
Numeric Mutation: Improved Search in Genetic Programming

Matthew Evett and Thomas Fernandez
Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, Florida 33431

(matt, tfernand} ~cse.fau.edu

Abstract

Genetic programming is relatively poor at discovering
useful numeric constants for the terminal nodes of its s-
expression trees. In this paper we outline an adaptation
to genetic programming, called numeric mutation. ~,Ve
provide empirical evidence and analysis that demon-
strate that numeric mutation makes a statistically sig-
nificant increase in genetic programming’s performance
for symbolic regression problems.

Introduction
One of the weaknesses of genetic programming (GP,
henceforth) is the difficulty it suffers in discovering use-
ful numeric constants for the terminal nodes of the s-
expression trees. GP’s difficulty with numeric constant
generation is relatively well known. In a sp~ch at a
recent conference John Koza said:

The finding of numeric constants is a skeleton
in the GP closet... [and an] area of research that
requires more investigation.(Koza 1997)

GP’s difficulty in evolving a numeric constant derives
from its representation as a tree node, while the repro-
duction operations (including mating and mutation) af-
fect only the structure of the trees, not the composition
of the nodes themselves. Consequently, individual nu-
meric constants are not affected by mutation and mat-
ing and thus cannot benefit from them.

The traditional way of generating new numeric con-
stants is indirect, by combining existing numeric con-
stants within novel arithmetic s-expressions. The leaves
of the trees corresponding to such s-expressions are all
numeric constants. Each such s-expression can thus
be viewed as a single numeric constant terminal node,
with a value equal to that of the s-expression (usually
distinct from that of any of the leaves). We call this
process of numeric constant creation arithmetic combi-
nation.

It is also possible to generate numeric constants even
when none are provided in the original terminal set.
For example, a terminal representing a variable could
appear in an s-expression consisting of the variable be-
ing divided by itself, effectively yielding the constant
1.0. Once the constant 1.0 exists, 2.0 can evoh, e via an

s-expression that adds 1.0 to itself, etc. In this way the
GP process can generate an arbitrary number of con-
stants, even when no numeric constants are included
in the original terminal sets. We call this process of
numeric constant creation arithmetic genesis.

Although the spontaneous emergence of constants is
possible via arithmetic genesis and arithmetic combi-
nation, the techniques are tedious and inefficient. We
are examining several techniques for facilitating the cre-
ation of useful, novel numeric constants during a GP
run. In this paper wc report on one such technique,
numeric mutation. We demonstrate that numeric mu-
tation provides a significant improvement in the ability
of GP to solve symbolic regression problems.

History
Some of the early enhancements to the GP process fa-
cilitated the creation of constants. These enhancements
(Koza 1992) consisted of including a small number
numeric constants and/or the ephemeral random con-
stant, ~, in the original terminal set. Both of these
techniques seed the genosperies with numeric constants,
providing a larger initial pool of numeric constants in
the genospecies, making arithmetic cornbination more
likely. Even so, GP still has difficulty generating suf-
ficient numeric constants. In his first GP book (Koza
1992), John Koza uses GP on a problem consisting of
discovering just a single numeric constant. Despite the
use of the ephemeral random constant, the GP system
still required 14 generations to create a solution, an s-
expression comprising almost half a page. This is but
one simple example, yet it illustrates that the creation
of numeric constants remains a weak point of GP.

Numeric Mutation
Numeric mutation is a technique for facilitating the
creation of useful, novel numeric constants during a
GP run. Numeric mutation is a reproduction oper-
ation that, like mutation or cross-over, is applied to
a portion of each population each generation. Nu-
meric mutation replaces ~dl of the numeric constants
with new ones in the individuals to which it is ap-
plied. The new numeric constants are chosen at ran-
dora from a uniform distribution within a specific se-

Copyright © 1998, American Association for Artificial Intelligence (www.aaai.org). All fights reserved.

¯ 106 Evett

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

lection range. The selection range for each numeric
constant consists of the old value of that constant plus
or minus a temperature factor. The terminology de-
rives from the similar concept of temperature in sim-
ulated annealing ((Kirkpatrick, Gelatt, & Vecchi 1983;
Rumelhart & McClelland 1987) ct a/) in that when the
temperature factor is larger, numeric mutation creates
greater changes in the affected numeric constants.

