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Abstract

Non-traditional database applications need new query
optimization algorithms to speed up large join queries.
In the last decade, general techniques such as iterative
improvement and simulated annealing: have been ex-
tensively investigated for solving large join query opti-
mization problems. In this paper, we compare a genetic
algorithm with iterative improvement and simulated
annealing for the optimization of large join queries. We
compare the performance of these algorithms by test-
ing them on various types of query strategies. In all
of our cases, experimental results show that genetic al-
gorithms performed consistently better than simulated
annealing and iterative improvement in terms of both
output quality and running time. In addition, w~e found
that it is comparatively easier to tune the parameters
of genetic algorithms and drive it to a desired opti-
mal solution. We believe that the genetic algorithm
approach ranks fairly high among the algorithms we
tested, and hence appears to be a promising approach
for large join query optimization in future database
management systems.

Introduction 1

Efficient methods of processing queries are a crucial pre-
requisite for the success of generalized database man-
agement systems. The computing complexity of this op-
timization process is dominated by the number of such
possible sequences that must be evaluated by the op-
timizer. Thus join query optimization problem can be
reduced to a combinatorial problem. One of the major
decisions an optimizer nmst make is the order in which
to join the tables referenced in the query. It is not easy
for the database system to execute queries quickly be-
cause the numbers of alternative strategies to answer a
query grows exponentially with the number of relations
participating in the query. Thus we need aa optimiza-
tion phase to select the most efficient implementation
among the many possible ways to implement a given
query.

Most of the existing work on query optimization
stems from heuristic elimination methods to reduce the

1Copyright (~)1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved

size of the search space of problem sequences. Cur-
rent. query optimization algorithms do well when a rel-
atively small number (such as 10 joins) of relations are
involved resulting in a search space of manageable size.
System R algorithms (Selinger, Astrahan, & Chamber-
lin 1979) are an example. They performs optimization
by exhaustively searching the problem space with time
complexity of o(2N), where N is the number of rela-
tions to join. When join size grows modestly large this
algorithm becomes intractable.

Krishnamurthy, Boral, and Zaaiolo proposed a kind
of heuristic approach to handle queries with a large
number of joins (Krishnamurthy, Boral, & Zaniolo
1986). The time complexity of their algorithm is
O(N2), where N is number of query joins. The limita-
tion of this approach is that it depends on a particular
form of cost function.

Randomized algorithms for large join queries have
been extensively investigated by taking advantage of
methods used in various combinatorial optimization
problems. Simulated Annealing (SA) (Ioannidis 
Wong 1987; Swami & Gupta 1988; Ioannidis & Kaag
1990) and Iterative Improvement (II) (Ioannidis & Kang
1990; Swami & Gupta 1988) were introduced to the
area of database query optimization in 1987. Inter-
estingly enough, the experiments carried out by both
(Ioaanidis & Kang 1990) and (Swami & Gupta 1988)
led to oppositc results. In (Swami & Gupta 1988),
Swami and Gupta concluded that the simple II algo-
rithm was better than SA, but in (Ioannidis & Kang
1990), Ioannidis and Kaag indicated that the overhead
costs of SA are lower than that of II. Our naive analysis
is that, since the overhead costs generated by one algo-
rithm are not significantly lower than that of aaothcr
when they are applied to large queries, some difference
in their experimental criteria, such as aanealing sched-
ule, may have led to the differing conclusions. A few
hybrid approaches motivated by the above algorithms
have ’also been developed to overcome the deficiencies
of each algorithm and improve output quality. These
algorithms, such as Two-Phase Optimization (h~anni-
dis & Kaag 1990) which is a combination of SA and IL
and SAK (Swami 1989) which uses the KBZ heuristic 
generate an initial state for SA, show limited improve-
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merit.
Recently, genetic algorithms (GAs) have been widely

applied to effectively solve difficult optimization prob-
lems (DeJong 1980; Goldberg 1989; Louis 1993). These
algorithms have proven to be efficient for complex prob-
lems which are not computationally tractable using
other approaches. (Bennett, Ferris, & Ioannidis 1993)
presented encouraging results by applying genetic al-
gorithms to query optimization problems. Their re-
sults for small queries show that the output quality
and the running time is, in general, better than the
current System-R algorithms if appropriate query rep-
resentation and GA parameters are chosen. However,
the System-R query optimizer will become infeasible as
query size increase beyond 10. Based on our literature
survey, genetic algorithms have not been explored for
large join query optimization so far.

