

Cascade convolulions can then be executed according
to the diagram of the figure. Cascade filtering of the
image lo(X, .v) uses relalion ~28). In this figure, the arrows
with a continuous line represent a convolution of image
lines, while the arrows with a broken line correspond to a
convolution of columns. The notation g(x) represents the
function go~(x) while g(vJ - gp,~(y). All filterings are
made in a given direction 0o 0. The highest preferential
frequent’ um is inverscl.v proporlional to the lowest
standard deviation crm.

This work has a number of potential appli~tions,
especially in medical imagery and in the analysis of
satellite images.
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