
AFLATOXIN PREDICTION USING A GA TRAINED NEURAL NETWORK

C.E. Hendersona, W.D. Potter a, R.W. McClendonb, and G. Hoogenboomb

AI Centera and Bio & Ag Engineering Departmentb

University of Georgia, Athens GA 30602
dpotter@ai.uga.edu, rwmc@bae.uga.edu, gerrit@bae.uga.edu

ABSTRACT
Predicting the level of aflatoxin contamination in crops of peanuts
is a task of significant importance. Backpmpagation neural
networks have been used in the past to model this problem, but
use of the backpropagation algorithm for training introduces
limitations and difficulties. Therefore, it is useful to explore
alternative learning algorithms. Genetic algorithms provide an
effective technique for searching large spaces, and have been
used in the past to train neural networks. This paper describes the
development of a genetic algorithm/neural network hybrid in
which a genetic algorithm is used to find weight assignments for
a neural network that predicts aflatoxin contamination levels in
peanuts based on environmental data.

INTRODUCTION
The presence of aflatoxin contamination in peanuts

has been connected with a number of health concerns,
including carcinoma and necrosis of the liver (U.S. FDA,
1992). Efforts have been made to develop a method to
predict the level of contamination expected for a crop
(Cole, et al., 1985). It is believed that a relationship exists
between environmental factors and afiatoxin levels.
Specific factors that affect toxin levels include soil
temperature and drought. For these reasons, there is
interest in developing a tool that predicts aflatoxin levels
based on environmental data. Such a tool could be used to
guide crop management decisions and to select a harvest
date that minimizes contamination levels.

The use of artificial neural networks (ANNs) is one
way that predictive tools have been constructed for the
aflatoxin problem, but the process of constructing neural
network models can be difficult (Parmar, et al., 1997).
Construction of neural networks requires setting values for
the connection weights. Searching for connection weights,
known as learning or network training, is a complex task.
The backpropagation algorithm is an effective technique
for network training but has a number of shortcomings,
including high susceptibility to getting stuck in local
minima.

Genetic algorithms are search methods based on the
mechanics of natural selection and natural genetics
(Goldberg, 1989). They are effective global search
techniques that avoid many of the shortcomings of more
traditional hill climbing searches and were chosen in this
experiment to evolve weights for a neural network.

Copyright © 1998, American Association for Artifidal Intelligence (www.aaai.org). All rights reserved.

Genetic algorithms are a method for searching large,
complex spaces, and have been used to train neural
networks. By linking the global search capabilities of the
genetic algorithm with the modeling power of artificial
neural networks, a highly effective predietive tool for the
aflatoxin problem can be constructed. This paper describes
the use of a genetic algorithm/neural network hybrid that
trains networks for the aflatoxin problem.

Fixed architecture, three layer feedforward networks
with logistic activation functions were used to develop the
models. As in a previous study by Parmar et al. (1997),
inputs for the networks were soil temperature, drought
duration, crop age, and accumulated heat units. The value
for accumulated heat units was calculated based on a
threshold temperature of 25°c.

There were two neural network models developed for
the problem. One network (model A) was trained on all
available data, while the other (model B) was trained using
only data from undamaged peanuts. The network for model
A produced rz values of 0.74, 0.83, and 0.21 for training,
testing, and validation data sets. The model B network
produced values of 0.45, 0.82, and 0.41. The
implementation demonstrated that genetic algorithms can
be used to train effective networks for the aflatoxin
problem. The genetic search has the advantage that setting
parameters is easier than for baekpropagation, and the
genetic trainer does not suffer from many backpropagation
shortcomings, such as the tendency to stick in local
minima.

A network design that has proven effective for
aflatoxin prediction is the three-layer, feedforward neural
network that uses backpropagation as the learning
algorithm (Parmar et al., 1997). Such a network was
chosen for this experiment.

The development of a model is started by gathering
sets of patterns that are generally representative of the
problem that is to be modeled. These data are allocated to a
training set, testing set, and validation set. The training set
can be used by backpropagation as a guide for making
adjustments to the weights of the network. It is useful to
employ the test set to decide when to stop training the
network. The validation set serves to evaluate the
performance of the network on new data after training is
complete.

