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Abstract

We address the problem of generalizing temporal data
concerning durations extracted from relational data-
bases. Our approach is based on a domain generMiza-
tion graph that defines a partial order specifying the
generalization relations for a duration attribute. This
domain generalization graph is reusable (i.e., can be
used to generalize any duration attribute), adaptable
{i.e., can be extended or restricted as appropriate for
particular applications), and transportable (i.e., can
be used with any database containing a duration at-
tribute).

Introduction
In current research, 1 we are investigating methods for
temporal generalization, i.e., generalizing a data set in-
cluding at least one temporal attribute by replacing the
given temporal values with more general temporal val-
ues. Temporal generalization is useful for data mining
from databases that include temporal attributes. In
our research on data mining from relational databases,
we have discovered that the time domain is a com-
mon one for attributes, but that generalization of tem-
poral values requires close attention to the meaning
of these values. Although recent advances have been
made in the management of temporal data in relational
databases (11), less research has focused on the devel-
opment of techniques for generalizing and presenting
temporal data (8).

A temporal attribute may be used to specify the
beginning of an event (such as a birth date to mark
the start of a new life}, the end of an event (such as
the check out time from a hotel), or the duration of
an event, such as the elapsed time of a race. We re-
fer to any attribute whose domain contains date and
time values, such as birth dates and check out times,
as a calendar attribute, and one containing durations
as a duration attribute. The values for either calen-
dar and duration attributes can be generalized in dif-
ferent ways and to different levels of granularity (1; 4;
10). For example, given a set of running times for
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a marathon race (a duration attribute}, these values
could be generalized in one way to give values to the
nearest number of quarter hours for the race, or in a
second way to one of three categories (fast, medium,
and slow). Choosing a different level of granularity for
the first alternative could give values generalized to the
nearest number of hours.

In this paper, we propose a method for generalizing a
duration attribute using domain generalization graphs;
in a companion paper (14), we address the problem
of generalizing calendar attributes. We define a do-
main generalization graph (6) for duration attributes
by explicitly identifying the domains appropriate for
the relevant levels of temporal granularity and the map-
pings between the values in these domains. Generaliza-
tion is performed by transforming values in one domain
to another, according to directed arcs in the domain
generalization graph. Our goal is to specify a domain
generalization graph for the duration attribute that is
reusable (i.e., can be used to generalize any duration at-
tribute), adaptable (i.e., can be extended or restricted
as appropriate for particular applications), and trans-
portable (i.e., can be used with any database containing
a duration attribute). Given the duration domain gen-
eralization graph and a duration attribute, our method
creates a high-level map of the distinct, nontrivially dif-
ferent possible summaries. Each summary is based on a
different way of generalizing or a different level of time
granularity. This map can be used as the basis for fur-
ther automatic data mining or presented to the user,
who then can choose summaries t.o examine in more
detail.

The remainder of this paper is organized as follows.
In the following section, we discuss related work, giv-
ing an overview of domain generalization graphs and
some temporal theories. In Generalizing Duration
Values, we explain how to construct a domain general-
ization graph for a duration attribute. In Adaptation
of the Duration DGG, we outline a semi-automated
method for determining what portion of the domain
generalization graph is not valuable to the user. This
method can be run in a completely automated fashion
or it can receive additional input from the user at two
key stages. In A Language For Specifying Dura-
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tion DGGs, we present a language for specifying the
elemel,ts of a domain generalization graph for a dura-
tion attribute. In An Extended Example, we provide
a complete example showing how the domain general-
ization graph can be configured in a semi-automatic
fashion for a particular generalization application to
constrain which results from a discover), task are shown
to a user.

Related Work

Generalization for Knowledge Discovery
A Concept Hierarchy (CH) associated with an attribute
in a databa.se is represented as a tree, where leaf nodes
correspond to the actual data vahms in the database,
intermediate nodes correspond to more general repre-
set,t.ations of the data values, and the root node corre-
sponds to the most general representation of the data
values. Knowledge about higher-level concepts can be
discovered through a general-to-specific search begin-
t,iug at the leaf nodes using a process called attribute-
oriented 9ene~alization (2; 7).