In our study, we investigate the performance of GA,
SA, and II on large join queries. We experimentally
compare results using these randomized algorithms and
determine which techniques are the most effective for
large join query optimization. The problems that. arise
in performing suc~ a comparison arc also discussed in
this paper.

The rest of this paper is organized as follows. In
section 2 we give a framework for query optimization
and describe the evaluation function and query strat-
egy space. In section 3, we provide a generic description
of the randomized algorithms we used in this paper.
Section 4 describes how- randomized algorithms can be
adapted to query optimization. Then, in section 5, we
discuss how we determine the parameters of all these
algorithms. We present comparison results and analy-
sis in section 6. Conclusions and direction for fllture
studies are presented in section 7.

The Query Problem

There are two basic kinds of optimization - algebraic
manipulation mid cost estimation strategies -- found in
query processors. Algebr~fic manipulation is intended
to improve, the cost of answering the query by means
of simplifying queries without consideration of the ac-
tual data and its structure, while the cost estimation
strategies selcct a query plan based on the data and
data structure of the current database. The random-
ized algorithm approaches proposed recently for query
optimization are oriented toward the cost estimation of
different strategies. We assume that the query strat-
cgy only has natural joins or equijoins. Although the
cost model described in the following section is derived
based on natural joins of two relations, if the query
consists of equijoins, we can use the same techniques as
that used in natural join if we pretend that attributes
of one relation are renamed.

Evaluating Join Sequences

A query optimizer in a relational DBMS translates non-
procedural queries into a procedural plan for execution
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typically by generating many alternative plalls, estimat-
ing the execution cost of each, and choosing the plan
having the lowest estimated cost where cost is generated
by

Cost(Q(so)) = MINses[Cost(Q(S))] (1)

S is the set of all alternative plans generatcd by the op-
timizer and so is a member of S. This can be formally
stated as follows: Given a query Q with execution spacc
S, find an execution in So that is of minimum output
cost. The cost for merge scan join method can be gen-
erally stated as:

Cost( R ~ S) = 2 Bj~ lo9.~l B.~. + 2 Bs Io9,~t B.~.

+ Bt~ + Bs + (BR "1:~.. + Ti~ Bs)/I (2)

and for nested loop join method can be expressed as:

Cost(R ~ S) = 2 BR (Ts’/I + Bs/(M 1)

+Bs (TR/I + 1) (3)

where R and S arc two relations, Tn and Ts arc the
number of tuples in relation R and S, B is the lamber
of blocks in which all the tuples of that relation could fit,
M is the number of blocks that can fit in nmin memory
at any one time and I is image size (Ullman 1988).
Since the join operation is implemented in most DBMS
as a two way operator, the optimizer nmst generate
plans that ~mhicw~. N way joins as sequences of two joins
as described below’.

Join Methods

We restrict our work to queries involving only joins in
our study. Thus the problem is reduced to deciding on
the best join order, together with the best join methods
to be used for each join operation. The size of search
spaces depends not only on the number of relations to
bc joined, but ,also on the number of join methods sup-
ported by the system and the index structures that exist
on the each relation. We use two join methods in our
study:

1. nested loop(NL) in which two relations ~m, scanned
in a nested fashion to find tuples in the cross product
that satisfy the join predicate.

2. merge scan (MS) in whidl two relations are sorted
on join column values, and the sorted relations are
merged to obtain the result.

Randomized Algorithms

Iterative Improvement

Thc itcrative improvement algorithm (II) was ini-
tially used to attack the Traveling Salesman Problem
(TSP) (Lin & Kernigha~l 1973). II starts with a random
feasible solution. The solution is improved in the objec-
tive fimetion by repeatedly generating a ra~ldom move,
based on certain transformation rules, and accepting
the move if it lowers the objective fiinction value. This
process is repeated until no further improvement can



be found or an appropriate stopping criterion is satis-
fied. II does not accept any solution of the objective
function that is worse than the current solution, that
is, it always runs forward.

