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Abstract

Assigning patients into clinical trials is a knowl-
edge and data intensive task. Determining the
eligibility of a patient for admission int.o a clio-
ical trial is based 1,port specific criteria. These
criteria may be shared among several prul.ocols or
may be ,nique to one protocol. A major diffic,lty
in assigning patients to clinical trial protocols is
the absence of complete iz, formation regarding the
patient. Much of the needed data can be tin,e-
consuming or expensive to obiaht, or needed tests
can cause pa~n or cliscomh)rt to |,]LC pal.ienl. An-
other difficulty is that there are m;tny open Lrials
at an institution at any one lime and il is w.ry dif-
ficuh to keep track of criteria fi~r each trial. Ttlis
paper investigates the use of a fuzzy expert, sys-
tem joined with a depemiency analysis to handle
uncertainty and sort needed data for several pro-
tocols in order o|" influeuce. The system’s outpu!
is an ev’,duation of the patient’s eligibility tot one
or more clinical trials. Preliminary tests show that
the system presents important data as high prior-
ity data while finding an appropriate order to ob-
ta.in all needed data. We have imple-leltted four
breast cancer protocols and successfully tested 15
cases which were clinically eligible for one of the
four protocols.

Introduction
The purpose of a clinical trial is to cvahlat.e new treat-
ments for disease. Each trial is designed to increase
scientific understanding of therapy and to lind Iml.lpr
ways to help patients recow, r from diseas,~. Patients
may participate in a clinical trial if certain cril.erb~ arc
met involving deniographics, laboratory results, symp-
toms, physical findings, current and prior nledicat.ions
and treatments, and drug allergies, tlowev,,r, obtaining
enough pal.iellls for a given trial 1.o ,:nhal,ce slal.isli-
cal significance nlay lw hindered liy a large Immber of
opcli trials. Ir beconles ditficult for a clinician to recall
the exact eligibility requirements for every clinical trial
{’or which a patient may be eligible, bk)r exaiitple, there
may b," information that rules a patient in or out of one
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trial, but the person doing the assignment may be con-
sidering a. different trial entirely. Theretbre, the need
for a fast. and efficient method of assigning patients to
clinical trials is the main goal for this work: a problem
well-suited for an experl syst.em (Giarratano &" Riley
199.1).

Assigning patients into clinical trials is a task requir-
ing certain data ;d)out the patient lind knowledge about
clinical trials (Tu cl al. 1993). Eligibility determina-
lion for inclusic, n in a clinical trial is based IlpOll spe-
cilic inclusion and exclusion cril.eria. This paper d--
scril,es an ailciulll, it) solve ibis prol)leni using a qual-
il a, liv,, expert system. The expert syslenl ilSeS a fi,zzy
rule-base since there may be missing data or lllicor-
lain clata due to the hnlm’cision o1" rnodeling rnedical
ll,sl, rl,suhs, signs and sylntltonis. (Zininiernlan 19911
Jailg ~fk" (iulh,y 1995). The fuzzy rllle-basc will be cov-
el’ed in itie firsl subseelion el" Interface and Algoril hms.
In addition, data. needed by the s)’stciJl to deterniine
il’a llatieni is eligillle for it protocol, is listed in order
of illillorlallCe. ’J’his prioritization is done ilsing di+llen-
dl?llcy analysis via graphs of the fuzzy rlllOS and Iho
facts availalih,, which will be discussed in the I)epen-
d~’ncy Aualysis sulisecl.ion of Interface and Algorilhnls.

Background
hiference [’rOlll rllle-lia+ses has t,raditionally beeJi han-
dl,,d in various ways. The rule-liase can be probablistic
or llossililisi.ic (Krtls¢ ~: llorgelt. 1997). Aliltl)’sis 
lie Ilsed tO predict the relative hnportance or sensitiv-
ily of each rule in the rule-liase (La.skey !!.1!.15). Soma
inothods use Bayesian belief networks (I,askey 1995;
Tlieocharous 1996) or l)enlpster-.qlmi’er’s belief net-
works (Wang & Valtorta 1992) rather than rules. Our
goal was to use a sinlple tool which wouhl ,,nalile us
to conlpute, the rehl, tive ilil’luellCt~ of cat:h I,.i.ct. Oil lh++

imtient’s eligihilil.y .t,R’Ol’l,.
’l’hpro ]ul.+ l)P’en Ihth.. research on I+uihling sysh,nls Io

