
An Architecture for Smart Internet Agents

Niranjan Suri, Kenneth M. Ford, and Alberto J. Cafias

Institute for Human & Machine Cognition
University of West Florida
11000 University Parkway

Pensacola, FL 32514
nsuri@ai, uwf. edu

Abstract
Considerable work has been done in the area of agents and
agent technology in the past few years. The agent metaphor
has been applied, with varying degrees of success, to a
variety of situations from personal assistants to distributed
problem solving. This paper describes a system designed to
support agents on the lntemet and addresses some basic
issues dealing with network agents: Agent transport, agent
security, and agent locator services. While work has ’already
been done on these three issues, in most cases the existing
systems and solutions do not address or scale well to the
requirements of a large-scale, uncontrolled network such as
the Interact. This paper explores transport and security
issues for agents on the lntemet as well as an innovative
approach that uses the World-Wide-Web as a distributed
knowledge base to help agents find other agents.

Overview

Agent technology and agent-based systems have been the
focus of significant research and development efforts over
the last few years. The definitions of what constitutes an
agent vary widely and consequently so do systems that
claim to be agent-based. This paper takes a network-centric
view of agents, particularly mobile agents, which have the
following characteristics:

¯ Independent, long-term existence (with agent state
being preserved across multiple activations)

¯ Autonomous behavior, which allows agents to move
around thc network as they decide

¯ Mobility over a network (with the state of the agent
being preserved across multiple transportations)

¯ Ability to replicate
¯ Adaptability (learning from previous experience)
¯ Represent and act on the interests of a user

The above characteristics separate traditional client-server
or applet-bascd systems from agent-based systems. Mobile
agents are a promising technology for many new kinds of
applications ranging from exciting cybcr-malls to the more
mundane tasks of email filtering and network monitoring.
While any of these applications could be implemented
without agents, agents provide the most straightforward
approach. They also provide other distinct advantages such
as reduced network bandwidth, better support for mobile

Copyright © 1998, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

clients, real-time interaction with servers, and so forth. In
general, agent-based systems can replace several of the
existing mechanisms for distributed processing and
information exchange as well as provide metaphors for new
kinds of applications.

Requirements for Agent-based Systems

Agent-based systems have to satisfy a number of
requirements before they can be used extensively on the
lnternet. Extensive use implies possibly many agent
writers, many agents, and many agent execution
environments, all interacting with each other. One of the
underlying problems in such a network is that most of the
time the different parties (writers, agent.,;, or hosts) do not
know or trust each other.

As a motivating example, consider the requirements to
replace email with agent-based communication. Suppose a
person wanted to send a message (to provide some
information, fix a meeting time, ask for a copy of a
publication, etc.) to another person. Instead of typing an
email message, the person would write an agent (or pick
from a library of available agents) and send the agent to the
recipient. The agent would then interact with the recipient
or other agents that represent the recipient (such as an
appointment manager agent or publications archiving
agent). Therefore, instead of having an inbox that contains
a list of messages, users would have an inbox of agents
waiting to communicate. Such a system would imply many
users, many agent-writers, many different platforms, and
many execution environments all wishing to interoperate.
This is only one example of how agents could be used in a
widespread manner on the Interact.

In order to support such systems, agent-based systems
would have to satisfy the following requirements:

¯ A popular, easy to use language for writing agents
¯ Cross-platform support for agents
¯ Support for agents that have not been certified or

identified and authenticated
¯ Secure execution environments for untrusted agent

code
¯ Support for agent mobility
¯ Mechanisms for inter-agent communication
¯ User interface mechanisms for communication

between agents and users

116 Suri

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

¯ Agent locater services
¯ Access to Internet resources through standard Internet

protocols and standards

Current Systems and Their Limitations
Several agent systems have already been developed, some
commercial and others free. One of the first systems to
implement agents (as qualified by the definition above) was
Telescript (White 1994) from General Magic. General Magic
has since ported much of the Telescript functionality to a
Java-based system called Odyssey (General Magic, Inc.).
Other examples of commercial systems include Voyager
from ObjectSpace (ObjectSpace, Inc.), Aglets from IBM
(Lange and Chang 1996) (Lange 1997), and Concordia
Mitsubishi Electric ITA (1997a and 1997b). A more recent
development is the Mobile Agent Facility specification that
will become part of OMG’s CORBA standard (GMD
FOKUS and IBM Corp. 1997). There are freely available
systems as well such as Agent-Tcl from Dartmouth College
(Gray 1995), and Tacoma from Comell University
(Johansen, van Renesse, and Schneider 1995).