Simulated Annealing

Simulated Annealing (SA) is motivated by an anal-
ogy with the statistical mechanics of annealing of
solids (Kirkpatrick, Gelatt, & Vecchi 1983). If a phys-
ical system is at a high temperature, then the large
number of atoms in the system is in a highly disordered
state. To get the atoms into a more orderly state, we
need to reduce the energy of the system by lowering the
temperature. The system will be in thermal equilibrium
when the probability of a certain state is governed by a
Boltzmann distribution:

Pr(AE) -~ exp((-AE)/kT) (4)

A candidate configuration is generated by randomly
perturbing the current configuration and its objective
function value is calculated. If the objective function
value is lower than the current value, then the displace-
ment is accepted. Otherwise this new displacement is
accepted with a probability given by the Boltzmann dis-
tribution in Equation 4. Thus there is always a nonzero
probability of accepting worse solutions. This gives the
algorithm a probability of escaping a local minimum
and leads to a global optimum if annealing proceed
slowly enough.

Genetic Algorithm
Genetic Algorithms (GAs) are stochastic, parallel
search algorithms based on the mechanics of natural
selection and the process of evolution (Holland 1975;
Goldberg 1989). GAs were designed to efficiently
search large, non-linear spaces where expert knowl-
edge is lacking or difficult to encode and where tra-
ditional optimization technique fail. GAs perform a
multi-directional search by maintaining a populatiou of
potential solutions usually encoded as bit strings and
encourage information formation and exchange between
these solutions. A population is modified by the proba-
bilistic application of the genetic operators from one
generation to the next. Whenever some individuals
in the population exhibit better than average perfor-
mance, the genetic features of these individuals will be
copied to the next generation.

Conceptually, GAs work with a rich population and
simultaneously climb many peaks in parallel during
search processing. This significantly reduces the proba-
bility of getting trapped at a local minimum. They are
thought to be more robust and more broadly applicable
than other similar search algorithms.

Application to Query Optimization

We now consider the order in which the relations are
to be joined. Although the cardinality of the join of N
relations is the same regardless of join order, the cost of

joining in different order can be substantially different.
First of all, we assume that unnecessary Cartesian prod-
ucts have been excluded in our query strategies and that
the system supports the merge scan and nested loop join
methods. Thus the query optimization problem can be
viewed as finding the best way to join subsets of the
relations in a given query plan. Each strategy repre-
sents a choice of access paths for the corresponding join
processing tree and join methods that the system can
support. A query strategy is conveniently represented
in the form:

KJ : if PT is linear tree
S= KoJ : if PT is bushy trce

here J ¯ {NL, MS} and 0 ¯ {a, r}

where S is the q~mry state space; K is a string con-
figuration which consists of sets of natural number to
represent relations if we use the linear processing tree,
or number of joins if we use the bushy processing tree;
J is join method, which is either merge scan (MS) 
nested loop (NL); and O is the orientation of their con-
stituent relation. Here a means joined relatious in one
order while r represents joined relations in reverse or-
der. There are two major differences between the rep-
resentations of linear processing tree and bushy pro-
cessing tree (Bennett, Ferris, & Ioannidis 1993). First,
the Cartesian products can be eliminated in the bushy
representation. Second, because the bushy representa-
tion is based on labeling joins, there may be more than
one intermediate relation in use at any given processing
step. From genetic algorithms point of view, we need a
set of query sequences in the form of a string.

Candidate State in SA and II

Candidate states are randomly generated based on cer-
tain transformation rules from state to state. The
transformation rules used in simulated an,maliug and
iterative improvement are much simpler thau crossover
and mutation in genetic algorithms. Let S be a cau-
didate space, and let S1 and $2 be candidate spaces
generated by different trausformatiou strategies. The
transformation strategy can be compactly described as
follows:

S ¯ {SI, $2)

s.t. Pr{S1} = 0.5 ~md P’r{S2} = 0.5

where Pr is probability distribution. S1 and $2 arc
generated based on the following transformation rules.

1. S l: Randomly generate two join nodes. If interchang-
ing these two nodes results in a valid permutation,
interchange them and leave others unchanged. The
new state wiU be evaluated based on the cost model.
The example is

S1 : (sM3N4NIM2M6NTIV8M9N)

(2M3N 4NIMsM6NTNsM9N)
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2. $2: Raztdomly choose two chunks of the current state
with length of two. Then we alter $2 by exchanging
the two chunks, provided that the transformed config-
uration satisfies all constrains and leaves other nodes
unchanged. The example is

$2 : (sM3N 4N1M2M61V7N8M9N) ==~

(2M 6^’ 4N1M 5 M 3~V T~V 8M9^’)

We use either of two join methods {M, N} with equal
probability. If the bushy tree representation is used,
we also set the orientation of two relations {a, r} with
equal probability. Note that changing the join method
does not affect the structure of tree query but represents
different query sequence.

