From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Integrating Hierarchical and Analogical Planning*

Billy Harris and Diane J. Cook
Computer Science and Engineering Department.
University of Texas at Arlington
Arlington, Texas 76013
{wharris,cook }@cse.uta.cdu

Abstract

Both hierarchical planning and analogical plan-
ning can separately reduce the amount of search
a planner must perform to find a solution to a par-
ticular problem. We believe that these two meth-
ods can be integrated and that the combined plan-
ner will have an even smaller average search space
than cither method would produce alone. In this
work, we present our ideas for integrating the two
methods; focusing on the opportunities for benefi-
cial interactions between analogical planning and
hicrarchical planning.

Introduction

Planning-—determining a sequence of actions which ac-
complishes a particular goal—is a crucial part of intelli-
gent behavior. Unfortunately, existing planners exam-
ine an exponential number of nodes to discover their so-
lution. Planning researchers have explored many tech-
niques to improve planning efficiency; some have even
suggested discarding deliberative planning in favor of
reactive planning. However, relatively little work com-
bines two different methods of reducing deliberative
scarch.

We describe two popular methods of reducing search;
hierarchical planning focuses first on critical, difficult-
to-achieve conditions and then focuses on less diffi-
cult conditions. Analogical planning identifies “similar”
problems which the planner has encountered before and
acjusts an old plan to cover the new situation. After
summarizing cach approach, we describe how the meth-
ods may be combined, yielding a hierarchical analogical
planner. Hicrarchical planning complements analogical
planning by foeusing the scarch for an adequate base
case as well as providing cfficient search if the plan-
ner must use from-seratch planning. Analogical plan-
ning complements hierarchical planning by finding ex-
isting cases which satisfy the abstract or “hard” con-
ditions, allowing the hierarchical planner to avoid or
reduce scarch for some or all of its abstraction levels.

Copyright 1998, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

126 Harris

Analogical Planning

Analogical or case-based planners use a library of pre-
viously gencrated plans. When confronted with a prob-
lem, analogical planners identify “similar™ problems in
the library. A base plan is retricved and adjusted to ac-
count for differences between the original problem and
the current problem. Often. the analogical planner in-
corporates generational planning to account for goals
in the new problem left unsolved by the retrieved plan.
The planner may decide to store its new solution in the
plan library.

Plan Storage

Planners using derivational analogy store search traces
identifying choices the planner made which led to the
solution {Carbonell 1986). For new problems, the plan-
ner replays the trace and hopefully makes only minor
additions accounting for the new situation. Deriva-
tional analogy has been used by both state-space and
plan-space planners.

Plan Retrieval

An analogical planner must decide which of its stored
plans is best suited for a new problem. This decision is
often difficult; in addition to finding a suitable mapping
between the old problem and the new problem, the old
plan may not successfully solve its subgoals in a new
context. Explanation-based learning is sometimes used
to determine if a given case may be successinlly adapted
to a new situation (Ihrig & Kambhampati 1995).

Plan Adaptation

Ideally, analogical plauners are able to find a valid so-
lution even if the retrieved plan is not applicable to
the new situation. Hanks and Weld have developed
SPA (Systematic Plan Adaptor) to address this prob-
lem (Hanks & Weld 1995). SPA views the retrieved
plan as a node-not the root in a search tree. If the
retrieved plan is applicable to the new situation, scarch
continues “downward” as the planner adds steps corre-
sponding to new goals not considered by the retrieved
plan. If the retrieved plan is not applicable, the planner
retracts some of the choices made for the original plan



and moves “upward” toward the root of the search tree.
The root of the search tree represents the empty plan;
the planner retracting to the root represents the need
for from-scratch planning. SPA finds solutions even if
it retrieves an inapplicable base plan.

Plan Generalization

Once the planner has generated a new solution, it
must decide whether or not the new problem is suffi-
ciently novel to warrant saving in the plan library. If
so, the planner should generalize the solution so that
it may be applied to as many situations as possible.
Veloso uses explanation-based generalization to gener-
alize plans (Veloso & Carbonell 1990).

Hierarchical Planning

Hierarchical planners divide a domain into abstraction
levels. Hierarchical planners first find an “abstract” so-
lution for part of the planning problem, then proceed
to lower abstraction levels to refine its solution by in-
corporating additional details. In abstraction level 0,
or the ground abstraction level, the planner considers
all remaining subgoals.