The major limitation of Odyssey, Voyager, Aglets,
Concordia, and other systems is that they do not support
secure execution of untrusted agent code. These systems
are provided as toolkits to programmers who can construct
agent-hased systems to run in controlled environments.
They are not designed to support a scenario where an
untrusted user on the Internet is able to send an untrusted
agent to execute on a remote platform. They would either
require that users authenticate themselves (which is
impractical given the number of users on the Internet) or
that the agents are produced in a controlled environment
where they can be certified or trusted.

Another problem with the above systems is that they do
not address the problem of agents finding other agents. If
agents are to be deployed in significant numbers (and at
numerous locations) to act as producers and consumers of
information, agents need to be able to find each other. If the
Internet were to evolve to support agent-based computation
but retain its current unstructured organization, people
would begin to arbitrarily setup agent execution
environments (just as people do now with web servers and
web pages). In such an environment, agents would be faced
with a "where to go" problem: Given that agents can move
from system to system, how do agents find which systems
to go to when looking for specific information or services?
People often waste time "lost in cyberspace" not able to
find the information they need. Agents would also face the
same problem and waste significant network bandwidth and
processing time by wandering from server to server.

Advantages of Proposed Agent Architecture
The architecture proposed in this paper is specifically
tailored to scenarios that require widespread use of agents
on the Internet. The agent server supports many of the

requirements listed in the earlier section providing key
features such as:

¯ Support for anonymous agents
¯ Extensive, configurable security for agent-execution

environments
¯ An agent transport mechanism
¯ Agent-user interaction mechanism
¯ Agent locater sel~,,ice based on WWW hotlists

In addition, the free availability of source code (for non-
commercial use.) makes the system well suited for further
research and development. The non-availability of source
code for commercial products such as Odyssey, Voyager,
and others makes it difficult for other interested parties to
develop and evolve these products.

Architecture Details
Figure 1 shows the overall architecture for this system. The
architecture is designed around the notion of agent server
daemons that are located on various hosts on the Internet.
These servers provide a secure environment for agents to
exist and operate. Agents can move between the daemons
and preserve their state. The agents normally originate from
personal agent servers that are running on the desktops of
user workstations. The following steps illustrate the typical
life of an agent:

¯ A user starts running an agent in the user’s personal
agent server

¯ The agent can interact with the user to obtain initial
parameters (this interaction relies on the capabilities of
the personal agent server)

¯ The agent may then move from the personal agent
server to agent server daemons as necessary to
accomplish its task

¯ Once the agent has completed its task, the agent moves
back to the user’s personal agent server to report its
results

The agent server daemon has been implemented as a UNIX

__Personal Agent Server [Personal Agent Server

Figure I : Overall Architecture of the Agent Server System

Intelligent Agents 117

daemon and has been ported to run on Solaris, SunOS,
AIX, IRIX, and Linux. Ports to other UNIX platforms
should be reasonably straightforward. Once started, the
daemon runs continuously in the background waiting for
connections. Other daemons or personal agent servers may
connect to the daemon and transfer an agent for execution.
Therefore, this daemon is executed on systems that wish to
host foreign agents or long-lived local agents.

The personal agent server has been implemented as a
Motif application running on UNIX systems. It is designed
to allow easy porting to a number of other operating
systems including Windows and Macintosh. Usually, each
user starts up a copy of the personal agent server whenever
the user wishes to interact with, send, or receive agents that
were previously sent out to other servers. The personal
agent server need not be continuously running. Therefore,
agents wishing to return to the personal agent server from
other servers may be queued up until the personal agent
server is available. When agents return to the personal
agent server, they are placed into a queue of incoming
agents (similar to an incoming mail queue). Users may then
select among the waiting agents and interact with them.