Crossover and Mutation in GA
The functionality of crossover and mutation is similar
to the transformation used in SA and II. The oifly dif-
ference is that, crossover in GAs takes into account two
query strategies based on the mechanisms of natural
selection, whereas SA azld II algorithms just simply op-
erate on one query strategy. The crossover operator
can be formally stated as: Giw:n two individual c~ and
/3, the crossover operator generates a new feasible indi-
vidual 7: the descendant of 0. and ft. We tested three
kinds of crossover in our work, namely Modified Two
Swap(M2S), Chunking and Partially Mapped (PM).
These crossovers have also proven to be effective for
query optimization and other combinatorial optimiza-
t.ion problems elsewhere (Bennett, Ferris, & Ioannidis
1993; Goldberg 1989). We found simple M2S crossover
does better whether we use it on the bushy tree query
or a linear tree query. We therefore address only the
M2S crossover in this study.

Mutation was implemented to produce spontaneous
ra~tdom changes of the join method or the orientation
if we use the strategy of a bushy processing tree.. It
reorders the location on the chromosome.

Testbed
In our cxperiments~ the query size ranged from 20 to
100 relations. We connect each relation into join graph
based on a processing tree. The relation cardinalities,
selections, and the number of unique vahms in the .join
cohlmns was chosen randomly within ce.rtain raz~ges.
For the sake of comparison: most numerical features of
individual relations in our study are adopted from the
previous study in (Swand & Gupta 1988).

Determination of Parameters
Our initial goal was to find the most appropriate pa-
rameters for our algorithnm. We use a typical query
configuration of 40 joins with a linear processing tree
to determine paranmters. We believe the parameters
determiimd by running this configuration also fit oth-
ers. The cost is averaged over 10 runs in which the
random seed for the first run to the 10th run is linearly
increased from 0.1 to 1.0. For each chosen combination
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of para~neters, the average objective value of ten runs
is converted into a scaled value. The effect of differ-
ent parameter value is investigated in order to find a
set which can provide better performance than other
sets in our study. For GAs, we mainly decide crossover
rate, nlutation rate, population size and number of iter-
ations. For SA, wc need to determine the temperature
schedule.

Parameters in SA and II
In II, if a generated state has lower cost compared to
the current minimum then we call this the new local
minimum aald start the. outer loop again. We run the
GA and II for the same number of evaluations; this is
the population size of the GA multiplied by the number
of generations. The efficiency of SA depends strongly
on the temperature schedule of annealing. A tenlpera-
ture step that is too small will be inefficient in exploring
the space becanse almost all candidate solution will be
accepted. On the other hand, if the temperature step
is too large, we may lose interesting candidate solutions
and get traped in local minilna. We use a simple sched-
ule for reducing temperature T:

T, = [(XT)i T0]i=Ni=G~ (6)
Where Ti is i th temperature step; XT is tenlperature
reduction factor, {I < XT < 1; To is the ilfitial tem-
perature. N is iterations until the temperature falls
below 1 (Ti < 1). Based on our experiments by trial
and error, when To is 1.5x (cost of initial state), 
is 0.90 and equilibrium equals 10x (numbers of joins),
the algorithm produced relatively trotter performance.
The SA stops when the temperature falls below one or
the number of evaluations equals that performed by the
GA.

Parameters for GAs
The size of the population is an important choice in
genetic algorithms. If the population size is too small,
the genetic algorithln may converge too quickly; if it is
too large, the GA may waste computational resources.
The most effective population size is dependent ,m the
problem being solved. We teinporarily set crossover
rate and mutation rate a.s 0.8 and 0.005 respectively
(standard values}. Our experiments with polmlation
sizes from 20 to 20() indicate that

the average performaalce improves dramatically as
the population size goes from 20 to 50. Only small im-
provements result as the population size increases be-
yond 50. On the other hand. the run time increases
linearly with population size. Thus we choose a popu-
lation size of 50. In terms of tinm, wc get acceptable
perforlnazme within an acceptal)le computational time
when we run fi~r 300 generations. Thus we fix tim num-
ber of generations at 300 for all our experiments. Afl.er
a number of experinmnts with varying crossover and
mutation rates we found that we a crossover rate of
0.95 and mutatkm rate of (}.05 results in slightly better
performance than other combinations.