Forming Abstraction Levels

Intuitively, domain predicates in the highest abstrac-
tion levels represent the most crucial or most difficult
portions of the domain. Traditionally, users of hierar-
chical planners explicitly assign predicates into abstrac-
tion levels; however, some systems form abstraction hi-
erarchies automatically (Knoblock 1994).

Abstract Plans

Hierarchical planners begin by searching only those
predicates in the highest abstraction level. Thus,
the planner considers fewer preconditions and possi-
bly fewer plan operators in its abstract search space.
Once the planner has an abstract solution, it adds ad-
ditional subgoals and proceeds to a lower abstraction
level. Modern hierarchical planners use “monotonic re-
finement” meaning that the planner may not undo work
performed at a higher abstraction level (Woods 1991).
Not all abstract solutions can be successfully refined;
the planner can backtrack to a higher abstraction level
and find a different abstract solution. Some domains
have the “downward refinement property”; abstract so-
lutions in these domains can always be refined if the
problem has a solution at all.

Search Reduction in Hierarchical Planning

Hierarchical planners reduce the amount of search per-
formed by dividing the problem into mostly indepen-
dent search spaces. A conventional planner solving a
problem with an s-step solution will explore a single
search tree with a depth of at least s. In contrast, a
hierarchical planner with n levels of abstraction hopes
to explore n search trees, each of which has a depth of
only s/n.

Hierarchical Analogical Planning

We believe hierarchical planning and analogical plan-
ning can be successfully combined to yield a hierarchi-
cal analogical planner. Such a planner would follow the
same process as an analogical planner, but hicrarchical
planning would affect several steps. Similarly, the plan
generation portion of the planner would have the same
search characteristics as conventional hierarchical plan-
ning, except that each abstraction level would have a
proposed solution ready for replay or revision.

Plan Storage

Like ordinary derivational-analogical planners, our sys-
tem will store the sequence of choices the planner made
on the search path to the solution. Since our planner
is a hierarchical planner, this search trace will begin
with choices involving the most abstract goals. In ad-
dition, the trace identifies when the planner has found
an abstract solution and changed the abstraction level.
The stored trace, as always, reflects the process used to
generate the plan solution; in this case, the process is
hierarchical planning.

Note that the choices are stored in the order that the
planner made them. Since we use a partial-order plan-
ner, the order of the steps in the finished plan is inde-
pendent of the order in which the steps were first added
to the plan. Thus, the planner could, after performing
replay, add a new step to the plan and constrain the
step to occur between two steps added during replay.

Case Retrieval

Correctly identifying and instantiating a stored plan
challenges analogical planners. If a new plan mentions
n objects and a possible stored plan mentions k objects,
finding the optimal mapping between the two plans may
take up to () steps (Hanks & Weld 1995). As explained
in the next section, hierarchical planning can greatly
reduce this cost.

In addition to reducing the cost of analogical map-
ping, hierarchical analogical planning can also help
choose between two competing plans which both offer
partial solutions to the current problem. If two dif-
ferent library plans each solve two goals but leave one
unsolved, which one should we sclect? This choice is
difficult for traditional analogical planners, but hierar-
chical analogical planners offer a heuristic. Assuming
that conditions in a high abstraction level are more dif-
ficult to achieve than conditions in lower abstraction
levels, our retriever should prefer a library plan which
completely solves goals in a high abstraction level (but
does not solve any in a low abstraction level) to a plan
which partially solves goals in both high and low ab-
straction levels.

Plan Adaptation

Like conventional replay, hierarchical analogical plan-
ning uses the retrieved plan to solve portions of the

Intelligent Agents 127



problem and uscs gencrative planning to solve addi-
tional goals. Mcthods similar to the Systematic Plan
Adaptor can be applied to each abstraction level and
ensure that the planner will find a solution cven if the
retrieved plan does not apply to the new situation.

