
The Program Analysis Tool for Reuse: Identifying Reusable Components1

L.H. Etzkorn, C.G. Davis, L.L. Bowen, J.C. Wolf, R.P. Wolf, M.Y. Yun, B.L. Vinz, A.M. Orme, L.W. Lewis

Computer Science Department
The University of Alabama in Huntsville

Huntsville, AL 35899 USA

Department of Computer Engineering
Sungkyul University

Anyang City 430-742, Korea
letzkorn@cs.uah.edu, cdavis@cs.uah.edu, lbowen@cs.uah.edu

1 Copyright  1998, American Association for Artificial Intelligence

(www.aaai.org). All rights reserved.

 Abstract

Software reuse has been demonstrated to increase productivity,
reduce costs, and improve software quality. The research that
has addressed this problem has concentrated on code created
in the functional domain. However, in recent years much
object-oriented code has been developed. In many cases
eventual reuse of the code was not considered in the software
development process, and so even though the object-oriented
paradigm tends to result in more reusable code than that
developed in the functional decomposition paradigm, the code
itself was not specifically designed for reuse. An approach for
the automated identification of reusable components in object-
oriented legacy code is presented in this paper. This approach
includes a natural language processing, knowledge-based tool
for the identification of components reusable in a chosen
domain. It also includes a reusability metrics tool that uses
low level OO metrics to determine high level reusability
quality factors in order to quantify the reusability of OO
components.

Introduction
Software reuse has been demonstrated to increase
productivity, reduce costs, and improve software quality.
One research area within the domain of software reuse is
the extraction of reusable components from existing
(legacy) code. The research that has addressed this
problem has concentrated on code created in the
functional decomposition paradigm, and has taken a
formal specification approach to code understanding.
However, it has been shown in many places that object-
oriented code is inherently more reusable than
functionally-decomposed code. Also, in recent years much
object-oriented code has been developed. In many cases
eventual reuse of the code was not considered in the
software development process, and so even though the
paradigm itself tends to result in more reusable code than
that developed with the functional-decomposition
paradigm, the code itself was not specifically designed for
reuse. This paper describes an automated approach for
identifying reusable components within existing object-

oriented code. This paper also discusses the PATRicia
(Program Analysis Tool for Reuse) system, which
implements the approach described in this paper.

One aspect of this research is the identification of
potentially reusable components from the standpoint of the
functionalities provided by each component. Another
aspect is the necessity to quantify the reusability of the
components.

In this approach, the identification of components that
could be potentially reusable in a given domain is
performed by use of a natural language processing system
that examines comments and identifiers. The
quantification of reusability is performed by the use of a
reusability metrics hierarchy that uses low level object-
oriented metrics to predict higher level reusability quality
factors.

Program Understanding
The identification of the functionality of potentially
reusable components is a program understanding problem.
Program understanding approaches are generally divided
into three large categories. The algorithmic approaches
(the first category) annotate programs with formal
specifications (Caldiera and Basili 1991). These
approaches rely on the user to annotate the loops, and
provide assistance only in proving the correctness of the
annotations. The knowledge-based approaches (the second
category) annotate programs with informal, English text
specifications (Biggerstaff, Mitbander and Webster 1994)
(Harandi and Ning 1990) (Kozaczynski, Ning, and
Engberts 1992) (Rich and Wills 1990). The
transformational approach (the third category) is similar to
the transformational paradigm of automatic program
synthesis but with the application direction of
transformation rules reversed(Letovsky 1988).

Knowledge-based program understanding approaches
can be divided into three major areas. The first approach,
called the graph-parsing approach (Rich and Wills 1990),
translates a program into a flow graph (the graph employs
both dataflow and control flow). The domain base

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

contains a library of graphical grammar-rule plans. The
program's graphs are compared to the plans in the library.
Associated with each library plan is an English text
description of the operation of the plan. The second
approach, typically called the heuristic concept-
recognition approach (Harandi and Ning 1990), contains
a knowledge-base of events, such as statement, control,
inc-counter, bubble-sort, etc. The lower level events
combine to form higher level events. At the lowest level,
an attempt is made to match code statements versus the
most primitive events. An approach that provides a hybrid
of the first two approaches has also been employed
(Kozaczynski, Ning, and Engberts 1992) The third
approach is that taken by Biggerstaff (Biggerstaff,
Mitbander, and Webster 1994). This approach employs
informal information from the source code in terms of
natural language tokens from comments and identifiers,
and some heuristics related to occurrences of closely
related concepts, and the overall pattern of relationships.

