From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Using Genetic Programming for Document Classification

Bgrge Svingen
Department of Computer Systems
Norwegian University of Science and Technology (N'ITNUT)
N-7034 Trondheim
Norway
hsvingenidi.ntnu.no

Abstract

Genetic programming is suceessfully used to
ovolve agents capable of classifving textual docn-
ments according to the interests of the user. The
svstem uses a preclassified set of documents to
{rain the agents, and the results are then tested
on an alternative set of dociments.

Introduction

With the large amonnts of information easily available
today, a major problem is to find the parts that are
interesting. This paper describes an experiment that
attempts to create an agent that takes a textual doe-
ument and decides whether it is of interest to the nser
of the system more specifically, it attempts to do
this by using genetic programming (Koza 1992; 1994
Altenberg 199.1; Angeline & Kinnear, Jr. 1996).

In the next section, the document classification pro-
coss is deseribed in detail. before the actual experiment
is presented. Subsequently. a specification of how ge-
netie programming is nsed to evolve the document clas-
sification agents is given. The results of the experiment,
are presented, and finally a conclusion is drawn.

Document Classification

When a group of documents is presenied to a uscer,
the documents will be of varying interest. On the ba-
sic level, some doemmemts are considered interesting
cnough to be read. while others are not. Although
this classification is situation dependent. it should be
possible to make sotne general elaims about which doe-
mments are interesting and which are not. The set of
documents could be divided into several elasses depend-
ing on the degree of interest the user hag in them, mayhe
even a continuous, numerical measure of interest could
be given, but this wonld complicate matters: dividing
the set of documents into two classes will usually be
sutficient, and maybe even preferable, for most users.
The actual content of a document is the meaning
assigned to it by the user. This is obvionsly diffi-
cult to capture by a computer program. On a lower

i (_‘-upy-r-ight 1998, Awerican Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

level, it is possible to analyze the grammatical strue-
ture of the document and the meaning of the individual
phrases. Although theoretieally possible, this method
has proved difficult in practical applications (Russell &
Norvig 1995).

The approach taken here is the one traditionally nsed
in information retrieval and information filtering: cach
document is scen as a set of words, with no mutual re-
lations between the words. Furthermore, no meaning js
assigned to the words. This meaus that the only infor-
mation about a document that can be used to classify
the document as interesting or not interesting is the set
of words present in the docwnent, aud, couversely, the
set. of words not present in the docnment. This is a
rathor sitnple view of the content of a docmuent. but a
great deal of information is still present, often enough
to make the correct prediction.

The aim of the experiment deseribed in this paper
is therefore to show that genetie programming can bhe
nsedd to evolve agents that, based on the set of words
present in a document, decide whether the document is
of interest to a specific nser.

The Experiment

In the following, an experiment is deseribed that at-
tempis to show that genetie programming can be used
to evolve document classification agents.

A total of 617 example documents are nsed. These
documents are the messages posted to the genetic pro-
gramming mailing list from Jamary 2 through June
14, 1993. They have all been mamnally classified as
being interesting or uninteresting: documents regard-
ing different selection methods. for instance fitness
proportionate selection, towrnament. selection, or the
use of demes (Koza 1992: Wright 1932; Tanese 1989;
Andre & Koza 1995; 1996; Niwa & Iba 1996). have heen
classified as interesting, and all other documents have
been classified as uninteresting. Of the total 617 doc-
utnents, 101 are classified as interesting, and the other
216 docments are classified as uninteresting.

This group of documents is then arbitrarily divided in
two; group A, with 62 interesting and 223 uninteresting
docnments. is used as training data for the genetic pro-
gramming algorithmn. Group B, with 39 interesting and

Evolutionary Computation 63

203 uninteresting docnments, is then used, after the ge-
netic programming algorithn has produced a result, to
test how good the evolved programs are at classifying
documents they have not been trained on.

The experiment therefore counsists of using genetic
programming to evolve a document, classification agent
using document group A to calculate the fitness values
of the evolved programs, before the resulting agents are
tested on document. group B.