The temperature factor is determined by multiplying
the raw score of the best individual of the current gen-
eration by a user specified temperature variance con-
stant, in this case1, 0.02. The fitness score (raw or
standardized, depending on the problem domain) of
the best-of-generation individual approaches zero as it
approaches a perfect solution to the problem domain.
Consequently, the effect of this method for selecting the
temperature factor is that when the best individual of
a population is a relatively poor solution, the selection
range is larger, and therefore there is an overall greater
potential for change in the numeric constants of the in-
dividuals undergoing numeric mutation.

Over successive generations, the best-of-generation
individual tends to improve and so the temperature
factor becomes proportionally smaller. As the temper-
ature factor decreases, numeric mutation causes succes-
sively smaller changes to the numeric constants. This
should allow the GP process to "zero in on" (i.e., retain
across generations with little change) those numeric
constants that are useful in solving the given problem.

Experimental Evaluation
Our research with numeric mutation is at an early stage.
Eventually, we plan to investigate the efficacy of nu-
meric mutation in general. In this paper, however, we
investigate the use of numeric mutation only in the
problem domain of symbolic regression. Our experi-
mental hypothesis was that numeric mutation increases
the effectiveness of the GP process in solving symbolic
regression problems. Our initial experiment involved
the study of just one problem, defined by 11 pairs of
numbers representing the z and y coordinates of 11
points (target points) on a plane. These target points
correspond to the value of an objective function:

y = z3 - 0.3x2 - 0.4z - 0.6 (1)

(shown in Figure 1, along with the target points) at the
11 integer values of z from 0.0 to 10.0. This function
objective function is considered the target or goal of the
symbolic regression only indirectly. An infinite number
of curves pass through these 11 points, and the goal is
to discover any function that passes within a distance
of plus or minus 0.1 along the y-axis for the z value of
each of the eleven target points.

At the end of each generation, the numeric mutation
technique is applied to 40 randomly selected individu-
Ms of the 200 with the best fitness from a population of

1 We are still experimenting with methods for determin-
ing the value of the temperature variance constant.

1000.O

800.0

600.0

400.0

200.0

0.0

-200.0I

Target Data

~-~--‘-~:--~--‘--:-:~:~!~!:~!~-:---.:~:f~:-:~:~:~:~:~:::~:~:~:~:-:~:~::-‘--‘-~:-:-:::~:-:~:~:~-~-~-‘-~:-:-:~:~-:-:-:~’-~-’.-’--:--’::~:’;-:’::;:-:---:---5.-:-:.:.:.:.:.:.:.:.:.:.:.:.:.:.:...-.:...> ..<.. ~:~-~.-.-.-.-.-.-.-.-.-.-.-.-,.,,-.-.-.,-.-,,,.,,,-.-.-.-...-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.,-,,,-.-,,,,,- ~..~....~....................................~ ..
::: ::. ::-~
~:~:::::::::::::::::::::::::::::::::::::::~:~<::::~:::~:::>.:::::::~.:~.>.:>~.~::::~:::::::::::::::::::::~>..:i~
::.~:~f~::~.~::~::~::~:::~ii~:-:-:-:-:-:-:-:->:~-:-:-:-:->:-:-~:-:-:--~ z >:-:< ~.~/." "/..~’.~ ~ ~’.: ~ -’>~i:: >:.:~ ~ ..>:..-:>:::~....:::-~:~.~-~-...:-~:
............... ~.::::::::~.~’.,’.~.~::::~.-.)~::~::~:~:~.-.):~~~:~:~:~:~:~:~:~:~:~:~:.:-~:.:-:.:-.:-~.~:-:-z./--.:-~::-~:~:~:~:~:~:~:~:~:~:-:~:~:~:::~:~:.:-:.: "’""~.."..:’.-:..:’7.~"...2"::’.::.:’:’:’:’:’-’-’:-’:’:’:’:-’-"
i:i:i:i:i>..:i:i:~:i.~ ~ ~ ~i:i~.~i:i~ ~ ~.~:.~.>.i:.~ ~~i.::::::::::::::::::::::::::::::::: -:~-~.z ==