110 Henderson

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

The process of developing a neural network model
for a real world problem can be a time consuming,
complex task. Many parameters must be set, and the effect
that chosen values have on network performance is often
poorly understood. The number of nodes in the hidden
layer is one example of a problematic parameter. The
problem of setting the values for the weights is handled
using the backpropagation algorithm. However, using
backpropagation introduces more parameters, including
learning rate and momentum. It is known that learning rate
and momentum can affect the quality of the final network,
but there is no clear way to determine what values will
prove to be best. These difficulties often necessitate a "try
it and see" approach to neural network development, in
which the investigator manually sets values for these
parameters, observes how effective they prove to be,
adjusts according to some heuristic, and tries again. This
technique can be ineffective, because only a few parameter
sets may be examined. Also, the investigator will rarely
spend much time trying values that appear unpromising at
first, even though these values could prove to be optimal
ones. For these reasons, it is desirable to employ an
automated search technique that avoids local minima while
performing a global search of the parameter space. The
genetic algorithm is appropriate for this problem and its
use is described herein.

Genetic algorithms provide a mechanism that
improves upon these limitations and have been used in the
past as an alternative to backpropagation by Montana and
Davis (1989), Whitley et al. (1990), Porto and Fogel
(1990), Maniezzo (1994), and Fukumi et al. (1995).
genetic algorithms search globally and do not stick in local
minima as readily as backpropagation. Genetic algorithms
use only an objective function to guide the search and
make no use of node activation functions. For this reason,
genetic algorithms place no constraints on function
selection. Genetic algorithms require fewer, simpler
parameters to be set, so genetic algorithms provide an
attractive approach to the problem of searching for network
weight assignments.

IMPLEMENTATION
Both custom written code and modified versions of

publicly available code were used for implementation of
this project. Tools for the neural network portion were
coded using Microsoft Visual C++. Features included the
ability to allocate and de-aUocate memory resources for
networks dynamically and to set parameters such as
number of hidden nodes, number of hidden layers,
momentum, and learning rate at run time. Backpropagation
was also implemented using Microsoft Visual C++ and
included momentum and a learning rate parameter.

The implemented procedure for training via simple
backpropagation proceeded as follows:
1. The network was trained on the training data set for a

specified number epochs using backpropagation.

2. Mean absolute error was calculated for the network
across all test set patterns.

3. If test set mean absolute error was the lowest ever, the
network weights were saved.

4. If test set mean absolute error had not improved for a
specified number of epochs, training was stopped and
the weights that produced the best network throughout
the training procedure were restored. Otherwise, go to
step 1.

Genetic algorithm functions were obtained by
converting and modifying a set of publicly available
routines/libraries. GAlib, available from the Massachusetts
Institute of Technology, was used. GAlib is available at
http://lancet.mit.edu/ga/.

Versions of this experiment were developed to run
under Windows 95 and UNIX. Results were gathered using
a variety of hardware, including a Pentium PC and a
number of Sun workstations.

DATA COLLECTION AND PREPARATION
The following data collection descriptions are taken

from Pinto (1996). The data used for this experiment were
obtained from the United States Department of Agriculture
Agricultural Research Service (USDA-ARS) National
Peanut Research Laboratory (NPRL) at Dawson, Georgia.
Measurements were taken from florunner peanuts that were
grown in environmentally controlled stands. Following
harvest, all peanuts were analyzed for aflatoxin
contamination. Aflatoxin levels for entire stands were
determined using the weighted average of the grade values.

Data sets were available for the years 1985 through
1995. Each observation consisted of the afiatoxin and
environmental values for a specific plot and season.
Environmental values included length of drought stress
period (days), mean soil temperature (°c), crop age (days),
and accumulated heat units (°c days). Drought stress was
the number of consecutive days of drought conditions,
while mean soil temperature was the mean temperature of
the soil during this period. Crop age was the number of
days from planting to harvesting. Accumulated heat units
(AHU) was the accumulation of heat above 25°c during the
drought period. This value was calculated by the following
equation:

AHU = (mean soil temperature - 25) * length of drought
stress period

This calculation was taken from Parmar et al. (1997) and
was also used by Pinto (1996). These four environmental
factors (drought duration, mean soil temperature, crop age,
and accumulated heat units) are used as inputs for the
neural networks developed in this project.

Because it was observed that the inclusion of
damaged peanuts in the data introduced a great deal of

Genetic Algorithms 111

noise, Pinto (1996) developed two neural network models.
The first (model A) included data for both damaged and
undamaged peanuts, while the second (model B) included
only measurements for undamaged peanuts. The available
data was used to produce two pools, one for model A and
one for model B. For each of these pools, the data were
sectioned into training, test, and validation sets. So that
meaningful comparisons could be made between results.
the current project used the same data sets as Henderson
(1997), that were taken from Pinto (1996).

