
Problem Generation:
Evaluation of two domains in Operating Systems

Amruth N. Kumar
Ramapo College of New Jersey

505, Ramapo Valley R~)ad
Mahwah, NJ 07430-1680

amruth(~ramapo.edu

Abstract

Our work on courseware involves generating problems
to test a user’s learning. V~re propose to generate these
problems dynamically in order to present azl endless
supply of problems to the user. In order to faeilitate
the user’s learning, we waz~t to vary the "challenge"
of the dynamically generated problems. Our current
task is to identify a measure of "challenge" in problems
on a topic, so that wc can systematize and automate
variations in the challenge of dynamically generated
problems.
We propose to use a measure of "challenge" of problems
based on analysis of the knowledge/ability necessary
to solve problems in a given domain. By limiting such
knowledge/ability to the minimum necessary to solve
a problem, ~ attempt to avoid counting as evidence
of learning, any serendipitous solving of problems.
In this paper, we analyze two different problem do-
mains in Operating Systems in an attempt to derive
measures of "challenge" for problems in those domains:
storage placement, and proce~or scheduling. For these
domains, we identify taxonomies of problems based
on the minimum knowledge/ability required to solve
them. We tentatively generalize the taxonomies to de-
rive a measure of "challenge" for a class of scheduling
problems dealing with discrete quantities.

Introduction
Problem-solving is an integral part of learning in sol-
e.nee. Any intelligent tutoring system for science must
not only present problems for the learner to solve, but
also be able to solve problems on-line in order to provide
feedback to the learner.

Problems may be produced in a tutoring system by
either selecting them out of a c~mned repository or by
dynamically generating them. Dynamic generation ha.~
several ad~-antages over selecting from a camped re.pos-
itory:

¯ the supply of prol)lcnxs is infinite;

¯ it is less likely that a learner will sec the same prob-
lem twice, whirl1 is more conducive to increasing the
ronfi(lence of the learner in the tutoring system.

tCopyright (~)1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

When a repository of canned problems is provided, the
challenge of the problems in the repository may be
rated by a human being. When problems are generated
dynamically, this rating would have to be automated.
Hence, our interest in defining the notion of "challenge"
of problems, and quantifying it so that it can be auto-
matically measured and used.

In this paper, we consider two problem domains in
Operating Systems: storage placement and processor
scheduling. In each domain, we first catalog the knowl-
edge/skills necessary to solve problems. Then, we de-
rive a taxonomy of problems for the domain based on
the level of "challenge" of the problems. We tentatively
generalize the taxonomy to domains with discrete val-
ues and scheduling tasks: domains typical of Operating
Systems topics. Finally, we report on our implementa-
tion of problem generators for the two domains, which
are tuned to vary the challenge of generated problems
while appearing to be random azld unpredictable in na-
ture.

"Challenging" Problems

The "dmllenge" of a problem is its difficulty as per-
ceived by the learner. We define the "challenge" of
a problem as a measure of how little a learner may
know and still manage to correctly solve a problem.
We are allowing for not only the case where a learner
consciously solves a problem by applying the relevant
knowledge, but also the case where the learner "stum-
bles upon" the correct answer by either improperly ap-
plying the relevant knowledge, or applying some irrele-
vant knowledge.

In order to qumltify the amount of knowledge/ability
needed to solve a problem, we first list the "quantums"
of knowledge applicable to a domain. Here, x~ label
them a -4 d. These quazltums are re’hinged in order
of increasing complexity, where ea~’h quantum (e.g., c)
presupposes all earlier ones (a,b). We then chararterizc
e.a(.h problem in a domain in terms of the minimum
quantum level necessary to correctly solve it.

In problem solving scenarios, learners often bring to
hear default assumptions that significantly affect their
ability to solw: a problem. To completely ~ssess the
challenge of a problem, it is necessary to make these

178 Kumar

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



assumptions explicit, especially when they are not re-
lated to the problem domain but to other factors such
as common sense/cultural background of the learner.
One such assumption is that, a learner will scan the so-
lution space left to right, and top to bottom. We will
indicate how this assumption "affects our analysis of the
challenge of problems.