If’ several CHs are associated with the same attribute,
meaning knowledge about the attribute can be ex-
pressed in different ways, common attribute-oriented
generalization methods require the user to select one
Cll. ignoring the relative merits of other possible gen-
,,ralizations which could produce interesting results. ’lb
facilitate other possible g¢,neralizations, domain gener-
alization graphs (D(;(,s) have recently been proposed
(6; 9; 13).

A DG(-; is d~qined as follows (6). Given a set 
{sl .s2 ..... s,,} (the domain of an attribute), ,5’ can be
pa,’titioned in many different ways, for example D1 =

n., = .... ,s,,}}, et .
Let 1) be the set of partitions of set .9. and _ be a
binary relation (called a generalization l~elation) defined
on D, such that. Di -R Dj if for ever)’ di E Di there
exists dj E Dj such that di C_ dj. The generalization
relation _ is a partial order relation and (D, __.) defines 
partial order set from which we can construct a domain
gr’nclulization 91x~ph ( D, E) as follows. First, the nodes
of the graph are elements of D. And second, there is a
directed arc from Di to Dj (denoted by E(Di, Dj)) iff
D, ~ l)j. l)i ~ Dj, and there is no Dk E D such that
D, ~_ l)k and Dk _ Dj. The partial order set (D, ~} is
transitiw:ly closed and is a lattice.

Temporal Representation and Reasoning

Most work related to time in Art ilicial h,telligence (AI)
has concentrated on defining ~ time domain and facili-
tal.ing reasoning about events. Time can be represented
usil,g tinlepoints, time intervals, or a combination of the
two. and it can be linear, non-linear or branching (8).
For application to KI)D, where o,r time domain is
based on database timcstamps we use timepoints as
a basis for defining our DGG and il,tervals (the time-
points are timestantps in database technology). This
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means that for our purposes, time is defined as linear,
discrete, and bounded (5).

Cukierman and Delgrande (3) construct a calendar
structure and calendar expressions which forms the ba-
sis for our definition of a calendar DGG (14). They
also define four types of decomposition for reasoning
about schedulable, repeated activities: aligned and
non-aligned; constant and non-constant. Aligned de-
composition means that the union of the submeinbers
completely covers the original member (i.e., days from
months). Non-aligned decomposition means that the
union of the submembers does not completely cover the
member leaving gaps at the beginning and/or end (i.e.,
weeks from months). Constant decomposition means
that every time the member is broken into submembers,
a constant ratio is maintained (i.e., days from weeks).
A non-constant dccomposition has a variable number of
submembers (i.e., days from months).

For generalization we define compositions, which are
the inverses of C.ukierman and Delgrande’s decomposi-
tions. Four types of compositions can be defined analo-
gously as aligned composition, non-aligned composdion,
constant composition, and non-constant composition.

Generalizing Duration Values

We now describe our proposed duration DGG for du-
ration attributes, a part of which is shown in Figure 1.
The underlying meaning for durations is an anmunt of
time. In the duration DGG, events are grouped to-
gether if they have the same duration (or are within
some range of durations), regardless of when they hap-
pen. In Figure 1, the node labelled one second (SPE-
CIFIC) represents the most specific domain considered;
i.e., the finest granularity of our duration domain is one
second. Higher-level nodes represent generalizations of
this domain. The arcs connecting the nodes represent
generalization relations.

This is the typical degree of accuracy for timestamps
in current commercial database products (12). Dura-
tions are commonly stored in two formats. Durations
can be shown as YYYYMMDDhhmmss, or they can be
regarded as a fixed number of seconds.

In many cases, durations are stored in a database by
storing the start, and end time for an event. In some
cases this data is valuable. Months are non constant
decompositions. To properly calculate that an event
starting on January 93, 1997 and ending February 14,
1997 spans two months, we nmst know the start date.
In the example discussed later, we assume the dura-
tion has been computed and stored as a new attribute
representing the difference l)etween the two.

We have derived a basic duration DGG as a starting
point for generaiizing duration attributes. There are
two obvious ways to define the the range of values to
generalize durations to. A constant compositiot, can be
specified by an interval width, w. The intervals will
the,, be the set: {[kw.(k+ 1)w): k E N}. The second
possibility is an nonconstant composition, specified in



detail by listing endpoints which specify disjoint inter-
vals.