Specifically, SPA (Hanks & Weld 1995) views the re-
trieved plan as being one node (not the root) of a search
tree. Thus, if the planner does not find a solution by
refining the retrieved plan, it can perform backtrack-
ing over the choices made when the library plan was
first performed. When SPA backtracks, it will identify
an “exposed” choice to retract. A choice is exposed if
no other plan choice depends on it. For example, if
the planner adds a STACK operator to achieve “(ON
A B)" aud then adds an additional ordering constraint
to satisfy the preconditions of the STACK operator, the
ordering decision prevents the add-operator action from
being exposed.

QOur planncr adapts the SPA approach to hierarchi-
cal planning. Specifically, we begin at the highest ab-
straction level by forming two copies of the portion of
the library plan pertaining to the most abstract condi-
tions of our new problem. One copy is refined normally
to account for goals unmet by the library plan. The
other copy is marked for retraction (SPA puts this plan
in an “up” queue). If the refinement search does not
progress toward a solution, the planner backtracks over
the retraction node, undoing one of the choices made
in the original library plan. The planner can continue
backtracking until it reaches the original, empty plan
corresponding to the root of the search tree.

On the other hand, the original retrieved plan may
lead to an (abstract) solution. In this case, like or-
dinary hierarchical planners, our planner reduces the
abstraction level. When this happens. the planner at-
tempts to re-apply the plan choices made in the library
plan which relate to the new (lower) abstraction level.
Again, the planner makes two copies of the initial node
of the lower abstraction level, allowing it to retract un-
refineable choices made in this lower abstraction level.

Hicrarchical planning assumes that conditions in the
highest abstraction levels are the most difficult to
achieve. If this assumption means that these conditions
arc the most likely to fail in new circumstances, then a
hicrarchical analogical planner can more quickly recog-
nize when a library plan is unlikely to apply to the new
situation. The hierarchical analogical planner focuses
first on the most difficult portion of the plan and only
attempts to reuse the “easy™ part of the library plan if
the abstraction portions successfully applied to the new
situation. In contrast, a conventional analogical plan-
ner may expend considerable effort before realizing that
the library plan is inapplicable to the new situation.

In addition. if the planner must use from-scratch
planning to solve a problem. hicrarchical planning can
reduce search compared to non-hicrarchical generative
plauning,.

128 Harris

Plan Generalization

As before, if the planner decides that a new case is
“sufficiently different” to add to its library, the plan-
ner will generalize the solved plan. Unlike before. the
planner can generalize the solution for each abstraction
level separately; after all, the planner may later wish
to reuse an abstract solution and this type of reuse will
usually be more applicable than reuse of the entire plan.

Since multiple plans may share the same abstract so-
lution, the plan can be stored in a tree structure. This
tree reduces the amount of match a hicrarchical ana-
logical planner must perform to identify an applicable
plan.

Hierarchical Matching

Consider a conventional analogical planner frying to
solve a problem in the Towers of Hanoi domain. Af-
ter a few iterations, our planner may have bailt the
small case file shown in Figure 1. Case 3, for example,
shows that the planner knows how 1o solve the problemn
with an initial state in which the small disk starts on
a particular peg and the medium and big disk start on
the same peg (different. from the peg used by the small
disk) and with a goal state in which the medium and
big disks are moved 1o the peg initially occupied by the
small disk. which should end up on vet a third peg.

Now, suppose the planner is faced with a problem
with the initial state of “(on-big peg-3) (on-medium
peg-3) (on-small pegl)” and a goal state of *(on-big
peg-1) (on-medium peg-1) (on-small peg2).” Our plan-
ner must consider cach of the four cases and identify
which case (and which bindings) will eusuve the closest
match. Specifically, our planner first finds those cases
giving the best match for the goal state. If two or more
cases are tied, the planner identifies which of the tied
cases best matches the initial state. For each case, our
planner will try to match the three goal conditions with
the three goals of the new problem. After studying four
cases, each of which has three goals needing matching,
our planner will conclude that Case 3 gives the best
match, with 7A matching peg-3. ?B matching peg-1,
and ?CC matching peg-2 .