Genetic Programnming Specification

Based on the situation deseribed so far, the funetion
and terminal sets used to do genetic programming are
presented inTables 1 and 2, respectively. As can be seen
from the tables, these are the normal boolean and arith-
metic functious and constants the boolean functions
treat, 0 as FALSE, and all other values as TRULE. In
addition, there is a function PRESENT, which checks
to see if a certain word is present in the current doc-
ument, this is the only way the agent programs can
get information about the documents.

The agent is cquipped with a dictionary of words;
this dictionary contains all the words used in any of
the documents processed by the agent, and assigns to
each of these words an integer mumber this number is
subsequently used to refer to that word. The function
PRESENT takes such a number. and checks the current
document to see if the word represented by the given
nuber is present. PRESENT returns this number if
the word turus out to be present in the document. and
returns zero otherwise. vepresenting boolean TRUE and
FALSE, respectively. An arbitrary maximum number
of words to he processed by the system is set to 10000
in this experiment; integer numbers are therefore all
modulo 10000,

The functions AND and OR are implemented as the
minimmm and the maximum functions. respectively.
This is done to avoid having all munbers calenlated in
lower paris of the program trees replaced by 1's as they
progress through these functions on their way up the
program tree. This is also why the PRESENT function
returns its argument instead of just L.

Every agent program is allowed to have nmltiple re-
sult producing hranches, and each such rvesult produce-
ing branch returns a hoolean value. The decision of the
agent is then taken to be a *majority vote” from these
result producing branches: if more than hall of the re-
sult. producing branches return a value of TRUE for a
given document, the document is classificd as interest-
ing, otherwise it is classifiod as uninteresting.

The values used for the genetie programming parame-
tors are shown in Table 3. As can be seen from the table,
the deme approach is used (Wright. 1932; Tanese 1989;
Andre & Koza 1995: 1996: Niwa & Tha 1996), along with
automatically defined functions and multiple result pro-
dueing branches details can be found in (Svingen
1996). Mutation is implemented as duplication or dele-
tion of branches in the trees. A total of 5 runs are
completed.

64 Svingen

Function

“Arity

Explanation

AND

OR

NOT

1F

PRESENT

2

Performs the boolean op-
cration AND on its two
arguments.

Performs the hoolean op-
oration OR. on its two
arguments.

Performs the boolean op-
eration NOT on its
argument.

The first argument is
evaluated. T it evalu-
ates to TRUE. then the
second argument is oval-
nated and returned. oth-
crwise the third argu-
ment is evaluated and
returned.

Returns the suin of the
arginents.

Returns the first argu-
ment subtracted the see-
ond argument.,

Returns the prodnct of
the two arguments.
Returns the first argn-
moent divided by the see-
ond argument, or zeto if
the second argument is
ZOTO,

Returns the negation of
the first argnment.
Returns the first argn-
ment, modulo the second
argument. or zero il the
secomd argnment is zoero.
Interprets the nonmber
given by ils argumnent as
a word, and returns thi
number il the word is
present in the doenment.
and returns 0 otherwise.

Table 1: Function Set

Terminal ~Explanation

“TRUE

FALSE

0

9999

Returns 1.
Returns ().

Ephemeral. returns a random
value between) and 9999.

Table 2: Terminal Set

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

60

Fitness

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

Generation

Figure 1: Fitness of the Best Programs

Parameter Value
Number of demes 25
Population size per deme 1000
Maximum number of ADFs 4
Maximum number of argutuents 2
Maximum number of RPBs 4
C'rossover rate 90%
Mutation rate 1%

Table 3: Parameter Values

Results

The evolution of the programs in the different runs is
shown in Figure 1. The fitness value used in the figure is
the number of documents that the evaluated programs
missed to classify correctly; this means that the best
possible value is 0, for a perfect program, and that the
worst possible value is 283, since there are 285 docu-
ments to classify: however, since it is easy to find a pro-
gram that returns a constant value, the worst program
that is likely to appear will have a fitness of 62, since
there are 62 documents that are classified as interesting
and 223 documents that are classified as uninteresting.

