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Abstract

Assigning patients into clinical trials is a knowl-
edge and data intensive task. Determining the
cligibility of a patient for admission into a clin-
ical trial is based upon specific criteria. These
criteria may be shared among several protocols or
may be unique to one protocol. A major difficully
in assigning patients to clinical trial protocols is
the absence of complete information regarding the
patient. Much of the needed data can be time-
consuming or expensive to obtain, or needed tests
can cause pain or discomfort to the patient. An-
other difliculty is that there are many open trials
at an institution at any onc time and it is very dif-
ficult to keep track of criteria for each trial. This
paper investigates the use of a luzzy expert sys-
tem joined with a dependency analysis to landle
uncertainty and sort needed data for several pro-
tocols in order of influence. The system’s output
is an evaluation of the patient’s eligibility for one
or more clinical trials. Preliminary tests show that
the system presents important data as high prior-
ity data while finding an appropriate order to ob-
tain all needed data. We have implemented four
breast cancer protocols and successfully tested 15
cases which were clinically eligible for one of the
four protocols.

Introduction

The purpose of a clinical trial is to cvaluate new treat-
ments for discase.  Each trial is designed to increase
scientific understanding of therapy and to find hetter
ways to help patients recover from disease. Palicnts
may participate in a clinical trial if certain criteria are
met involving demographics, laboratory results, symp-
toms, physical findings, current and prior medications
and treatments, and drug allergies. However, obtaining
enough patients for a given trial to enhance statisti-

cal significance may be hindered hy a large number of

open trials. It becomes difficult for a elinician to recall
the exact eligibility requirements for every clinical trial
for which a patient may be eligible. For exaiuple, there
may be information that rules a patient in or out ol one
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trial, but the person doing the assigniment may be con-
sidering a different trial entirely. Therefore, the need
for a fast and efficient method of assigning patients to
clinical trials is the main goal for this work: a problem
well-suited for an expert system  (Giarratano & Riley
1994).

Assigning patients into clinical trials is a task requir-
ing certain data about the patient and knowledge about
clinieal trials (Tu & al. 1993). Eligibility determina-
tion for inelusion in a elinieal trial is based upon spe-
cilie inclusion and exclusion criteria. This paper de-
scrtbes an attempt to solve this problem using a qual-
itative expert system. The expert system uses a fuzzy
rule-base since there may be missing data or uncer-
tain data due to the unprecision of modeling medical
test results. sigus and symptoms. (Zimmerman 1991;
Jang & Gulley 1995). The fuzzy rule-base will be cov-
cred in the fiest subsection of Interface and Algorithms.
In addition, data needed by the system to determine
il a patient is eligible for a protocal, is listed in order
of importauce. This prioritization is done using depen-
deney analysis via graphs of the fuzzy rules and the
lacts available. which will be discussed in the Depen-
dency Analysis subsection of Interface and Algorithms.

Background

Inference from rule-bases has traditionally been han-
dled in various ways. The rule-base can be probablistic
or possiblistic (Kruse & Borgelt 1997). Analysis may
be used to predict the relative importance or sensitiv-
it¥ of each rule in the rule-base (Laskey 1993). Some
methods use Bayesian beliel networks (Laskey 1995;
Theocharous 1996) or Dempster-Shafer’s belief net-
works (Wang & Valtorta 1992) rather than rules. Our
goal was to use a simple tool which would enable us
to compute the relative influence of cach fact on the
patient’s cligibility score.

There hias been little rescarch on building systems to
determine patiend eligibility for clinical trials. Mostly,
there are two general approaches taken. a probabilis-
tic one using Bayesian belief networks (Pearl [1988:
Wang & Valtorta 1992; Ohno-Machado et al. 1093;
Laskey 1995: Theocharous 1996) and a qualilative ap-
proach (Zimmerman 1991; Tu et al. 1993). The i
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ficulty in using a Bayesian network is that it requires
large numbers of exact conditional probabilities to be
specified as the number of network nodes increases. The
number of probabilities may be so large that it may be
necessary to apply learning techniques to get accept-
able values for the prior probabilities ([Icckerman 1995;
Theocharous 1996). Moreover, while implementing
multiple protocols, a very complex network may be cre-
ated. Hence the issues are scalability, time and design
complexities when using probabilistic approaches such
as Bayesian belief networks.