The purpose of this project was to compare the
effectiveness of a genetic search for network parameters to
traditional backpropagation. It is therefore necessary to
have comparison results from models of the aflatoxin
problem that did not include a genetic search. Henderson
(1997) developed a common backpropagation neural
network model using the same data as the current project.
Therefore, this data will be used as a standard of
comparison to evaluate the effectiveness of the GA/BPN
approach.

Networks were evaluated by comparing predictions
against target values for the patterns in the data sets and
were developed separately for model A and model B data.
R2 values, the square root of mean squared error (RMSE),
and the mean absolute error (MAE) were used as metrics.
These values were calculated for the two models for each
of the data sets.

MODEL DEVELOPMENT
A fully connected, three layer, feedforward neural

network using logistic activation functions was chosen as
the modeling tool. The numbers of hidden nodes were set
to constant values. For model A, the number of hidden
nodes was set to 9. For model B, it was set to 8. These
numbers corresponded to the best networks found in prior
efforts. A genetic algorithm was designed to learn weight
assignments for the neural network.

To employ the genetic algorithm to search for neural
network parameters, there are a number of design issues
that must be addressed. These issues are related to the
representation, selection scheme, crossover scheme,
mutation operator and the objective function. Choice of
representation dictates many design decisions and should
be examined first. The items to be represented are learning
rate, momentum, and number of hidden nodes, which may
be easily represented as real numbers. The network
parameters to be evolved were therefore represented as
strings of real values. There are a number of reasons to
choose this representation over the traditional bit string for
this problem:
1. The real valued representation has been used

effectively for many similar problems.
2. Because the search space consists of sets of numeric

values, each of which corresponds to a gene, decoding
the chromosomes for evaluation is a simple task.

112 Henderson

3. Crossover occurs only at real value boundaries,
avoiding unwanted large leaps in value that are
described below.

4. Genotypes are represented succinctly, consisting of
three floating point numbers.

5. Because CPUs have built in floating point processors,
manipulation of chromosomes is very efficient.

For a given genotype, the fitness of its phenotype is
not unique for this problem. This is because the objective
function employs backpropagation, which relies on an
initial random seeding of the weight space to provide a
search starting point. Hence, a genotype that can lead to an
excellent network may receive a poor fitness rating due to
unlucky initial weight assignments. The initial weights
may be such that backpropagation gets stuck in a local
minimum. To avoid this problem it is essential to evaluate
promising genotypes multiple times. Luckily, the genetic
algorithm provides just such a mechanism, selection.
Many times selection is merely a way for a genetic
algorithm to choose the most promising genotypes to use
as parent chromosomes, but in this ease there is an added
bonus. If selection has no bias against selecting identical
chromosomes from a pool, then the genotypes will get
evaluated more than once. After a few generations, there
will be many copies of the same fit chromosome in a
population. Typically, this points to premature
convergence and is to be avoided. However, we use an
unusual mutator with a high mutation rate in this case. So
even with a homogenous population, there is still strong
pressure toward new diversity. For this reason, selection is
of unusual importance to this implementation, as it
provides a mechanism by which potentially strong
genotypes may be evaluated more than once. Standard
roulette wheel selection provides all of the features that are
desirable and was chosen.

The objective function provides most of the
evolutionary pressure for a genetic search, so great care
was applied to its design. A genetic algorithm is limited in
the information that it may exploit. In practice, this leads to
many of its strengths. In contrast are such search
techniques as backpropagation, which requires very
specific resources (a differentiable activation function, for
one) and may therefore only be applied to a limited number
of problems. For this implementation, a given chromosome
is decoded to produce a set of weight values, which are
inserted into a network. The objective value returned is the
square of the training set mean absolute error. Note that the
genetic algorithm in this case strives to minimize the
objective function.

RESULTS
Networks were trained for model A and model B, and

performance measures were calculated for training, testing.
and validation data for each model. Hereafter, results

generated by the genetic training algorithm will be called
GA Trained values. GA Trained results were compared to
the results from baseline experiments denoted Simple BPN
and supply a baseline performance measure for simple
backpropagation for the aflatoxin problem.

The GA Trained network performed better than
Simple BPN for model A validation data and model B test
data with respect to r2. It performed about equally as well
as Simple BPN for model A training data, model A test
data, and model B validation data with respect to Mean
Absolute Error. The only set for which the GA Trained
network was clearly outperformed by Simple BPN was the
model B training data set for r2. So the results show that
GA Trained networks perform competitively with respect
to Simple BPN results for the aflatoxin prediction problem,
see Figures 1-4.