Anonymous Agent Services

In order to be practically usable on the Internet, the agent
server daemon supports two different kinds of agents: user
agents and anonymous agents. User agents are those sent by
users who have accounts and privileges on the system hosting
the agent server. These agenLs run using the same rights
afforded to the user by the system. For example, the agent
starts executing in the home directory of the user and is free
to access or modify any files that belong to or are accessible
by the user. The agent can also execute any programs on the
system that would normally be available to the user.

If agent servers were to be widely deployed on the
Internet, it would be impossible for all users who wanted to
send agents to have accounts on the various systems.
Therefore, the agent server also supports the notion of
anonymous agents. Anonymous agents can be sent by
anyone regardless of whether that person has an account on
the system. The agent servers run anonymous agents in a
restricted environment providing them with only limited
access to the resources of the host computer. Extensive
configurable security and quota mechanisms are available
to allow administrators to setup and control anonymous
agent services. Security mechanisms are discussed in a later
section.

Agent Scripting Language

Figure 2 shows an agent written in the Tel language. Tcl
(Ousterhout 1990) was chosen as the agent scripting
language for several reasons. Firstly, Tel was designed to
be embedded inside other applications, which was perfect
for the needs of the agent server. The agent server
instantiates a new Tel interpreter whenever it needs to
execute an agent’s code. More importantly, Tel allows the
language definition to be changed by adding, replacing, and

118 Suri

removing keywords without modifying the interpreter.
Even all of the standard programming language constructs
such as variable assignment, iteration, selection, and so on
can be modified by the application embedding the Tcl
interpreter. The agent server adds several keywords to the
standard Tcl language such as Go, Send, Find, and Window.
The agent server can also remove or replace certain
commands to restrict the capabilities of agents. In addition,
Tcl provides access to the internal data structures of the
interpreter, which is necessary for the agent server to
implement agent transport.

proc main {} {
Go amaru remoteMain guest !etmein

)

proc remoteMain {)
global list
set list [exec /bin/who]
Go tupac showlist guest letmein

)

proc showlist {} {
global !%st
puts $1ist

Figure 2: An agent that querie.v users logged into a renu~te .9"stem

Agent-User Interaction

The personal agent server runs inside a graphical user
environment and provides an easy to use interface to the
agent system. Users can start up the personal agent server
in order to run agents or to send agents to other servers. An
agent running inside this server can interact with the user
by opening "conversation" windows. Agents can use the
Window command to create new windows, send output to
windows, and receive user input from windows. Figure 3
shows the agent version of the "hello,world" program.
From the agent writer’s point of view, interacting with the
user is very simple and only involves reading and writing
strings. Figure 4 shows the agent interaction window that
was created by another agent.

Only agents running in personal agent servers are
allowed to interact with users. If an agent is running on a
server daemon, that agent has no mechanisms available to
communicate with users. Agents are required to move back
to the originating personal agent server and then present
any information to the user.

Security Mechanisms

Since the agent servers have to guard against possibly

proc main {} {
set wid [Window create]
Window puts Swid "hello, world\n"
Window p~ts $wid "\nWhat. is your r:ai~e?\n"
SeL name [Window ge~s $wid]
Window puts Swid "Hello Lo you too, " Shame

}

Figure 3: An agent Version of the Traditiemal hello, world Program

hostile agents, the servers implement extensive security
mechanisms. The security measures required can be
divided into three categories: security for user agents,
security for anonymous agents, and security for agents in
the personal agent server. In addition, there are security
issues dealing with the actual transport of agents.

The security mechanisms required for user agents are
reasonably straightforward. Each agent is given all the
access privileges of the user who owns the agent. Before a
user agent is accepted by a server daemon, the user has to
supply a password to authenticate the agent. Once the agent
is authenticated, the agent runs as a process owned by the
user who sent the agent. From that point onwards, UNIX
will take care of enforcing access privileges for the agent.

In addition, the server administrator can enforce limits on
the resources that may be consumed by user agents. These
limits are implemented by a set of configurable parameters
that are shown in figure 5.

The security requirements for anonymous agents are
more critical. Administrators can apply different security
policies for anonymous agents. In addition to all of the
parameters listed in figure 5, the server allows the root
directory for anonymous agents to be changed thereby
allowing only a subset of the filesystem to be visible to
agents. All anonymous agents also run in special accounts
created on the servers. The agent server "sanitizes"
accounts used by agents after the agents leave so that future
agents do not accidentally "find" information left by
previous agents.