Another of our goals was to ensure that the devel-
oped system for clinical trial eligibility scales easily to
groups of protocols for the same area, such as all open
protocols for breast cancer. Therefore it should be casy
to incorporate new protocols and remove closed pro-
tocols as is possible while pursuing a qualitative ap-
proach. Some exploration of the qualitative approach
to clinical trial eligibility assessment has hclped deter-
mine that scaling up may best be accommodated by
a qualitative system (Tu ef al. 1993). Also, in work
with fuzzy qualitative models, it has been found that
small changes in the models do not perturb the results,
attesting to their stability (Berenji & Khedkar 1992;
Wang 1994). The fuzzy qualitative models provide the
possibility of flexible and robusi decision making which
forms the basis for our research.

The Rete algorithm implements a rule-base using
acyclically directed dependency graphs (Nayak, Gupta,
& Rosenbloom 1988). The nodes in the graph represent
variables or patterns and the links represent the an-
tecedent of the rules. The algorithm we propose is con-
ceptually similar since relevant rule-base information is
also stored in the links and nodes of the graph. This pa-
per describes an implementation where the nodes rep-
resent fuzzy facts and intermediate steps within each
rule, which will be discused in more detail in the nexi.
section. Also, when a fuzzy fact is introduced into the
system that information is propagated to effect. all rel-
evant nodes through the links.

The combination of dependency analysis with a fuzzy
qualitative modecl allows the system to determine which
facts are needed to improve the eligibility score (Nayak,
Gupta, & Rosenbloom 1988; Kusiak & Wang 1993;
Chandwani & Chaudhury 1996). Those facts are then
ordered by potential impact on the decision to include
or exclude the patient in a protocol adding to the cffi-
ciency of the system.

Interface and Algorithms

A web-based interface is used to collect patient data
from a user and offer patient eligibility information
based on that data. The fuzzy qualitative modcl was
implemented using a fuzzy rule-base where each rule
is either a conjuction or a disjunction of fuzzy facts.
The dependency analysis examines the relationships of
chained facts, represented as nodes of a graph, built
with the antecedents and consequences of the fuzzy
rules. The details of both the fuzzy qualitative model

and the dependency analysis of this system are dis-
cussed in the following subsections.

Fuzzy Qualitative Model

Fuzzy rules provide a means for modeling the impreci-
sion of medical signs, symptoms and test results) (Zim-
merman 1991: Jang & Gulley 1995). The fuzzy rules
used to determine clinical eligibility were encoded in
the fuzzy expert system tool, fuzzy CLIPS (Orchard
1995). The advantages of using fuzzy CLIPS are that
it is easily expandable with user-defined C functions,
portable, and it executes quickly.

The fuzzy rules each provide some partial member-
ship for a patient as either eligible or ineligible for a
clinical trial protocol. At each point in the process of
determining eligibility, a membership score within the
range of [0,1] is available. A membership value of 0 re-
flects no membership in the eligibility class while 1 is
full eligibility within the eligibility class for the trial.
Although the person entering information into the sys-
tem can decide when an eligibility score is high enough,
a threshold membership value of 0.75 in the cligibility
class was used in our tests to indicate that a paticnt is
eligible for a protocol.