- =========================
.:.:.:.:.:.:<.:::.:.:.:.:.::;:~..i:~.::>-f..::~-~-~:.:~:~ ~- ~>’~:.>>:.>>.~.~.- >:. ~...’~ ~:-:::::-:-:-:~-:::::-:-:-:-:->.......... ~×..~..~..~ ~....~.~ × ~-~-~:~.::::~:~--~:,~i"~’" : N.. .~.......,~.~~
.:.:.:.-:.:~:.::.:~..-~.:.~:.:..: . .:.: ~.~..-:.:~.:.~..-~:.:~ ~:.-..-..:..:.:..:.:.:.:::.:<.:.:.:.:.:.:.:.:.:.:...... ~:~.:~~:’,~~’iiii

.~:.~.~./..~.~ .~ ...~ ..~:<~. s.::"./.~-’.7/~./~ , .~,-:<-,:-:-:~<~-~ ".:.:.:.:-:.:-:.:s-:.:.~:~::~,,~,".-;-.~,~,~,’...~-..~====================== !~.o
x

Figure 1: The target points for the symbolic regression,
and their generating function.

1081. Each selected individual is replaced with a copy
wherein each numeric constant has been mutated, as de-
scribed in above. The fitness function is reevaluated for
each of the new individuals, so that the fitness-ranking
of the population corresponds to the altered population.

The choice of the number of elements to be numer-
ically mutated, the size of the group that they are se-
lected from, and the use of 0.02 as the temperature
variance constant, were based on experiments involv-
ing other regression problems that suggested that these
values tended to maximize the benefit of the numeric
mutation (Fernandez 1997).

To test our hypothesis, we conducted 1000 runs of
the GP system with numeric mutation and 1000 times
without. Each generation of a numeric mutation run
included the evaluation of the fitness function on M --
1081 individuals plus 40 additional individuals created
by the numeric mutation process.

To compensate for the extra work done by the nu-
meric mutation runs, the populations of runs not using
numeric mutation contained 40 more individuals than
those that did. To make comparisons between the re-
sults of the two techniques as equitable as possible, the
populations of runs not using numeric mutation con-
sisted of M = 1121 individuals. (Otherwise any per-
formance advantage observed in the numeric mutation
runs might be ascribed to the additional individuals
evaluated therein.)

Each run was allowed to continue until a function was
found that met the criterion described above, or until
50 generations were completed. Runs that discovered a
function matching the target points within the 50 gen-
eration limit were considered successful. We ran our
experiments on aa AMD 166Mhz K6 running Microsoft
Windou~s 95. We used the AGPS GP system (Fernan-
dez & Evett 1997; Fernandez 1997), using the control
parameters specified in the tableau shown in Table and
an elitist graduated overselection strategy (Evett & Fer-
nandez 1997) to select individuals from the population
for reproduction and crossover.

Genetic Algorithms 107

Population size 1121 or 1081(NM)
% ramped complete growth I00
% ramped partial growth 0
Crossover Percentage 90
Mutation Pertcentage 0
Max Number of Runs 1000
Max Number of Generations 50
Max Nodes per Tree
Selection Strategy

200
Graduated Elitist

Initial Tree Minimum Depth 3
Initial Tree Maximum Depth 7
IL~domSeed 0

Table 1: The GP tableau.

Results

Of the 1000 runs without numeric mutation, 328 were
successful, while 541 of the runs with numeric mutation
were successful. Thus, runs using numeric mutation
were about 65% more likely to terminate successfully
than the plain runs. The success ratio of the GP system
was clearly higher when using numeric mutation. To
determine whether this outcome was statistically sig-
nificant, we performed a Large-Sample Statistical Test
for Comparing Two Binomial Proportions (as described
in (Mendenhall & Lyman 1972), page 203).