Unlike the server daemon, which relies extensively on
UNIX for most of its security mechanisms, the personal
agent server was designed to be ported to a variety of
operating systems such as Windows and Macintosh. Since
most PC-based operating systems do not provide much in
terms of security mechanisms, the personal agent server
does not allow the execution of any untrusted agents. Only
agents that were started by the current user are allowed to
execute. Also, only agents that originated from a particular
personal agent server are allowed to return to that personal
agent server. The server detects tampering of agent code by
using a CRC-32 checksum algorithm.

Figure 4 ." An Agent Interaction Window in Personal Agent Server

Agent Locator Services

One of the main goals of the agent server architecture is to
address the "where to go" problem often faced by people
and programs navigating the Internet. The Internet as it
exists today has no explicit structure or organization based
on content. The only structure is that which is imposed by
the Domain Name System (DNS) but this structure is based
on physical location and organization rather than on
content. For example, DNS allows us to find all computers
in a domain such as uwf.edu but there is no way to find all
computers that have information on Mars. Since any host
on the Internet can act as a server and provide any kind of
information, providing a content-based directory service is
difficult at best.

Given the amount of time wasted by people looking for
information, it would be exceedingly difficult for people to
design useful autonomous agents that are supposed to work
on the Internet. Agents will probably end up wasting time
by "hopping" around the network from host to host. While
this behavior might be reasonable on a small prototype
network, it would be totally inadequate if agents are to ever
come into extensive use on the Internet. One can imagine
the total chaos caused by millions of agents blindly
stumbling around from host to host looking for information.
In fact, the benefit of reduced network bandwidth provided
by mobile agents would be completely lost.

Recently, several hierarchical "hotlists" have emerged on
the Internet (the prime example being Yahoo). These
hotlists organize WWW servers based on their content into
a large hierarchical tree. Such hierarchical organization
provides contextual information that allows people to
retrieve information in a more accurate manner than
traditional search engines.

If, in the future, agent-based interfaces are setup as
alternatives to information and services that are currently

MaxAgents:

NiceLeveh

MaxTimeToLive:

AllowDupli(’ation:

MaxDuplications:

MaxLinesO//(7ode:

MaxNumbe rOjVa rs:

MaxVarNameSize:
MaxVarSize:

MaxTotalVarSize:

MaxDataSize:

MarStackSize:

The maximum number of concurrently
running agents
The nice level to be applied to the agent
process
The maximum period of time that agents are
allowed to live
Whether agents are allowed to duplicate
themselves
Maximum number of duplications allowed for
an agent
Maximuul number ol lines of code allowed
for the agent’s scripl
Maxinmui number of variables allowed for
the agent
Maximum size allowed for a variable name
Maximum amount of storage that can be used
by one variable
Maximum amount of storage that can be used
by all the variables
Maximum size of the data segment of the
agent process
Maximum size of the stack segment of the
agent process

Figure 5 ." Configurable SecuriO, Parameters for the Agent Servers

Intelligent Agents 119

WWW-based, then the location of WWW-based information
would coincide with the location of agent platforms that also
provide information on the same topic. Therefore, if agents
are able to locate sites that offer WWW-based information on
a particular topic, then agents would also be able to find an
agent platform at the same site that would provide the same
service. A WWW bookstore that currently offers books on,
say, music, would likely have an agent-server with software
agents that sell music books.

The solution proposed in this paper is to provide a
mechanism to the agents that would allow them to locate
agent-based information or service providers by looking for
corresponding WWW-based services. This scenario is
different from systems that actually use the Web to find
information. The information in the hotlists is not the
ultimate data consumed by the agent, but is used as meta-
information to locate agent-based services. Therefore, the
hotlists and the Web acts as a distributed knowledge base
and an external representation that tells agents where to go
and look for information. Since the hodists are an external
representation that are updated independently of the agent
system, agents can take advantage of the efforts of many
people to organize and categorize the servers on the
Internet into hierarchical lists. Any updates to the lists will
automatically result in the agent system being updated.
Also, as the structures of the lists improve, so will the
performance of the agent system.