We have defined only one nonconstant composition in
our duration DGG. While they may facilitate valuable
generalizations, they are also data and task specific.
We leave it to the user to specify more nonconsta~t
compositions if their data is appropriate.

Adaptation of the Duration DGG

To guide the user to the most interesting information as
quickly as possible, we prune the duration DGG. The
user can manually prune nodes both before and after
the automatic pruning. As well, based on a superfi-
cial examination of the data, the duration DGG can
be pruned to remove nodes and arcs that are not likely
to be of value to the user. The resulting DGG can be
shown to the user as a guide to the possible generaliza-
tions of interest.

As mentioned in Generalization for Knowledge
Discovery, any DGG includes at least two nodes. To
add a node to an existing DGG, one must identify at
least one parent node and at least one child node in the
existing DGG and define the edges that connect the
parent(s) to the new node and connect the new node
to the child(ten). This may require the creation of new
tables or functions.

We propose generating the duration DGG based on
the data in the following manner. A node in the DGG
represents a partition of the set of durations into blocks
of time (disjoint subsets). For a duration DGG 
present useful information to the user, the number of
blocks in a particular partition in a node must be fairly
small and a majority of the blocks must be populated. If
there are too many blocks the user will bc overwhelmed
by the volume of data. Alternatively. if therc are too
few blocks, or if few of them are populated, the valuable
information may be lost by over-generalizing. Given a
chosen set of equally sized blocks, the block size, the
mmaber of blocks, and the minimum duration present
in the data are factors which affect our choice of blocks.

The duration DGG is pruned in four stcps.
1. Reachability Pruning: Once the user has speci-
lied how the data relates to a starting node in the DGG
(this node becomes the "’SPECIFIC" node), we prune
all nodes which can no longer be reached from that
node.
2. Preliminary Manual Pruning: The user many
prune any of the remaining interior nodes. They are
not allowed to prune the node linked with the original
data and the "ANY" node.
3. Data Range Pruning: Each node that does
not distinguish between any of the duration values in
the tuples and all nodes derived from it excepting the
"ANY" node are pruned from the graph. For edges
that represent a monotonic function, we can inexpen-
sively calculate whether the node will distinguish be-
tween duration values in the tuples. Tuples representing
the mininmm and maximum are generalized along all
data range prunable edges in the DGG (those marked

Figure 1: Duration DGG

with a (lot in Figure 1). If the minimum and rnaximum
are generalized to a single value, all duration values in
the data would be generalized to that value.
4. Pregenerallzation Manual Pruning: The user
is given the opportunity to perform manual pruning be-
fore the tuples are generalized.

A Language For Specifying Duration

DGGs

For DGGs to be easily extended, the structures which
store the information must be easily editable by the
user. To achieve this end wc havc chosen to use plain
text files to store the DGG structure. The grammar is
in Figure 2.

To specify a DGG in a text file, we list the edges
comprising the DGG. Specifying the edges implies the
nodes. For each edge in the DGG, we specify three
pieces of information: a unique label for the edge in the
DGG, the type of mapping that the edge represents,
and the data needed to perform the mapping itself. The
edges are uniquely identified by their parent/child pair
resulting in a name such as "minutes:hours". The first
line describing an edge in a DGG contains this infor-

Knowledge Discovery in Databases 195



<DGG> ~ <Edge> [<Edge>}

<Edge> --~ <ParentChild> <DGGComponent>
{ < DGGComponent> }

<ParentChild> --4 <string> : <string>

<DGGComponent> --~ <width> I <interval>

<interval> --~ <number>, <number> {<interval>}

<width> -r <number>

<string> --+ [0-9a-zA-Z] {[0-9a-zA-Z]}

<number> -~ [0-9] {[0-9]}

Figure 2: I)(;(; (;rammar

llla[ ion.