Out of the 5 runs, the fitness of the best program in
the initial generation in 4 of them is jusi, below 50, while
in the other run it is just above 40. Given that every
generation consists of 25 demes with 1000 programs in
each, and that 5 runs have been performed, a total of 25.
1000 - 5 = 125000 random programs have been created.
Since none of those have fitness values hetter than 40,

ADF3 | (IF (PRESENT tournament) 1 P’0)
RPBO | (ADF3 0)

RPB1 | 0

RPB2 | 1

Table 4: Best Program in Generation 3 in Run 1

the probability of such a solution appearing by random
scarch scems to be very small.

Apart from run 3, the runs behave similarly; the ini-
tial programs have fitness values close to 50. except for
run 4, as mentioned in the previons point. A jump
is then made, caused by the evolvement of some im-
portant feature, down to 28. A few generations passes
without much improvemnent, before another jump down
to somewhere between 15 and 20. From there on, the
evolvement takes place more gradually, ending with fit-
ness values of just bhelow 10. Run 3. on the other hand.
lacks the two jumps and consists mainly of gradual im-
provement, until generation 43, where a jump is made
from just below 30 to just below 20, This run ends up
at a fitness of about 15.

In order to gain more insight into the suecess of the
genetic programming process. one of the more typical
runs, run 1, will now be examined in detail.

The best program in the initial generation O has a fit-
ness of 49. This program is completely random, so no
examination of its operation is given. For the next two
generations, no improvement is achieved. Then. in gen-
eration 3, a program with a fitness value of 28 appears.

Evolutionary Computation 65

“Percentage of documents correctly 92

classified

Percentage of interesting docunents 36
correctly classifiod

Percentage of uninteresting documents 99

correctly classified

Table 5: Correctness of Best. Program in Generation 3
in Run 1

In order to explain this jump, a simplified version of
the best program from this generation is shown in Ta-
ble 4. The munhers are here replaced by the words they
represent. Automatically defined functions that are not.
used are not shown in the table.

A very good explanation of the jup in the fitness
with generation 3 can now be given; the word “tour-
nament”, which is nsed in the context of tournament
seloection. oue of the selection methods, and therefore
is present. in many of the documents that are marked
as interesting, is included in the program. Since RPB1
and RI'B2 neutralize cach other, the result is given by
RPBO, which again calls ADF3 with an argument of 0,
g0 the resull. of the prograw is given by (IF (PRESENT
tournament) 1 §). The agent program therefore accepts
documents that contain the word “tournament™. and
rejects all others.!

The correctness of this program on the documents in
group B is shown in Table 5. Although 92% correct
classifications wight scem good, 36%: correct classifica-
tions for interesting documents cannot be considered
satisfinble.

As ean be seen from Figure 1, after a fitness value
of 28 has been achieved, the fitness values fall gradu-
ally until a fitness valne of 8 is achieved in the final
generation 5. The best prograun from this generation,
which has 3 automatically defined functions and 3 result
producing hranches, is given in Table 6. Although it is
hard 1o nunderstand the actual operation of the program
(see (Svingen 1996) for an attempt), it should be clear
from the table that the program checks for the pres-
ence of several words that are natural in documents on
the topic of selection methods, such as “tournament”,
“candidate™ and *deme”. It s also interesting to nolice
that both singnlar and plural form of *tonrnament™ and
fdleme” are used by the program.

The correetness of this progrim on the documents

'The word “tonrnament” is in fact such a strong char-
acteristic of the doenments classified as interesting that the
word. represented by the munber 1545, also appears in runs
3 amd 1 in the first generation after the jump dowu to a
fitness valne of 28, In run 2, this number does not appear.
The number 8455 does. however, appear. in the best pro-
gram in generation 1, which is the first with a flitness of 28,
as the argument to a wnary minus operator. And since all
numbers are given module 10000, as was described above.
—8455 = 10000 — 8155 = 15.15.

66 Svingen

ADFI (JF (OR PO (PRESENT candidate)y -
{IF (+
(PRESENT tournament.)
(PRESENT demes)
)
1
0

)
(IF (PRESENT tournaments)
8607
(IF (PRESENT tonrnawment)
1

(PRESENT (- (PRESENT scant) 1))
)
)
)
ADF2 (4 3980 (NOT PO))
ADIF3 (IF (PRESENT tournament)
1

(- (ADF1 10))
)
RPBO (IF (ADF21 1)

(- (PRESENT eme))
(ADF3 (PRESENT pet))

)
(ADF3 0))
RPB1 (IF (PRESENT galapagos)
5976
(PRESENT deme)

)
RPB2 1

Table 6: Best Program in Generation 50 in Run |

“Percentage of documents correctiy ’ 9.1
classilied
Percentage of interesting documents a9
correctly classified
Percenfage of uninteresting documents 99

correctly elassified

Table 7: Correctness of Best Program in Generation 50
in Run 1

in group B is shown in Table 7. The behavior is now
significantly better, 94% of all the documents, and 59%
of the interesting documents, are correctly classified.