Storage Placement
The Domain: An incoming job must be placed in
memory. Memory will have jobs which arri~ed earlier,
as well as holes where an incoming job may be placed.
Storage placement deals with the task of selecting a hole
in which to place an incoming job. We consider three
algorithms: First fit (select the first accommodating
hole), Best fit (select the largest accommodating hole)
and Worst fit (select the smallest accommodating hole)
(Silberschatz and Galvin 1994).
The quantum units in this domain are:

¯ find holes (ability ’a’ to identi~, holes)

¯ find holes that fit (ability ’b’ to size holes)

¯ find the correct hole that fits (ability ’c’ to apply an
algorithm)

¯ find the correct hole that fits, even when it is distinct
from the correct hole according to a comI)eting algo-
rithm (ability ’d’ to distinguish between algorithms)

Following is a taxonomy of problems in the domain of
storage placement. We rate the "challenge" of a prob-
lem according to the level of ability required to solve it
(a/b/c/dl:

How many holes exist in memory?

¯ zero holes - required level: a, to identify that no holes
exist in memory.

¯ one hole exists in memory - Is it large enough to hold
an incoming job?

- yes - required leveh a. Learner does not have to
know that the hole fits. The learner can just drop
a job in the hole, and still get the benefit of the
doubt!

- no - required leveh b. Learner must know that
the hole does not fit in order not to schedule an
~u’living job in it!

¯ many holes exist in memory - How many holes are
large enough to accommodate an aniving job?

- zero/none - required level: b.
- one hole - Is it the first hole among all the holes?

* yes - required level: a. Once again, a lcarner can
get the benefit of the doubt by just finding the
first hole in memory, and dropping an arriving
job into it without assessing whether the hole is
large enough to fit the job.

, no - required level: b. A learner must know that
an arriving job does not fit in the first hole in
order not to schedule the job in it.

--- many holes are large enough to accommodate an
incoming job - Is the correct answer among these
holes:

¯ the first among all the holes? - required level: a.
¯ the first among the fitting holes, but not the first

among all the holes? - required level: b.
¯ neither the first among all the holes nor the first

among the fitting holes? - required level: c.
¯ neither the first among all the holes nor the first

among the fitting holes, nor even the correct hole
according to a competing algorithm? - required
level: d.

Our default assumption affects first fit placement al-
gorithm: a learner’s answer to a problem may be correct
according to first .fit placement even when the learner
may not have understood first fit algorithm.

Our objective is to promote the generation of prob-
lems which require at least the abilities a and b. For
first fit placement, a and b are the only required abil-
ities. Ability b distinguishes apart first fit placement
from the default behavior of a learner, which is to per-
form left-to-right, top-to-bottom scanning of the solu-
tion space. Abilities a, b and c are required for best
fit and worst fit algorithms. Ability c distinguishes
apart best and worst fit placements from first fit place-
ment. Ability d distinguishes apart best fit from worst
fit placement.

Processor Scheduling
The Domain: In a multiprogrammed machine, sev-
eral jobs may be waiting for the processor. Processor
scheduling is the task of selecting the next job for the
processor to run. We consider three algorithms: First-
in First-Out (select the first job), Shortest-Job-First
(select the shortest job) and Highest Response Ratio
Next (select the job with the best ratio of waiting time
to service time) (Silberschatz and Galvin 1994).
The quantum units in this domain are:

¯ find the outstanding jobs (ability a to identify waiting
jobs)

¯ find the correct job to be scheduled next (ability c to
apply an algorithm)

¯ find the correct job to be scheduled next, even when
it is distinct from the correct job according to a coin-
peting algorithm (ability d to distinguish between al-
gorithms)

Note that ability b is missing: the processor can tech-
nically pick any job in the queue. We do not consider
the issue of blocked processes, and job queue contains
only those jobs that have already arrived.