In contrast, our hicrarchical analogical planner stores
its cases in a tree as shown in Figure 2. When our hier-
archical planner tries to the same new problen, it be-
gins by considering only the wmost abstract goal—-(on-
big peg-1). Our planner then performs matching on
the most abstract portions of the case Hle. In our ex-
ample, all of our cases share the same conditions at the
highest abstraction level, so our hierarchieal analogical
matcher quickly decides that T3 should map to peg-1.
The matcher then considers the case portions in the
next lower abstraction level. Each child node contains
the same goal (with 7B already bound to peg-1), so the
matcher considers the initial states of cach tied mateh.
Based on initial states, the matcher prefers the right
subtree and binds 7A to peg-3. Finaily, the matcher
considers the least abstract conditions, and prefers Case



From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

IS: (on-big ?A) (on-medium ?B) (on-small ?A)
GS: (on~big ?B) (on-medium ?B) (on-small ?C)
Case: 1

IS: (on-medium ?B) (on-big ?A) (on-small ?C)
GS: (on-small ?B) (on-big ?B) (on-medium ?B)
Case: 2

IS: (on-small ?B) (on-medium ?A) (on-big ?A)
GS: (on-medium ?B) (on-small ?C) (on-big ?B)
Case: 3

IS: (on-small ?A) (on-big ?A) (on-medium ?3)
GS: (on-small ?B) (on-medium ?B) (on-big ?B)
Case: 4

Figure 1: Traditional Analogical Index File

(on-big ?A)
(on-big ?B)

IS: (on-medium ?A)

IS: (on-medium ?B) 1
GS: (on-medium ?B)

GS: (on-medium ?B)

IS: (on-small ?B)
GS: (on-small ?2C)
ase: 3

IS: (on-small ?3)
GS: (on-small ?C)
Case: 1

IS: (on-small ?A)
GS: (on-small ?B)
case: 4

(on-small ?C)
(on-small ?B)

Figure 2: Hierarchical Analogical Index File

Intelligent Agents



3 over Case 4 based on goal-mapping, with the final
binding of ?C to peg-2.

QOur hierarchical matcher never fully examined cases
1 or 2. These cases did not match as many abstract
conditions as cases 3 and 4, so the planner did not con-
sider them further. Our hierarchical matcher consid-
ered matches for the (on-big 7B) goal only once, while
the conventional matcher had to match this goal for
each case. Finally, for a given case, our conventional
planner performed matching three times, each time be-
tween goals with only one condition; our conventional
matcher, in contrast, performed matching only once
with goals containing three conditions.

Conclusions and Future Work

We believe hierarchical planning and analogical plan-
ning can be combined beneficially. Hierarchical plan-
ning reduces the matching problem in case retrieval and
helps organize the case library. Hierarchical planning
offers a method of discriminating among plans which
cach offer partial solutions by preferring plans which
sulve abstract, goals to plans which solve concrete goals.
Analogical planning helps hierarchical planning by pro-
viding partial solutions for each abstraction level. Com-
pared to a non-hierarchical analogical planner, a hier-
archical analogical planner may more quickly recognize
that a retrieved plan in inapplicable to the new situa-
tion; if the planners must perform from-scratch search,
hierarchical planning can reduce the search space size.

We will implement our idecas using a modified ver-
sion of the SNLP/SPA planner (Hanks & Weld 1995;
McAllester & Rosenblitt 1991). We intend to compare
the cost of conventional plan retrieval to hierarchical
plan retrieval and compare the costs of analogical plan-
ning 10 (from-scratch) hierarchical planning.

Acknowledgements

This rescarch was supported in part by the National
Scienee Foundation, under grant GER-9355110.

References

Carbonell, J. 1986. Derivational analogy: A theory
of reconstructive problem solving and expertise aqui-
sition. Muachine Lenining: An Artificial Intelligence
Approach 2.

Hanks, S., and Weld, D. 1995. A domain-independent
algorithm for plan adaptation. Journal of Artificial
Intelligence Research 319 360.

Thrig, L., and Kambhampati, S. 1995. An explanation-
based approach to improve retrieval in case-based
planning. Current Trends in Al Planning: EWSP '95.

Knoblock, C. 1994. Automatically generating abstrac-
tions for planning. Artificial Intelligence 68:232-302.

McAllester, D., and Rosenblitt, D. 1991. Systematic
nonlinear planning. Proceedings AAAI-91 634-639.

130 Harris

Veloso, M., and Carbonell, J. 1990. Integrating anal-
ogy into a general problem-solving architecture. Intel-
ligent Systems.

Woods, S. 1991. An implementation and evaluation
of a hierarchical non-linear planncr. Master’s thesis,
University of Waterloo.