dcterniilie i>a, tient. ,,ligibilhy for clinical trials. Mostly,
Iher+, i~r,, two general appro~tches t.aken, it prolmbilis-
tie one using Bayesian belief nel.works (Pearl 1988:
Wang ~." VMtorta 1992; ()hno-Machmlo e# al. 1993;
l:askey 1995: Theocharous 1.q96) and a qualil.aliw: ~p-
pro;u’h (Zinllnerman 1991; "Vii e# al. 1993). The diP-
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ficulty in using a Bayesian network is that it. requires
large numbers of exact conditional probabilities to be
specified as the number of network nodes increases. The
number of probabilities may be so large that it may be
necessary to apply learning techniques to get accept-
able values for the prior probabilities (IIcckerman 1995;
Theocharous 1996). Moreover, while implementing
multiple protocols, a very complex network may be cre-
ated. Hence the issues are scalability, time and design
complexities when using probabilistic approaches such
as Bayesian belief networks.

Another of our goals was to ensure that the devel-
oped system for clinical trial eligibility scales easily to
groups of protocols for the same area, such as all open
protocols for breast cancer. Therefore it should be easy
to incorporate new protocols and remove closed pro-
tocols as is possible while pursuing a qualitative ap-
proach. Some exploration of the qualitative approach
to clinical trial eligibility assessment has helped deter-
mine that scaling up may best be accommodated by
a qualitative system (Tu et aL 1993). Also, in work
with fuzzy qualitative models, it has been foumt that
small changes in the models do not perturb the results,
attesting to their stability (Bercnji & Khedkar 1992;
Wang 1994). The fuzzy qualitative m6dels provide the
possibility of flexible and robust decision making which
forms the basis for our research.

The Rcte algorithm implements a rule-base using
acyclically directed dependency graphs (Nayak, Gupta,
& Rosenbloom 1988). The nodes in the graph represent
variables or patterns and the links represent the an-
tecedent of the rulcs. The algorithm we propose is con-
ceptually similar sincc relevant rule-base information is
also stored in the links and nodcs of the graph. This pa-
per describes an implementation where the nodes rep-
resent fuzzy facts and intermediate steps within each
rule, which will be discused in more detail in the next
section. Also, when a fuzzy fact is introduced into the
system that information is propagated to effect all rcl-
evant nodes through the links.

The cornbination of dependency analysis with a fuzzy
qualitative modcl allows the system to determine which
facts are needed to improve the eligibility score (Nayak,
Gupta, & Roscnbloom 1988; Kusiak & Wang 1995;
Chandwani & Chaudhury 1996). Those facts are then
ordered by potential impact on the decision to include
or exclude thc patient in a protocol adding to tim effi-
ciency of the system.

Interface and Algorithms

A web-based interfacc is used to collect patient data
from a user and offer patient cligibility information
based on that data. The fuzzy qualitative rnodcl was
implemented using a fuzzy rule-base where each ruh:
is either a conjuction or a disjunction of fuzzy facts.
The dependency analysis cxatnines the relationships of
chained facts, represented as nodes of a graph, built
with the antecedents and consequences of the fuzzy
rules. The details of both the fuzzy qualitative model

and the dependency analysis of this system are dis-
cussed in the following subsections.

Fuzzy Qualitative Model

Fuzzy rules provide a means for modeling the impreci-
sion of medical signs, symptoms and tcst results) (Zim-
merman 1991; Jang & Gulley 1995). The fuzzy rules
used to determine clinical eligibility were encoded in
the fuzzy expert system tool, fuzzy CLIPS (Orchard
1995). The advantages of using flJzzy CLIPS are that
it is easily expandable with user-defined C fimctions,
portable, and it executes quickly.

The fuzzy rules each provide some partial member-
ship for a patient as either eligible or ineligible for a
clinical trial protocol. At each point in the process of
determining eligibility, a membership score within the
range of [0,1] is available. A membership value of 0 re-
flects no membership in the eligibility class while l is
full eligibility within the eligibility class for the trial.
Although the person entering information into the sys-
tem can decide when an eligibility score is high enough,
a threshold membership value of 0.75 in the eligibility
class was used in our tests to indicatc that a paticnt is
eligible for a protocol.