Following is a taxonomy of problems in the domain
of processor scheduling. We rate the "challenge" of a
problem according to the level of ability required to
solve it (a/c/d):

How many jobs await in the queue?

Intelligent Tutoring Systems 179



¯ zero jobs - required levcl: a, to identify that no job
is in the queue.

¯ one job -requircd level: a: to identify that one job is
in the queue.

¯ many jobs - Is the job that must be scheduled next:

- the first job in the queue - required leveh a. A
learller can get the benefit of the doubt by just
finding the first job in the queue, and scheduling
it next without any knowledge of the scheduling
algorithms.

- a job other than the first one in the queue - required
level: c. A learner must be able to apply the correct
sclmduling algorithm.

- neither the first job in the queue nor the correct
job according to a competing algorithm? - required
level: d.

Our default assumption affects First-In-First-Out
(FIFO) processor scheduling algorithm: a lem’ner’s ma-
swer to a problem may be correct according to FIFO
even when the learner may not have understood tile
algorithm.

Our ot)jective is to proinote the generation of prob-
lems whidt require at h:ast the abilities a and c. For
FIFO sctmduling, only ability a is required. Abilities
a and c are required for Shortest-Job-First (SJF) and
Highest Response Ratio Next (lIRN) algorithlns. Abil-
ity c distinguishes apart SJF and HRN from FIFO,
while ability d distinguishes apart SJF from HRN
scheduling.

Generalizing "Challenge"
We will now attempt to generalize the notion of "’chal-
lenge" from the above two case studies. (In the fiit.ure,
we plan to include the problem dollmin of page replace-
nlent for this generalization.) Our gencra/ization will
apply to problem domains with the following ehaa’ac-
teristics, which are shared by both the domains above:

¯ Tit(: task involved is scheduling.

¯ The wfluo-space of the domain is discrete, not (’on-
tinuous.

¯ The solution strat-
egy is gr(~,dy: i.e.: resources/partial steps m’e sctmd-
uh,d/committed as soon as possible,, rather than pre-
served/conserved. I,x search parlmx:e of Artificial hl-
tolligence, these l)roi)lems ]lave absolute rather than
z’elati~x~ solutions (Rich and Knight 1991).

We l)egin by distinguishing between answers and re-
sponses:

¯ all ,’mswer is a correct sohltion to a problem;

¯ a response is what a learner might consider to t)e (and
hence produce as) an answer.

All answers are responses, whereas all r{:spo/lses lleet’]

nell be altswers.

A preliminary generalization of our problem t~xon-
omy is a.s follows:

180 Kumar

I First Fit I Best Fit I Worst Fit I
[

Versi°n I v4 [v121v4[v121v4 ] v12 [

level e NA NA 16 72 55 ] 146

Table 1: Comparison of early mad late versions of a
Problem Generator for Storage Placement

How many responses does a problem have?

¯ zero - required level: b.

¯ one - required level: a. Tim solution is straightfor-
ward.

¯ many - Is the answer:

- the first possible response? - required level: a. This
discounts the default assumption that the learner
scans the solution space top-to-bottom, left-to-
right.

- not the first possible response - required level: c.
¯ nut even the mtswer for any COulpeting Mgorithm

- required leveh d.

Implementation

We implemented problem generators for storage place-
ment and processor scheduling. Our goals were to:

¯ make the generators randoin mad unpredictable. In
storage placenmnt, the generator uses randoIn num-
bers to decide between arrivals anti departures of
jobs, the size of an arriving job (4% to 20% of total
nlemory): and which job shouhl depart. In proces-
sor scheduling, the generator uses random nuinbers
to decide whether jobs arrive at a given time instant,
and if so, how many jobs, as well as the length of
each jell (1 to 10 units of time).

¯ tune the generator to generate challenging problems
at least 50~: of tim time. We used our nteasun,~ of
,’hallenge in two ways:

- We used it to measure the quality of the tlrobleInS
generated by the generator.