It was mentioned previously that network
performance on several data sets suggested noisy data. Our
results show that the neural network made good predictions
for all the test set data except for one marked exception.
Because there are a small number of data points, the one
highly inaccurate prediction had a strongly detrimental
effect on the performance metrics for the set.

The strength of the GA Trained system is that it
constructs networks in a manner that is free of many of the
problems of backpropagation based approaches such as
Simple BPN. Setting parameters for the GA Trained
technique was significantly simpler than for
backpropagation, and effective networks were found
automatically. The only parameters that needed to be set
were crossover rate, mutation rate, and pool size. This may
not sound better than normal backpropagation, which also
requires three parameter values (learning rate, momentum,
and number of hidden nodes). However, the genetic search
was fairly insensitive to these settings, finding good
networks for every set of parameter values that was tried.
Simple BPN, on the other hand, was highly sensitive to
parameter settings and would find only extremely poor
networks for the majority of values.

The results show the GA Trained network to be as
effective as Simple BPN for training networks to predict
aflatoxin contamination levels in peanuts. Development of
the GA Trained network was also much easier than Simple
BPN, requiring little human interaction to produce quality
networks.

REFERENCES
Cole, R. J., T. H. Sanders, R. A. Hill, and P. D.
Blankenship. 1985. Mean geocarposphere temperatures
that induce preharvest aflatoxin contamination of peanuts
under drought stress. Mycopathologia. 910): 41-46.

Fukumi, M., S. Omatu, and Y. Nishikawa. 1995. Designing
a neural network by a genetic algorithm with partial
fitness. Proceedings of the 1995 IEEE International
Conference on Neural Networks. 1834-1838.

Henderson, C. E. 1997. Using genetic algorithms to evolve
neural networks. Master’s Thesis. Artificial Intelligence
Center. The University of Georgia.

Goldberg, D. E. 1989. Genetic algorithms in search,
optimization and machine learning. Reading, M_A:
Addison Wesley.

Maniezzo, V. 1994. Genetic evolution of the topology and
weight distribution of neural networks. 1EEE Transactions
on Neural Networks. 5(1): 39-53.

Montana, D. J., and L. D. Davis. 1989. Training
feed forward networks using genetic algorithms.
Proceedings of the International Joint Conference on
Artificial Intelligence. 762-767.

Parmar, R. S., R. W. McClendon, G. Hoogenboom, P. D.
Blankenship, R. J. Cole, and J. W. Dorner. 1997.
Estimation of aflatoxin contamination in preharvest
peanuts using neural networks. Transactions of the ASAE.
40(3): 809-813.

Pinto, C. S. 1996. Prediction of aflatoxin contamination in
peanuts using artificial neural networks. Master’s Thesis.
Computer Science Department. The University of Georgia.

Porto, V. W., and D. B. Fogel. 1990. Neural network
techniques for navigation of AUVs. Proceedings of the
IEEE Symposium on Autonomous Underwater Vehicle
Technology. 137-141.

U. S. Food and Drug Administration Center for Food
Safety and Applied Nutrition. 1992. Foodborne
Pathogenic Microorganisms and Natural Toxins.
Washington, D. C.: U. S. Food and drug Administration.

Whitley, D., T. Starkweather, and C. Bogart. 1990. Genetic
algorithms and neural networks: Optimizing connections
and connectivity. Parallel Computing. 14:347-361.

Genetic Algorithms 113

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 i

Tm Tst

Data Set
llS BPN
i GA trnd

,J
|

Val

Figure 1. Best R squared values on data
sets for model A.

350

300-
2
~ 250-

:= 200-
O
w
~O 150-

¢: 100-o3
o5 5o-

0
Trn Tst Val

Data Set

[llS BPN1 Ig GA trnd

Figure 2. Best mean absolute error on data
sets for model A.

0.9

0.8

0.7

0.6

"O 0.5

~ 0.4
~ 0.3

IE 0.2

0.1

0
Tm Tst Val

Data Set

IllS BPNI [] GA trod

Figure 3. Best R squared values on data
sets for model B.

9O

8O
Ib.
O 70
!,=
iii

~ 6o
~ 50
O
w 40

30c
~ 20

10

0 i I

Trn Tst Val

Data Set
IS BPN
[] GA tmd

Figure 4. Best mean absolute error on data
sets for model B.

114 Henderson