Program Understanding by a Natural
Language Processing Approach

The approach taken by this research is a knowledge-based,
natural language processing approach that concentrates on
informal information from comments and identifiers. The
approach is similar in some ways to the approaches used
by information extraction systems. While information
extraction systems are more commonly applied to texts
such as newspaper and journal articles, many techniques
derived from those systems are applicable to the current
approach. Information extraction systems attempt to
answer certain pre-defined questions, while ignoring
extraneous information, and typically employ natural
language processing. The use of informal tokens in this
approach goes beyond that of Biggerstaff (Biggerstaff,
Mitbander, and Webster 1994). Biggerstaff's approach
primarily concentrated on the simple matching of
comment keywords. This approach not only uses
additional information in the character of identifiers, it
also employs information extraction/natural language
processing techniques.

In this approach, comments and identifiers are
considered to be a grammatical and subject-matter
sublanguage of natural language. This allows some
simplification of the natural language processing phases of
the approach, such as a reduction in size of the dictionary
associated with a word-based parser.

Such a comment and identifier approach is particularly
suited to object-oriented code, since in object-oriented
code, more so than in functionally-oriented code, much
understanding can be performed simply by looking at
comment and identifier names. This is true since object-
oriented code is organized in classes, with everything
required to implement a class at least mentioned (if not
defined) in the class definition. Thus, instead of building
a higher level concept from lower level concepts, a more
top-down understanding method can be followed. In the

Program Analysis Tool for Reuse (PATRicia) system,
base classes are understood first, followed by derived
classes (Etzkorn and Davis 1994) (Etzkorn and Davis
1996a).

The PATRicia system employs a natural language
understanding approach that occurs in two phases: a
syntactical parsing phase followed by a semantic
processing phase. The semantic processing phase
employs a semantic network in the form of conceptual
graphs. The natural language understanding portion of
the PATRicia system is called CHRiS (Conceptual
Hierarchy for Reuse Including Semantics) (Etzkorn and
Davis 1997) (Etzkorn and Davis 1996b).

CHRiS Knowledge-Base
The knowledge base employed in the semantic phase of
the program understanding approach is a weighted,
hierarchical semantic network. The semantic net has an
interface layer of syntactically-tagged keywords.
Syntactically-tagged keywords in the interface layer infer
interior concepts. The interior concepts are either
conceptual graphs, or are a concept within a conceptual
graph (Sowa 1984).

Inferencing in the semantic network is by a form of
spreading activation. Each syntactically-tagged keyword
in the interface layer has one or more links to concepts or
conceptual graphs in the interior. Each link has a weight
associated with it. Each concept or conceptual graph in
the interior has a threshold level associate with it. A
concept “fires” when the weights of the links connecting
to the concept achieve the weight of the threshold level.

Reports Produced by CHRiS

Among the reports produced by the Conceptual Hierarchy
for Reuse including Semantics (CHRiS)
portion of the PATRicia system are:

• concept report

• description of functionality report

• keyword report

• explanation report

The concept report is a list of standard concepts that
were identified for each class or class hierarchy, that could
be used to categorize the class or class hierarchy for
insertion into a software reuse library. The description of
functionality report is an English description of the tasks
that a class performs/functionality that a class provides.
The keyword report is a list of all keywords (from the
interface layer of the semantic net) that have been
identified as associated with a particular class or class
hierarchy. The explanation report shows the links
between nodes in the semantic net that led to certain

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

concepts being identified. This information serves as a
simple explanation feature, but is exceptionally space
consuming, since currently all identified concepts and the
links leading to their firing, are included in the same
report.

Figure 1. Description of Functionality Report

Natural Language Generation in CHRiS
Conceptual graphs are often used to form semantic
networks, and are also employed in semantic networks that
provide natural language generation capability (Sowa
1984). In CHRiS, the description of functionality report is
produced by the use of natural language generation based
on the low level conceptual graphs in the semantic net.