- We incorporated it in the forin of heuristics to tune
the generator, so that the (luMity of the gener-
ated problems improved with successive versions
,ff the generator: the problems were more evenly
,listribut~l over all the levels: a, b, ,’ and d.

Tal~le 1 indicates the improvement in the ch~flh:nge
of the generated problems front version 4 to version 12
of the generator |br storage placement (Kumar 1997a.
Kmnar 1997b). The figures wcrc obtained by running
the problem generator through 500 (.ombine,1 arrivals
and departures.

Similar figures for ln’Oc(’ssor s(’heduling are shown 
Table 2. The figures were obtained by running tile prol)-
lore generator for 500 units of time. V~re did not include
FIFO algorithm in the table because it cannot be tested



level c 9 23 17 42
level d 36 87 7 12
Jobs Scheduled 74 121 72 110

Table 2: Comparison of early and late versions of a
Problem Generator for Processor Scheduling

beyond level a. The last row indicates the number of
jobs that were scheduled in the 500 time units. This
number, which is a count of the problems generated
during each run, improved steadily from version 2 to
version 7 due to heuristics we used to tune the problem
generator. Level c in the table refers to problems that
cannot also be categorized as level d, i.e., challenging
problems for which, the answers from both SJF and
HRN are the santo.

Currently, we are experimentally validating our mea-
sure of challenge for problems in processor scheduling.
We are polling advanced Computer Science students
who have already taken the Operating Systems course
as well as non-Computer Science majors who are taking
the Computer Literacy course to try a set of problems,
and rank them by difficulty.

Our work can be incorporated into an Intelligent Tu-
toring System in the following ways:

¯ Metering: Our approach can be used to discretize
and quantify levels of difficulty in a problem domain.
Therefore, an ITS can use it to meter and compare
problems.

¯ Testing: Since the levels of challenge are arranged
on an increasing scale (a --* d).. an ITS can vary the
difficulty of generated problems along this scale in
response to the learner’s performance.

¯ Feedback: Since the levels of difficulty are based on
qualitative analysis of the problem domain, an ITS
can use the bases of these levels to hypothesize why
a learner is erring on a certain problem (i.e., extrap-
olate the current mental model of the student), and
generate a corrective course of action. E.g., if a stu-
dent makes a mistake at level c in processor schedul-
ing, the student does not understand the priority of
the algorithm used. On the other hand, if the stu-
dent makes mistakes at level a, the student does not
understand the concept of processor scheduling.

Discussion
We proposed a measure of "challenge" for problems in
a domain based on the knowledge/ability necessary to
sol~e them. This measure may be used to assess the
quality of dynamically generated problems, and auto-
mate the task of varying their level of challenge.

We examined two problem domains in Operating Sys-
tems and have included the results of incorporating our

measure of challenge in problem generators for these do-
mains. We have also tentatively generalized our charac-
terization of "challenge" to a class of scheduling prob-
lems which uses discrete value-space.
Future work includes:

¯ analyzing page replacement problem domain to fur-
ther generalize the problem taxonomy;

¯ using constraints to implement the generalized tax-
onomy of problems.

References

Kumar, A.N. 1997a. Generating challenging problems
for first-fit storage placement algorithm. In Proceedings
of the Florida Artificial Intelligence Research Sympo-
sium (FLAIRS ’97) (Special Track on Intelligent 
toring Systems), 57-61. Daytona Bear~, FL.

Kumar, A.N. 1997b. Generating Challenging Prob-
lems in Intelligent Tutoring Systems: A Case Study
of Storage Placement Algorithms. In Proceedings of
the Eighth International PEG Conference, 128-134. So-
zopol, Bulgaria.

Rich, E. and Knight K., 1991. Artificial Intelligence.
New York,:McGraw Hill.

Silberschatz, A. and Galvin, P.B., 1994. Operating Sys-
tem Concepts. Reading, Mass:Addison Wesley.

Intelligent Tutoring Systems 181