The null hypothesis for the significance test was that
the populations have the same success ratios, and the
alternate hypothesis was that they were not the same.
This choice of the alternate hypothesis necessitated the
use of a two-tail test. While the hypothesis could be
phrased in a way to make a one-tailed test applica-
ble, we have used the described hypothesis and the
corresponding two-tailed test because it is more strin-
gent (Fogel 1997).

The results of the test ~re that we rejected the null
hypothesis with 95% confdence. Thus we conclude that
numeric mutation’s improvement to GP is statistically
significant for this problem. A further indication of this
is that not only does numeric mutation yield successful
runs more frequently, but also the successful runs re-
quire, on average, fewer generations than the successful
runs on the GP system without numeric: mutation. The
average number of generations in a successful run with
numeric mutation was 24.44, while the average without
numeric mutation was 29.67.

Figure 2 is a histogram of the percentage of successful
runs that terminated each generation, with and with-
out numc’ric mutation. For example, the figure shows
that 20% of the numeric nmtation runs finished success-
fully between generations 10 and 15. The shape of the
curves formed by the two data sets in the figure clearly
indicates that numeric mutation runs terminated suc-
cessfully earlier than the non-numeric mutation runs.

This increase in efficiency was ’also reflected in run-
time performance. The 1000 runs using numeric mu-

108 Eve~

Gtenerat ion

Ilwlo NM

¯ wl NM

Figure 2: Percentage of successful runs that ternfinated
at each generation for GP using and not using numeric
mutation.

tation required 8.28 hours to complete, while the 1000
runs without numeric mutation required 11.63 hours.
The average time to complete a successful run with nu-
meric mutation was 16 seconds while the average time
without numeric mutation was 24 seconds.

Interpreting the Results

We have demonstrated that numeric mutation provides
an improvement to the GP algorithm as it is applied to
this symbolic regression problem. The next step is to
understand from whence this benefit derives.

It is apparent that the numeric" mutation technique
provides a much greater diversity of numeric constants
to the GP. Plain GP starts with a fixed number of
numeric constant leaf nodes in the genospecies. When-
ever the selection process causes all copies of a numeric
constant to be removed from the population, thai, nu-
meric constant is effectively lost for the reinainder of the
run. Thus, with each generation the number of unique
mimeric constant leaf nodes can never increase and: in-
deed, typically decreases monotonically. In contrast,
with numeric mutation, the GP process gains many new
numeric constants each generation.

We conducted experiments to determine if the steady
influx of new numeric constants, alone°, accounted for
the benefit of the numeric mutation technique. We
completed 1000 GP runs in which 40 elements were
selected after each generation in the same way as in
numeric mutation, and all of their numeric constant
leaf nodes replaced with new numeric constants. These
new constants were selected randomly from the inter-
val (-1000.0, 1000.0) using a uniform distribution.
call this process numeric replacement. Numeric replace-
ment is similar to the technique referred to as small-
mutation in (Harris & Smith 1997) except that numeric
replacement concerns only numeric constant leaf nodes,
while small-mutation can affect any type of node.

The result of the numeric replacement experiment
was that only 278 of the runs were successful by the
50th generation as compared to 328 successful runs with

S 600 ~~~i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:.[:i~:i:i:i:i:i:i:i::::::::::::::::::::::::::::::::::::::~:~..:.~::i:i:i.i:]

c :i ~~ ~i~-ii!"
o .4oo ~i~~̄ .
$ n 300 -~:~.:.’-~-" ".’.:.:.:’.::::." "." ~~:::’.". .~.’./.’.~

fs s 210000 _~~- iiiiiiii’~!
~iiiiiii

’ o
Random(l(NX).O) Randr~n(l.O) Plain GP With

Figure 3: Number of successful runs (of 1000), handling
numeric constants four different ways.

plain GP. To determine if this difference was statisti-
cally significant we again used the Large-Sample Sta-
tisticai Test for Comparing Two Binomial Proportions
described above. We determined, with 95% confidence,
that numeric replacement produces a statistically sig-
nificant degrada~on of performance when compared to
plain GP. Therefore it is highly probable that the bene-
fit derived from numeric mutation does not derive solely
from the influx of new numeric constants, but also from
the values of those constants.