An example of two fuzzy rules with the same goal
node are shown in Figure 1. Since both rules lead to
the same conclusion, either or both rules could influcnce
the eligibility of a patient to Protocol 1. Let us examine
this example in detail. The rule on the left side of the
graph, a AND b AND ¢ — Protocol 1, uses information
from three leaf nodes, a,b and ¢, The fuzzy values for
a and b have already been determined, denoted by the
same values for the lower and upper bounds. Although
node a has a value of 1, node b only has a value of 0.2.
If we propagate the known information to the inter-
mediatc node abegnp, note that the minimum values
ol the lower and upper bounds are chosen. This means
that any new information obtained from node ¢ will not
increase the value of abcanp. Since low values (based
on some predefined threshold) will not add to the eligi-
bility of a patient to Protocol 1, there is litile need to
determine the value of node ¢. The rule on the right
side of the graph, ¢ OR d — Protocol 1, uses informa-
tion from two leal nodes, d and e. Node d has been
predetermined with a value of 0.5. Since this rule uses
an OR node, the maximum bound values will be prop-
agated to depp. Presently, the range for degp is above
all possible values of abcanp, so the final range passed
to the goal node Protocol 1 (also an OR. node) is re-
ceived from Rule 2. Therefore, any further information
from Rule 1 would indced be meaningless.

Our implementation strategy allows for case in
knowledge maintenance. Since each protocol is imiple-
mented as a separate sel. of rules, the ability to modify
the rules of one protocol exists as that protocol may
evolve over time. Also, this modular approach will
make for simpler addition of a new protocol, as well as
removal of a protocol that is closed to paticent accrual.

With each protocol implemented as a separate set
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1: Fuzzy rule-basc with two rules leading to the same conclusion. Rule I: a AND b AND ¢ — Protocol 1.
The fuzzy AND is implemented as a minimum function while the fuzzy OR is

implemented as a maximum function. Therefore the fuzzy bounds reported to the intermediate nodes (abcaxp and
deor) are the minimum lower and upper bound values for the AND node and the maximum lower and upper bounds
for the OR node. Similarly, the fuzzy values reported to the goal node (Prolocol 1) are the maximum bound values
of the intermediate nodes since the goal node is also an OR node.

of rules, a separate instantiation of CLIPS is provided.
The needed facts for each instantiation are merged into
one set. of grouped facts which will then be sorted in
order of priority during the dependency analysis.

Dependency Analysis

Again, I"igure 1 demonstrates that sowe facts may not
need to be collected for conclusions about the goal node
to be made. For example, since the abe snp node from
Rule 1 takes the minimum value of all three upper
bounds and the minitnum value of all lower bounds,
and node b has previously been determined as having a
fuzzy valuc of 0.2, the upper bound of abesnp can be
no larger than 0.2. Given this information there is no
need Lo acquire the valuc of node ¢ since it will never
malich or exceed the minimum value for the dcpp node
from Rule 2.
OR nodes and AND nodes is: unknown facts at an OR
node can raise the eligibility membership value bound
to 1, but unknown facts at an AND node can lower
the membership value for that node bound to 0. Simi-
larly, other considerations may be made which allow for
cfficient and meaningful data collection.

The analysis described above is applied to all un-
known facts in the graph allowing them to be ranked
within the bound membership values. For example,
Figure 2 demonstrates the technique used to rank the
needed lacls in order of relative impact on the goal
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A general description of the impact of

node. Nodes between the leal nodes and the goal node
are referred to as intermediate nodes. 'The intermedi-
ate node for Rule 1 is abcanp, implemented with the
minimum function. shown with a value bound by (0,1).
Although node a has a fuzzy membership value of 1,
nodes b and ¢ must be determined before abegnp can
be fully determined. In contrast, since the intermediate
node for Rule 2 is an OR. node, implemented with the
maximum function, a high fuzzy value from vither d or ¢
could positively impact the goal node. However, node d
has been pre-determined with a value of 0. ‘Therefore,
information regarding node e will cause Rule 2 to fire,
activating the goal node with a fuzzy value of the max-
imum of d or e. Hence, there is only one fact needed to
impact the goal node via Rule 2 s0 node e is labeled as
the most important fact to obtain.