An example of two fuzzy rules with the same goal
node are shown in Figurc 1. Since both rules lead to
the same conclusion, either or both rules could influence
the eligibility of a patient to Protocol 1. Lct us examinc
this example in detail. The rule on the left side of the
graph, a AND b AND c ---. Protocol l, uscs information
frorn thrcc leaf nodes, a,b and c. The filzzy values for
a and b have already been determined, denoted by the
same values for the lower and upper bounds. Although
node a has a value of 1, node b only has a value of 0.2.
If we propagate the known information to the inter-
mediate node abCAND, note that the minimum values
of the lower and upper bounds are chosen. This means
that any new information obtained from node c will not
increase the value of abCAND. Since low vahms (based
on some predefined threshold) will not add to the eligi-
bility of a patient to Protocol l, there is little need to
determine the value of node c. The rule on the right
side of the graph, e Ol{. d ---* Protocol 1, uses informa-
tion from two leaf nodes, d and e. Node d has been
predetermined with a value of 0.5. Since this ruic uses
an OR node, the maximum bound values will be prop-
agated to de:oR. Presently, the range for deol¢ is above
all possible values of abeA:~.l), so the final range passed
to the goal node Protocol 1 (also an OR. nodc) is re-
ceived from Rule 2. Therefore, any further information
from Rule I would indeed be meaningless.

Our implementation strategy allows for case in
knowledge maintenance. Since each protocol is impl(,-
mented as a separate set of rules, the ability to modify
the rules of one protocol exists as that protocol may
evolve over tim(,. Also, this modular approach will
make for simpler addition of a new protocol, as well as
renmval of a protocol that is closed to patient accrual.

With each protocol implemented as a separate set.
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Rule I Rule 2

(1,1) to.2,o.z) (o,1) (o.5,o.5) (o,D

(0.5,11

Leaf node

(LB, UB) Fuzzy lower and upper
bounds of a node

General MIN node
(AND)

{[ ]l (OR)General MAXnode

Goal node, MAX
(OR)

Figure 1: Fuzzy rule-base with two rules leading I.o the same conclusion. Rule 1: a AND b AND c ---. Protocol 1.
Rule 2: e OR d ~ Protocol 1. The fuzzy AND is implenwnted as a nlinimum function while the fuzzy OR is
implemented as a mmximuna function. Therefore the filzzy bounds reported to the intermediate nodes (.abCaNn and
deon) are the minimum lower and upper bound values for the AND node and the maximum lower and upper bounds
for the OR node. Similttrly, the fuzzy values reported to the goal node (Protocol 1) are the maximum bound values
of the intermediate nodes since the goal node is also an OR node.

of rules, a separate instantiation of CI,IPS is provided.
The. needed facts for each instantiation are m,~rged into
one set, of grouped facts which will then be sorted in
order of priority during the &,pendency analysis.

Dependency Analysis

Again, Figure 1 demonstrates that some facts may not
need to be collected for conclusions about the goal node
to be made. For example, since the abCAND node from
Rule l takes the minimum value of all Ihree upper
bounds and the minimum value of all lower bounds,
and node b has previously been determined ~m having a
fuzzy valuc of I.I.2, the upper bound of abca,VD can be
no larger than 0.2. Given this information there is no
need to acquire the value of node c since it will new.’r
match or exceed the mininmm vahle for the dcon noth~
from Rule 2. A general description of the impact of
OR nodes and AND nodt,s is: tmknown facts at. an OR
node can raise the eligibility membership value bound
to 1, but unknown facts at an AND node can lower
the membersllip value for that node bound to 0. Sinai-
lady, other considerations may be made whit:h allow for
efficient and meaningful data collection.

The analysis described rtbow, is aplflied to all un-
known facts in the graph allowiug them It) be ranked
within the bound membership values. For examph-,
Figure 2 demonstrates tim technique used to rank the
needed facts in order of relative impact on the goal
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node. Nodes between the leaf nodes and the goal node
are referred lo as intermediate nodes. The intermedi-
ate node for Rule 1 is abCAND, irnplemented with the
minimum function, shown with a value bound by (0,1).
Although node a has a fimzy membership value of 1,
nodes b and c must be determined before abcaND can
be fldly determined. In contrast, since the intermediate
node for l~ule 2 is an OR. node, implemented with the
maximum flmction, a high fuzzy value from either d or e
could posit ively impact the goal node. However, node d
has been pre-determined with a value of 0. Therefore,
information regarding node e will cause Rule 2 to fire,
activating the goal node with a fuzzy value of tim may
imum of d or e. Ilence, there is only one filet needed to
impact the goal node via R.ule 2 so node e is labeled as
Ihe most important fact. to obtain.

The depen<hmcy graph is imph’nlented as a weighted
tlirectc~d graph using ~n adjacency list. This allows the
record keeping necessary to associate the relationships
between nodes. For example, we must keel) track of
each node’s parent so I.hat wc may easily conduct a
depth first search from tim goal node, looking for the
number of unknown leaf nodes in the goal node’s sub-
tree. Ierom this search the impact of each leaf node on
the goal node may be delermined.