Experimental Comparison

We generated 5 random queries for 20 joins. We then
used these queries as templates within which to gen-
erate 5 queries for 30 joins and so on until we had 5
queries for 40, 50, 60, ..., 100 joins. The output cost
for each query is the average in minimum cost achieved
over 10 runs with different random seeds. For SA, we
adjust the initial temperature to ensure that it runs for
the same number of evaluations as the GA.

In our experiments, we include linear and bushy pro-
cessing trees. The GA results show a bushy tree repre-
sentation is slightly better in output cost than the lin-
ear tree representation only when query size becomes
relatively large. When both representations are used
in II and SA, the difference in output cost is insignifi-
cant. But overall these three algorithms are the same
whether we use a bushy tree representation or a linear
tree representation. Since the linear tree representation
is widely used in query optimization and other previ-
ous works, we focus on the linear processing tree as the
query strategy in the following discussion.

Figure 1 presents typical performance of the three al-
gorithms as a flmction of query size on one of the five
queries. The results on the other four sets of queries
are similar. The Y-axis in Figure 1 represents scaled
cost, i.e., the ratio of the strategy cost over the mini-
mum cost found by GAs. As the plot shows, the cost
from GAs is substantially lower than the other two al-
gorithms through all query sizes. When query size in-
creases, the difference becomes even nmre significant. It
appears that GAs performs better than SA or II in large
query optimization problems. Our experiments indicate
that there are no significant differences in overhead cost
between SA and II.

20 40 ~OTN 60 80 100

the search space, however, this leads to a local mini-
mum. Even with more processing time, they show only
slight progress and substantial further improvement is
unlikely. Compared against the result of SA and II,
in every case, GAs perform better. The more running
time, the better solution we can find with GA. This is
a practical advantage of our approach for query opti-
mization since a good query strategy is the key issue in
speeding up query processing.

Figure 2: The performmlce as function of time

We also measured scaled cost of "all ten runs for query
sizes from 20 to 100 as shown in Figure 3. Scaled cost
here is a ratio of strategy cost ow:r best cost of ten runs
for each algorithm. As we can see, the overhead scaled
cost in GAs is closer to 1 than in the other two algo-
rithms. GAs therefore outperform the other algorithms
in terms of stability and reliability. This result is par-
ticularly apparent when the query size is less than 60,
as can be seen by the profile in Figure 3. We observed

1.20 ScaleS. ~ I ]. ! I. |Cost. I : !

~~1 ’ .
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Join

Figure I: The performmlce as flmction of relations Figure 3: The stability of algorithms

The result given in Figure 2 demonstrates the cost
found by the three algorithms as a function of time
for a query with size 60. Once again, the scaled cost
on the Y-axis is the ratio of the strategy cost over the
minimum cost found by GAs, and the X-axis represents
the given processing time. From Figure 2, we can see
that, both SA and II immediately find a good region of

that, in both SA and II, although there is no signifi-
cant performance difference, II rarely outperforms SA.
In our experiments, SA does not show the strong merit
described in (Ioannidis & Kang 1990). By searching
richer populations based on natural selection, GAs seem
have the ability to find a desired global minimum which
is hidden among many, poorer, local extrema.
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Conclusion
In this paper, we have compared three different ran-
domized algorithms for large query optimization prob-
lems and produced experinmntal results. Theoretically,
GAs have extremely attractive features that are rather
unique when compared with other randomized algo-
rithms. Our preliminary experimental results show that
GAs performed consistently better than SA and II in
terms of both output quality and running time. GAs
Mso seem more stable. In axldition, we found that. it is
comparatively easier to tune, the parameters of a GA. In
general, GAs perform better mnong the algorithms we
t.ested, and hence appear to be a promising approach for
large join query optimization in fllture database man-
agement systems.

In the future, our work will focus on the adaptability
of GAs in other database environnmnts, such ,as dis-
tributcd database systems. We also intend to use par-
~dlel GAs to improve query optimizing speed and nmke
GAs practically applic.able for query optimization.
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