The dependency graph is iinplemented as a weighted
directed graph using an adjacency list. This allows the
record keeping necessary to associate the relationships
between nodes. For example, we must keep track of
each node’s parent so that we may casily conduct a
depth first search from the goal node, looking for the
nutuber of unknown leaf nodes in the goal node’s sub-
tree. From this search the impact of each leaf node on
the goal node may bhe determined.

There are two major rules when sequencing the un-
known leal nodes in order of greatest impact. First, a
subtree with several unknown leaf nodes is more expen-
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Figure 2: Rule-base with two rules each leading to the same goal node. Rule 1. a AND b AND ¢ — goal. Rule 2.
¢ OR d — goal. This dependency graph demonstrates the technique used to rank the needed facts in order of relative
impact on the goal node. Since the intermediate node for Rule 2 is an OR node, a high fuzzy valuc from either d
or ¢ could positively impact the goal node, however, node d has been pre-determined with a valuc of 0. Therefore,
information regarding node e will canse Rule 2 to fire. activating the goal node with a luzzy value of the maximum
of d or e. Hence, there is only one fact needed to impact the goal node via Rule 2 so node e is labeled as the
most important fact to obtain. In contrast. since the intermediate node for Rule 1 is an AND node. the minimum
fuzzy value will be propagated to the goal node. Therefore. all three leal nodes of deor must be considered hefore
propagating the minimum fuzzy value to the goal node. demanding nodes b and ¢ be delermined second and third,

not necessarily b before c.

sive to explore than a subiree with fewer unknown leal
nodes. Second, the antecedent leaf nodes of an AND
node do not need to be fully determined if one of the
known leaf nodes has a value of 0, or if the known value
of that leaf is less than the minimum value of a com-
peting intermediate node. Similarly, the antecedent leaf
nodes of an OR node do not need to be fully determined
if onc of the known leaf nodes has a value of 1, or if the
known value of that leaf is more than the maximum
value of a competing intermediate node. Quce the un-
known leaf nodes (needed patient data) have been prop-
erly sequenced and displayed through the webh interface,
the user may provide values to those questions if the
information is known. T'hen at any time the eligibility
membership may be recalculated and displayed.

Results and Discussion

Onc parameter on which our system may he tested is
how effective our approach prioritizes the needed facts,
judged by how effectively it reduces the number of ques-
tions a user must answer. We tested the system on two
breast cancer protocols. Tahle 1 shows results from two

rule-bascs for which the dependency analysis was tested
with random organization of facts and cases. There
were B0 test cases generated for each protocol in two
ways. The first group represents when the facts are ran-
domly generated and the second represents the usage of
the dependency analysis to suggest the most important
facts. In both cascs, the fuzzy value for cach fact is se-
lected randomly. The average number of facts needed

to delermine eligibility and standard deviation is shown
in Table 1.

It is clear that answering the ordered facts resulis
in significantly less necessary facts before a decision is
made. The standard deviation using the ordered facts
is also significantly less for both protocols. This data
indicates that the dependency analysis is effective in
ordering the facts needed, thereby reducing the num-
ber of questions asked before the goal node is reached.
However, when we have a large set of alternative par-
enis with equal impact on the child node, it may choosc
a deciding fact (one which rules in or out a goal) with
an appropriate value. In this casc, a random choice of
facts may work better than the sorted one.
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Protocol 1 Protocol 2

Order of Facts || Random | Sorted || Random | Soried

Avg. Needed 7.72 4.26 5.24 2.86
Std. Dev. 6.45 2.02 3.09 1.01

Table 1: Performance of Dependency analysis algorithm
over 50 cases on two rule-bascs.

For one of the protocols implemented, there were 15
available clinical exainples from patients who were en-
tered into the protocol. We have tested our system on
these 15 cases and found that cach patient was found
to be eligible for this protocol and not the other three
implemented protocols. This eligibility was based on
a minimum nembership threshold of 0.75. The mem-
bership values for all other protocols were (0.5 or less.
Therefore, our system successfully classified the avail-
able 15 clinical test cascs.