"l’lmre are two major rules when sequencing the un-
known h:af nodes in order of greatest impact. First, a
subtree with several unknown leaf nodes is more expen-



Rule I Rule 2

(1,D (o,D (o,D (o,o) (o,D

(o,D ~

(LB, UB)

0
I --ll

(o,1)

Leaf node

The ith important
node with missing
information

Fuzzy lower and upper
bounds of a node

General MIN node
(AND)

General MAX node
fOR)

Goal node, MAX
(OR)

Figure 2: Rule-base with two rules each leading to the same goal node. Rulc 1. a AND b AND c ~ goal. Rule 2.
c OR d ~ goal. This dependency graph demonstrates the technique used to rank the needed facts in order of relative
impact on the goal node. Since the intermediate node for R.ulc 2 is an OR node, a high fuzzy valuc from either d
or e could positively impact the goal node, however, node d has been pre-determined with a value of 0. Therefore,
information regarding node e will cause Rule 2 to fire. activating the goal node with a fuzzy value of the maxinmm
of d or e. Hence, there is only one fact needed to impact the goal node via Rule 2 so node e is labeled as the
most important fact to obtain. In contrast, since the intermediate node for Rule 1 is an AND node. the minimum
fuzzy value will be propagated to the goal node. Therefore. all three leaf nodes of deoit must be considered before
propagating the minimum fuzzy value to the goal node. dcrnanding nodes b and c be determined second and third,
not necessarily b before c.

sire to explore than a subtree with fewer unkuown leaf
nodes. Second, the antecedent leaf nodes of an AND
node do not need to be fifily determined if one of the
known leaf nodes has a value of 0, or if the known value
of l.hat leaf is less than the minimum value of a corn-
pcting intcr,nediate node. Similarly, the antecedent leaf
nodes of an OR node do not need to bc fully determined
if one of the knowu leaf nodes has a value of 1, or if the
known value of that leaf is more than the maximum
value of a competing intermediate node. Once the un-
known leaf nodes (needed patient data) have been prop-
erly sequenced and displayed through the web interface~
the user may provide values to those questions if the
information is known. Then at any time the eligibility
membership may bc recalculated and displayed.

Results and Discussion
One parameter on which our system may he tested is
how effective our approach prioritizes the needed facts,
judged by how effe.ctivcly it reduces the number of ques-
tions a user must answer. V¢c tested the system on two
breast cancer protocols. Table 1 shows results from two

rule-bases for which the dependency analysis was tested
with random organization of facts ~nd cases. There
were 50 tesl. cases generated for each protocol in two
ways. The first group represents when the facts are ran-
domly generated and Ihe second represeuts the usage of
the dependency analysis to suggest the most important
fa.cts. In both cases, the fl]zzy value for each fact is se-
lected randomly. The average number of facts needed
to determine eligibility and standard deviation is shown
in Table 1.

It is clear that answering the ordered facts results
in significantly less necessary facts before a decision is
made. The standard deviation using the ordered facts
is also significantly less for both protocols. This data
indicates that t.he dependency analysis is effective in
ordering the facts needed, therehy reducing the zmm-
ber of questions asked before the goal nodc is reached.
llowever., when wc have a large set of alternativc par-
ents with equal impact on the child node, it. may choose
a deciding fact (one which rules in or out a goal) with
an appropriate value. In this case, a random choice of
facts m~kv work better than the sorted one.
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I Order of Facts

I Avg. Needed
Std. Dev.

Protocol 1 Protocol 2
R, andom Sorted Random Sorted

7.72 4.26 5.2,1 2.86
6.45 2.02 3.09 1.01

Table 1: Performance of Dependency analysis algorithm
over 50 cases on two rule-bases.

l, br one of the protocols implemented, there were 15
available clinical examples from patients who were en-
tered into tile protocol. We haw,~ tested our system on
these 15 cases and found that each patient was found
to be eligible for this protocol and not the other three
implemented protocols. This eligibility was based on
a minimum membership threshold of 0.75. The mem-
bership values for all other protocols were ().5 or less.
Therefore, our system successfully classified the awril-
able 15 clinical test cases.

Conclusion
The dependency analysis aids in the assignme.nt of pa-
tients into clinical trials iu an effective manner. The
dependency analysis algorithm helps to sort missing in-
formation from patients with reslmcl, to 1.heir impact on
the protocol eligibility. Moreover, this algorithm recog-
nizes when acquiring further facts would not aid in the
analysis once the maximum possible filzzy value of the
goal node reaches below t.he acceptance tlm,shohl. The
algorithm has the potential to sort the itnportant, nodes
with respect to other factors such as cost arid discom-
fort along with the causal irnpact on the goal. We are
in the process of testing this algorithm on multiple clin-
ical protocols while comparing results with those from
medical experts.
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