Conclusion

In all the 5 runs, solutious with fairly high fitness val-
ues were found. The interesting thing, however, is how
well these evolved programs perform on documents they
have not been trained on, that is, on group B. The per-
centage of documents that are correctly elassified is not
very useful in itself, since it depends heavily on the re-
lationship between the number of interesting and the
number of uninteresting docunents it is more in-
teresting to look at the percentage of interesting docu-
ments that are correctly classified, and the percentage
of uninteresting documents that are correctly classified.

In Table 7, the results from the hest program in run
1 of the experiment were shown. This solution must
be considered good, since it is likely to be salisfving
for most users to get access to 60% of all interesting
documents, while having to read just 1% of the unin-
teresting documents?. As a conclusion, it can therefore
be said that genelie programming scems to he a use-
ful wethod for creating document classification agents.
The model used in this text is extremely simple, and
large improvement should be possible by using more
advanced information filtering techniques.

This experiment. is described in greater detail, along
with further work, in (Svingen 199G).

Acknowledgments
This work has received support from The Rescarch
Council of Norway (Program for Supercomputing)
through a grant of computing time.

References

Altenberg, L. 1994. The evolution of evolvability in
genetic programming. In Kinnear, Jr., K. E., ed., Ad-
vances in Genetic Programming. MIT Press. chapter 3,
774

Andre. D, and Koza, J. R. 1995. Parallel genetic
programming on a network of transputers. In Rosca,
J. ., «d., Proceedings of the Workshop on Genetic
Programming: From Theory to Real-World Applica-
tions, 111 120.

Andre. D., and Koza, J. R. 1996. Parallel genetic
programming: A scalable implementation using the
transputer network architecture. In Angeline, P. J.,
and Kinnear. Jr., K. E., eds.. Advances in Genelie
Programming 2. Cambridge, NMA, USA: MIT Press.
chapter 16, 317 338.

2If this is not the case, it can be controlled by adjust-
ing the fitness function; if the fitness function puts more
weight on incorrectly classified interesting documents than
on incorrectly classificd uninteresting documents. then more
documents will be classified as interesting, and less informa-
tion will be lost at the expense of having to read a higher
number of docunents.

Angeline, . J., and Kinnear, Jr., K. E., eds. 1996.
Advances in Genetic Programming 2. Cambridge, NA,
USA: MIT Press.

Koza. J. R. 1992. Genetic Programming: On the Pro-
gramming of Computers by Natural Selection. Cam-
bridge, MA, USA: MIT Press.

Koza, J. R. 199, Genetic Programming II: Auto-
matic Discovery of Reusable Programs. Cambridge
Massachusetts: MI'T Press.

Niwa, T., and Iba, H. 1996. Distributed genetic pro-
gramming: Ewmpirical study and analysis. In Koza,
J. R.; Goldberg. D. E.; Fogel, D. B.; and Riolo. R. L.,
eds., Genctic Programming 1996: Proceedings of the
First Annual Conference, 339-344. Stanford Univer-
sity, CA, USA: MIT Press.

Russell, S., and Norvig, P. 1995. Artificial Intelligence,
A Modern Approach. Prentice Ilall.

Svingen, B. 1996. Evolving autonomous agents us-
ing genetic programuning. Master's thesis, Norwegian
University of Science and Technology (NTNU).
Tanese, R. 1989. Distributed genetie algorithins, In
Procecdings of the 3rd International Conference on
Genetic Algorithans.

Wright, S. 1932. The roles of mutation, inbreeding,
crosshreeding and sclection in evolution. In Proceed-
ings of the Sixth International Congress of Genelies.

Evolutionary Computation 67