The I)(.;(.;Conlponent ill Figure 2 can be either 
width, or a list of intervals.

minutes:hours
60

Tabh, 1: "’minu~es:hours’" I,ookup Table

"1"o calculate hours from minutes, the entries in Ta-
ble I are used. Table 1 defines the generalization rep-
resented by the nodes shown in Figurc 3. The nodes
repn,sent she data at some level of generalization while
the edges represent the process. When defining a DGG,
it is the process we define as lhese edges, and thc data
follows as ;L consequence. That is, we dcfinc what new
domain values an. for dw l~rogram, but it is up to the
program Io create inst, am’e~ of them if necessary for
given input data.

ho ’/J urs
t .~nule~:hvurl

[ mi ..... [

/-v.,,
Figure 3: DGG Nodes with Edge

An Extended Example

In this section, we describe an application of knowledge
discow,ry using duration attribute. For conciseness, we
enq.)hasize the summary of information with regard to 
single al, tribute rat her than coml.,iJmt ions of generalized
at, tributes (for which see (6)).

As a source of dal a, the [ Inix "last’program was used.
Some sample output is shown in Figure 4. This system
utility shows the Iogin times and the duration that a

198 Randall

user was logged in for in art "hours:nfimJtes’" format.
This means that the duration values were available in
YYYYMMDDhhmm format, so we do not have second-
resolution information to work with. Also the iogout
time is only given relative to the logiu time. To calcu-
late the YYYYMMDD information we have to add the
duration to the login time given. Tire main expectation
is that we will see a distribution of many short Iogins
and fewer longer logins.

username date in - ou¢ duration

user328
user602
user645
, . .

user723
., .

user328

Sun Jan 18 00:04 - 00:04
Sun Jan 18 00:48 - 00:48
Sun Jan 18 01:21 - 01:42

Sun Jan 18 21:40 - 10:39

SaC Jan 24 23:55 - 23:59

(00:00)
(00:00)
(00:20)

(132:58)

(00:03)

Figure 4: Sample ’last’ out put

"l’he user identifies the starting node. "’[ minute".
To adapt the duration DGG we imme(li~ttely perform
teachability pruning. Because t.here is no second infor-
mation, we can immediately prune everything below "’1
minute". At this point the user is given an opportunity
to manually prune nodes out of the duration I)(;G.

Next we perform data range pruning. The tuples
rt)nt aining the mininmm and maximum duration values
arc, extracted from the data. The minimum is 0 ndmlt, es
and the maxinmnt is 7,978 minutes (5 clays, 12 hours.
attd 58 minutes), respectively. These arc ge.neralized
through the duration DGG. We find that the two tuples
generalize 1:.o a single one at the month and manmonth
nodes (see Figure 1). We prune these nodes and all
their children (except tire "ANY" node).

Duration (Imurs) ( ’o m~tS-]
o- 1 ~,5(}2 /

/
I - 2 -127 |

/
’2 - 3 93
3 - ,t 57
4 - 5 18
5-6

5t - 52 i
93 - 9.t I
132- L33 I ]

Table 2: Login Dural ion a,t(I (’.ount Table

After tlae user is finished any further manual pruning.
we generalize the data. The adapted duration D(;G and
can be presented to the user a.s a guide to all relevant
generalizations. In Table 2 we present a table showing
the data generalized to the "1 hem"" level. This is a
point, where there are few enough t.uph’s that they can



be conveniently viewed by the user. Additionally, build-
ing on previous work in (14), we have Table 3 showing
login times and duration generalized by the calendar
DGG (14) to weekday/weekend and by duration to the
"1 hour" level. This table also shows weighted % share,
which is a scaled percentage so that we can compare
the counts for 5 days with counts that are only for 2
days. We can see from the percentages, that the distri-
bution of login durations is independent from the login
occurring on a weekday or weekend.

weekday/weekend hours count % share
weekday 0- 1 6891 92.21
weekday 1 - 2 328 4.39
weekday 2 - 3 142 1.90
weekday 3 - 4 37 0.50
weekday 4 - 5 15 0.20
weekday 5 - 6 8 O. 11
weekday 6- 7 12 0.16
weekday 7 - 8 6 0.08

weekday 93 - 94 I 0.01
weekend 0- I 1611 89.50
weekend 1 - 2 99 5.50
weekend 2 - 3 51 2.83
weekend 3 - 4 20 1.11
weekend 4 - 5 3 0.17
weekeud 6 - 7 6 0.33
weekend 7 - 8 2 0.11

weekend 132- 133 1 0.06

Table 3: Login Duration Comparison Between Week-
ends and Weekdays

Conclusion
We have presented a formal specification for the compo-
nents of a domain generalization graph associated with
a duration attribute. Four different generalization types
were discussed and examples given of their implementa-
tion. The duration DGG is extensible, allowing the user
to easily add new edges and nodes to the DGG when
knowledge about a duration attribute can be expressed
in different ways. The DGG can be transported to other
databases. Examples of the generalizations were given.