Conclusion

The dependency analysis aids in the assignment of pa-
tients into clinical trials in an cffective manner. The
dependency analysis algorithm helps to sort. missing in-
formation from patients with respect Lo their impact on
the protocol eligibility. Moreover, this algorithm recog-
nizes when acquiring further facts would not aid in the
analysis once the maximum possible fuzzy value of the
goal node reaches below the acceptance threshold. The
algorithm has the potential to sort the important nodes
with respect to other factors such as cost and discom-
fort along with the causal impact on the goal. We are
in the process of testing this algorithm on multiple clin-
ical protocols while comparing results with those from
medical experts.

Acknowledgements

This work was supported in part by the Moffitt Cancer
C'enter. Many thanks to Dr. Susan Minton for her help
in system analysis and to Margaret Gross-King for her
help in data collection.

References

Berenji. H., and Khedkar, P. 1992. Learning and tun-
ing (uzzy controllers through reinforcements. [EEFE
Transaclions on Neural Nelworks 3(5):724-740.
Chandwani, M., and Chaudhury, N. S, 1996. Knowl-
edge represenlation using fuzzy deduction graph.
[EEE Transactions on Systems, Man and Cybernci-
ics 26(6):848 854.

Giiarratano, J., and Riley. Gi. 1994, Fzpert Syslcms:
Principles and Programming. Boston, MA: PWS Pub-
lishing Company.

Heckerman, D. 1995. A tulorial on learning baysian
networks. Technical report, Microsoft.

Jang, J. S. R., and Gulley, N. 1995. Fuzzy logic toolbor.
Natick, MA: The Math Works, Inc.

88 Bhanja

Kruse, R., and Borgell, C. 1997. Learning probabilistic
and possibilistic nelworks : Theory and applications.
Parague: Seventh TFSA World Congress.

Kusiak, A., and Wang, J. 1995. Dependency analy-
sis in conslrainl negotiation. IEEE Transactions on
Systems, Man, and Cybernetics 25(9):1301-1313.
Laskey, K. B. 1995. Sensitivity analysis for probability
assessments in bayesian networks. IKEFE Transaclions
on Syslems, Man and Cybernetics 25(6):901-909.
Nayak, .; Gupta, A.; and Rosenbloom, P. 1988. Com-
parison of the rete and treat production matchers for
soar (a summary). In Proceedings of AAAIL 693-698.
Ohno-Machado, L.; Parra, E.; Tu, S. W.; and Muscn,
M. A, 1993. Aids2: A decision-support tool for de-
creasing physicians uncertainty regarding patient eli-
gibilty for hiv treatment protocols. In Annual Sympo-
sium Applied Medical Care, 429-433.

Orchard. R. A. 1995, FuzzyCLIPS Version 6.04.
(‘anada: Nalional Research Clouncil.

Pearl. J. 1988. Probalisiic Reasoning in Inielligenl
Systems. San Mateo, CA: Morgan Kaufman.
Theocharous, (3. 1996. An expert system for assigning
patients into clinical irials based on hayesian networks.
Master's thesis, Universily of South Florida.

Tu, S.; Kemper, C. A.: Lane, N. M.; Carlson, R. W.;
and Musen. M. A. 1993. A methodology for determin-
ing patient’s cligibility for clinical trials. Methods of
Information in Medicine 32:317-325.

Wang, S., and Valtorta, M. 1992, The conversion
ol rule bases into belief networks. ACM Computing
Surveys 363-368.

Wang, L. X. 1994, Adaptive fuzzy systems and conlrol:
Design and stabilily analysis. NY, NY: Prentice-Hall.
Zimmerman, 1. 1991, Fuzzy set theory and its applica-
tions. Boston, MA: Kluwer Academic. second edition.