Another advantage of the hierarchical lists is that they
have contextual information that can be provided to the
agent along with the results of a search. For example, if an
agent does a search for the string "mice," the server might
return a set of possibilities falling in two contexts:
Computer pointing devices and animals. The agent can use
this contextual information to select among the possible
matches.

The agent server system currently provides a stand-alone
application that takes hierarchical lists and builds or
updates a representation. The system does not try to merge
information in several lists into one representation. Instead,
an independent representation is built for each list
configured for use in the server. Agents then query thcsc
representations (through Tel commands provided by the
agent server) as and when the information is needed.

Conclusions
The agent server architecture described in this paper
addresses some of the basic requirements for implementing
an agent-based prototype system on a large-scale network
such as the Intemet. In addition to addressing agent transport
and security issues, the system provides an innovative
approach to solve the "where to go" problem. A few simple
agents have been written to test and exercise the system.

Work is currently underway to extend this project to
allow Java to be used as thc agent scripting language, add
additional capabilities to agents, and provide better content-
based directory services. Recently emerging standards such
as Resource Description Framework (RDF) (Lassila

120 Suri

Schwik 1997) and Meta-Content Framework (MCF) (Guha
and Bray 1997) are also being incorporated into the system
and will possibly allow the agent locator services to work
with much greater accuracy. Work also needs to be done to
incorporate agent communication frameworks such as
KQML (Finin et al. 1994), and KAoS (Bradshaw et
1997).

References
White, J.E. 1994. Telescript Technology: The Foundation for

the Electronic Marketplace. General Magic White Paper.
General Magic, Inc. On-line reference at http://www.

genmagic.conffagents/odyssey.html.
ObjectSpace, Inc. On-line reference at http://www.objectspace.

corn/voyager.
Lange, D.B., and Chang, D.T. 1996. IBM Aglets Workbench :

Programmb~g Mobile Agents in Java. On-line reference at
http://www.lxl.ibm.co.jp/aglcts/whitcpapcr .htm.

Lange, D.B. 1997. IBM Aglet Application Programming
Interface (J-AAPI) White Paper. On-line refcrence
http://www, trl.ibm.co.jp/agleLs/J’AAPI-whitepaper.htm.

Mitsubishi Electric FlA. 1997a. Concordia: An Infrastructure
for Collaborating Mobile Agents. In Proceedings of the First
International Workshop on Mobile Agents, Berlin, Germany.

Mitsubishi Electric ITA. 1997b. Mobile Agent Computing: A
White Paper. On-line reference at http://www.metica.
com/HSL/Projects/Concordia/MobileAgentsWhitePapcr.pd f.

GMD FOKUS and IBM Corp. 1997. Mobile Agent System
Interoperability Facilities Specification. OMG Technical
Committee document orbos~7-10-05. On-line reference at
ftp’.//ftp.omg.ocg/pub/docs/o~7-10-05.pdf.

Gray, R.S. 1995. Agent Tel : A Transportable Agent System.
Proceedings of the CIKM Workshop on Intelligent
Information Agents, Fourth International Conference on
Information and Knowledge Management (CIKM 95),
Baltimore, MD.

Johansen D.; van Renesse, R.; and Schneider, F.B. 1995. An
Introduction to the TACOMA Distributed System Version
1.0, Technical Report 95-23. Dept. of Computer Science,
Univ. of Troms¢, Norway.

Ousterhout, J.K. 1990. Tcl: An Embeddable Command
Language. Usenix Conference Proceedings, Winter 1990.

Lassila, O., and Swick, R.R. 1997. Resource Description
Framework (RDF) Model and Syntax. On-line reference at"
http:flwww.w3.org/TR/WD-rdf-syntax.

Guha, R.V., and Bray, T. Meta Content Framework Using
XML. On-line reference at http://www.w3.org/TR/
NOTE_MCF_XML.

Finin, T.; Fritzon, R.; McKay, D.; and McEntire, Robin. 1994.
KQML as an Agent Communication Language. Proceedings
of the Third International Conference on lnforn~tion atu]
Knowledge Management. ACM Press.

Bradshaw, J.M.; Dutfield, S.: Benoit, P; and Woolley, .I.D.
1997. KAoS: Toward An Industrial-Strength Open Agent
Architecture. Sof~,are Agents. Menlo Park, CA: MIT Press.