Future research involves combining interestingness
measures with the summaries presented to the user.

References
[l] C.. Bettini, X. S. Wang, and S. Jajodia. A Gen-

eral Framework and Reasoning Models for Time
Granularity. Proceedings of the Third Interna-
tional Workshop on Temporal Representation and
Reasoning (TIME-96), pages 104-111, Key West,
Florida, May 1996.

[2] C.L. Carter and H.J. Hamilton. Efficient attribute-
oriented algorithms for knowledge discovery from
large databases. IEEE Transactions on Knowledge
and Data Engineering. To appear.

[3] D. Cukierman and J. Delgrande. A language to
express time intervals and repetition. Proceedings
of the Second International Workshop on "Temporal
Representation and Reasoning (TIME-95). pages
41-48, Melbourne, Florida, April 1995.

[4] J. Euzenat. An algebraic approach to granular-
ity in time representation. Proceedings of the Sec-
ond International Workshop on Temporal Repre-
sentation and Reasoning (TIME-95), pages 147-
154, Melbourne, Florida, April 1995.

[5] J. Gamper. A temporal reasoning and abstrac-
tion framework for model-based diagnosis systems.
PhD thesis, RWTH Aachen, 1996.

[6] I-I.J. Hamilton, R.J. Hilderman, and N. Cercone.
Attribute-oriented induction using domain gener-
alization graphs. In Proceedings of the Eighth IEEE
bztcrnational Conference on Tools with Artificial
Intelligence (ICTAI’96), pages 246-253, Toulouse,
France, November 1996.

[7] J. Han, Y. Cai, and N. Cercone. Data-driven dis-
covery of quantitative rules in relational databases.
IEEE Transactions on Knowledge and Data Engi-
neering, 5(1):29-40. February 1993.

[8] P. J. Hayes. A Catalog of Temporal Theories.
Tech report UIUC-BI-AI-96-01, Beckman Institute
and Departments of Philosophy and Computer
Science, University of Illinois. 1995. Available at
http://www.coginst.uwf.edu/-phayes/
TimeCatalogl.ps and TimeCatalog2.ps

[9] R.J. Hilderman, H.J. Hamilton, R.J. Kowalchuk,
and N. Cercone. Parallel knowledge discovery using
domain generalization graphs. In J. Komorowski
and J. Zytkow, editors, Proceedings of the First
European Conference on the Principles of Data
Mining and Knowledge Discovery (PKDD’96),
pages 23-35, Trondheim, Norway, June 1997.

[10] J. R. Hobbs. Granularity. International Joint Con-
ference on Artificial Intelligence (IJCAI’85), pages
432-435, Los Angeles, California, 1985.

[11] N.A. Lorentzos and Y.G. Mitsopoulos. SQL ex-
tension for interval data. IEEE Transactions on
Knowledge and Data Engineering, 9(3):480-499,
May/June 1997.

[12] Oracle Corporation. Programmer’s Guide to the
Oracle Call Interface, Release 7.3. 1996.

[13] W. Pang, R.J. I-Iilderman, H.J. Hamilton, and S.D.
Goodwin. Data mining with concept generalization
graphs. In Proceedings of the Ninth Annual Florida
A1 Research Symposium, pages 390-394, Key West,
Florida, May 1996.

[14] D.J. Randall, H.J. Hamilton, and R.J. Hilderman
Generalization for Calendar Attributes [:sing Do-
main Generalization Graphs Fifth International
Workshop on Temporal Representation and Rea-
soning (TIME’98), Sanibel Island, FL, May. 1998.

Knowledge Discovery in Databases 197