To ensure that the range from which the the new con-
stants were selected was not biasing our results, we con-
ducted similar experiments, but used a smaller range,
(-1.0,1.0). This range corresponded better with the
coeffecients of the generating function (see Equation 1.
All had an absolute value no greater than 1.0).

Of the resulting 1000 runs, 336 were successful by the
50th generation. This, at least, was more than the 328
successful runs that occurred with the plain GP, but the
Large-Sample Statistical Test for Comparing Two Bino-
miai Proportions determined that this improvement is
not statistically significant at the 95% confidence level.
~Ve again conclude that the benefit of numeric mutation
does not derive solely from the influx of a large num-
ber of new numeric constants. A summary of all these
results is shown in Figure 3. The entries in the figure
labelled "Random" correspond to numeric replacement
using the two different ranges.

Having eliminated other possible explanations, we
speculate that the benefit of numeric mutation derives
not simply from the introduction of new numeric con-
stants into the genospecies, but also from these new
constants being introduced only into s-expressions at
locations in genomes where arithmetically similar nu-
meric constants have already demonstrated some mea-
sure of success, insofar as they appear in individuals in
the top 18.5% of the population (the top 200 out of 1081
as scored by the fitness function). We further speculate
that the choice of new numeric constants is further en-
hanced by making them increasingly more similar to
the existing "successful" constants as the population
comes closer to finding an acceptable solution. (As re-
flected by the raw score of the best individual in each
generation.)

Conclusion and Future Work
We conclude that the use of numeric mutation shonid
be considered for any GP problem in which numeric
constants are used as terminal nodes. Numeric muta-
tion is easy to implement and does not add significant
additional overhead to the GP algorithm.

Several additional experiments are suggested by this
work. We are already in the process of collecting data
for other symbolic regression problems to determine if
numeric mutation is generally useful for that problem
domain. We also plan to measure the value of numeric
mutation in other problem domains so as to be able to
characterize those domains where numeric mutation is
especially beneficial. We plan to see if additional bene-
fit can be derived by applying numeric mutation only to
a portion of the numeric constants in selected individ-
uais, and to experiment with alternative methods for
determining the temperature factor, such as using the
raw score of the individual to be mutated rather than
the raw score of the best element in the generation.

References
Evett, M., and Fernandez, T. 1997. A distributed
system for genetic programming that dynamically al-
locates processors. Technical lteport TR-CSF_,-97-39,
Dept. Computer Science and Engineering, Florida At-
lantic University, Boca Raton, FL.

Fernandez, T., and Evett: M. 1997. The impact of
training period size on the evolution of financial trad-
ing systems. Technical Report TR-CSE-97-41, Florida
Atlantic University, Boca Raton, FL.

Fernandez, T. 1997. The evolution of numeric
constants in genetic programming. Master’s thesis,
Florida Atlantic University, Boca Raton, FL. In prepa-
ration.
Fogel, D. 1997. The burden of proof. Invited lecture
at Genetic Programming 1997, Paio Alto, CA.

Harris, K., and Smith, P. 1997. Exploring alternative
operators and search strategies in genetic program-
ming." In Koza, J.; Deb, K.; Dorigo, M.; Fogel, D.;
Garzon, M.; Iba, H.; and Riolo, R., eds., GP-97, Pro-
ceedings of the Second Annual Conference, 147-155.
San Francisco, CA, USA: Morgan Kanfmann.
Kirkpatrick, S.; Gelatt, C.; and Vecchi, M. 1983. Opti-
mization by simulated annealing. Science 220:671-680.
Koza, J. 1992. Genetic programming: on the program-
ming of computers by means of natural selection. MIT
Press.
Koza, J. 1997. Tutorial on advanced genetic progra~n-
ruing, at genetic programming 1997.
Mendenhall, W., and Lyman, O. 1972. Understanding
Statistics. Belmont, CA: Duxbury Press.

Rumelhart, D., and McClelland, J. 1987. Parallel
Distributed Processing, volume 1. Cambridge, MA:
MIT Press.

Genetic Algorithms 109