In the CHRiS functionality report, each sentence in the
description of functionality report is related to a
conceptual graph in the semantic net that has at least one
concept identified. The functionality report is generated
in present tense only. An example of a description of
functionality report is shown in Figure 1. In this report, in
addition to the description of functionality, hints involving
the possible functionality of the class are provided as well.
These hints are generated from conceptual graphs where
some concepts were identified, but not all. The missing,
unidentified concepts result in the generation of hint
sentences.

CHRiS Results

The CHRiS tool was applied to code from three different
graphical user interface packages. A team of highly
trained C++ and GUI experts also examined the same
code, and determined the list of concepts belonging to

each class or class hierarchy. The concept report of
CHRiS was then compared to the merged concepts
determined by the experts. Metrics for recall, precision,
and overgeneration were defined (Etzkorn and Davis
1997). The values for recall and precision were always
above 72%, and the values for overgeneration were always
under 10%.

Reusability Metrics in the PATRicia System
The metrics tool portion of the PATRicia system is called
the Metrics Analyzer. The purpose of the Metrics
Analyzer is to determine the extent to which object-
oriented software components are reusable. In order to do
this, the Metrics Analyzer implements three separate
reusability quality metrics hierarchies, in which the high
level quality metrics are determined by the use of low
level object-oriented metrics.

The three reusability quality metrics hierarchies that are
implemented by the Metrics Analyzer represent three
different views of reuse. The three hierarchies are:

• Reusability-in-the-Class

• Reusability-in-the-Hierarchy

• Reusability-in-the-original-system

Reusability-in-the-Class consists of qualities of an
individual class that tend to make a class reusable. Figure
2 shows the quality factors hierarchy for Reusability-in-
the-Class. Reusability-in-the-Hierarchy consists of
qualities of a class hierarchy that tends to make that class
hierarchy reusable. Reusability-in-the-Hierarchy has the
same quality factors as Reusability-in-the-Class (although
these quality factors are determined over all classes in the
hierarchy rather than simply a single class), but also
employs an additional quality factor related to the depth of
the inheritance tree in the current hierarchy. Reusability-
in-the-Original-System determines the amount of reuse of
a class in the system within which the class was
definedthis can be used as an indication of the
reusability of the class in a new system.

Metrics Analyzer Results
An experiment was performed to determine how closely
the Metrics Analyzer’s prediction of the reusabilility
quality factors matched reality. In this experiment, seven
knowledgeable C++ software developers (experts) were
given a set of questions to answer and criteria to evaluate
when rating classes and hierarchies for reusability. They
were also given source code from three independent C++
GUI packages. Based on their answers to the questions in
the questionnaires, and any other criteria that they thought
was important, the reviewers rated each class and class
hierarchy for the various quality factors, on the following
scale: Excellent = 100%, Good = 50%, Fair = 50%,
and Poor = 25%. The mean of the reviewers’ values for
each quality factor was compared to the values for that

Class wxbItem:

-- contains the concept ‘text’ that is described by a font
descriptor and a height descriptor and a width descriptor

-- minimizes a window
 HINT: A button that can be described by a color
descriptor and a left descriptor can minimize a
window.

-- focuses an <object>
 HINT: It is possible to focus an area.

-- tracks a mouse
 HINT: It is possible to track a mouse that can own a
button.

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

quality factor as determined by the Metrics Analyzer.
Figure 3 contains the results for one class examined.

Figure 2. Reusability-in-the-Class

The Metrics Analyzer did a good job of predicting both
individual quality factors, and overall reusability for each
class and class hierarchy. In no case did the Metrics
Analyzer determine a class to be reusable that the experts
had rated as not reusable. However, in four cases the
Metrics Analyzer rated a class as not reusable, when the
reviewers had rated it as reusable. For example, in the
case of a class with a large number of very simple member
functions, the reviewers rated complexity low (and thus
simplicity high) due to the simplicity of each member
function. However, the Metrics Analyzer used the
standard object-oriented metric WMC (Weighted Methods
per Class) (Chidamber and Kemerer 1991) (Chidamber
and Kemerer 1994) to measure complexity. Since this
metric is additive, the class was rated as complex
(Etzkorn, Bansiya, and Davis 1999, Forthcoming). Also,
the experts rated another class with descriptive member
function names as being well documented, even though
neither the class definition nor any of the member
functions contained any comments. Since the Metrics
Analyzer was counting comments as the measure for

documentation the Metrics Analyzer’s results did not
match the experts’ results in this case.

Conclusions
A natural language and knowledge-based approach to the
automated identification of object-oriented reusable
components has been described. An approach for the
qualification of reusable object-oriented components by
the use of a reusability quality metrics hierarchy, with the
high level quality factors determined by low level object-
oriented metrics has also been described. A tool, called
the Program Analysis Tool for Reuse (the PATRicia
system), has been described. The operation of two tools
that make up the PATRicia system, the Conceptual
Hierarchy for Reuse including Semantics (CHRiS) and the
Metrics Analyzer, has been discussed. The approaches
have been validated by comparing the work of C++ and
GUI experts to the operation of the PATRicia system over
three independent graphical user interface packages.
Since the results were good, the conclusion can be drawn
that the identification and qualification of reusable
components in object-oriented legacy code can be
successfully automated to a high degree.

0

0.5

1
Modularity

Interface

DocumentationSimplicity

Reusability Experts

PATRicia

Figure 3. Results for a Class

References
Biggerstaff, T.J., Mitbander,B.G., and Webster, D.E.
1994. Program Understanding and the Concept
Assignment Problem, Communications of the ACM, 37(5):
72-82.

Caldiera, G., and Basili,V.R. 1990. Identifying and
Qualifying Reusable Software Components, IEEE
Computer, 24(2):61-70.

Chidamber, S.R., and Kemerer, C.F. 1991. Towards A
Metrics Suite for Object-Oriented Design, In Proceedings
of the Sixth Conference on Object-Oriented Programming
Systems, Language, and Applications: 97-211.

Quality Factor Subfactor Metric

Modularity Cohesion #disjoint sets of local
methods

Coupling #friend functions
#message sends
#external variable
accesses

Interface #public methods
Complexity

Documentation average # of
commented methods
average # of
comments/method
comments in
class definition

Simplicity Size #methods in class
#attributes in class
average method size
in LOC

Complexity sum of the static
complexities of
local methods

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Chidamber, S.R., and Kemerer, C.F. 1994. A Metrics
Suite for Object-Oriented Design, IEEE Transactions on
Software Engineering, 20(6): 476-493.

Etzkorn, Letha, Bansiya, Jagdish, and Davis, Carl. 1999.
Design and Complexity Metrics for OO Classes, Journal
of Object-Oriented Programming. Forthcoming.

Etzkorn, L.H., and Davis, C.G. 1997. Automatically
Identifying Reusable Components in Object-Oriented
Legacy Code, IEEE Computer, 30(10): 66-71.

Etzkorn, L.H., and Davis, C.G. 1996a. Automated
Object-Oriented Reusable Component Identification,
Knowledge-Based Systems, 9(8): 517-524.

Etzkorn, L.H., Davis, C.G., Bowen, L.L., Etzkorn, D.B.,
Lewis, L.W., Vinz, B.L., and Wolf,J.C. 1996b. A
Knowledge-Based Approach to Object-Oriented Legacy
Code Reuse, In Proceedings of the Second IEEE
International Conference on Engineering of Complex
Computer Systems: 39-45. Los Alamitos, CA: IEEE
Computer Society Press.

Etzkorn, L.H., and Davis, C.G. 1994. A Documentation-
related Approach to Object-Oriented Program
Understanding. In Proceedings of the IEEE Third
Workshop on Program Comprehension: 39-45. Los
Alamitos, CA: IEEE Computer Society Press.

Harandi, M.T., and Ning, J.Q. 1990. Knowledge-Based
Program Analysis, IEEE Software, 7(1): 74-81.

Kozaczynski, W., Ning, J., and Engberts, A. 1992.
Program Concept Recognition and Transformation, IEEE
Transactions on Software Engineering, 18, (12): 1065-
1075.

Rajaraman, C., and Lyu, M. 1992. Reliability and
Maintainability Software Coupling Metrics in C++
Programs, In Proceedings of the Third International
Symposium on Software Reliability Engineering: 303-311.

Rich,C., and Wills, L.M. 1990. Recognizing a Program's
Design: A Graph-Parsing Approach, IEEE Software, 7(1):
82-89.

Sowa, J.F, Conceptual Structures: Information Processing
in Mind and Machine, Addison-Wesley, 1984

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

