
A Framework For Knowledge Reuse

John Debenham

School of Computing Sciences
University of Technology, Sydney,

PO Box 123 Broadway, NSW 2007, Australia
debenham@socs.uts.edu.au

Abstract
Knowledge "objects’ are proposed as a modelling
framework which facilitates the reuse of knowledge.
Knowledge objects are operators which may be used to
construct the ’items’ in the conceptual model. Items are a
single framework for describing the data, information and
knowledge things in an application. The conceptual model
is constructed by applying object operators to hasic ’data
items’. Items are expressed in terms of their particular
’components’. The knowledge embedded within a
knowledge item can not he rcadily applied in the context of
diffcrcnt components. Items do not facilitate reuse.
Objects are not expressed in terms of particular
components and do facilitate reuse.

Introduction
Conceptual modelling is the second step in a complete,
four-step design methodology for knowledge-based
systems. The conceptual model is "unified" in the sense
that no distinction is made between the ’knowledge
component’ and ’database component’. In this conceptual
model the ’knowledge’, the "information’ and the ’data’ are
represented in the same way. The conceptual model is
expressed in terms of "items" and "objects" which are
described in the following sections. Both items and
objects contain two classes of constraints; thus the
conceptual model employs constraints in a uniform way
for both ’knowledge’, ’information’ and ’data’. The work
described here has a rigorous, formal theoretical basis
expressed in terms of the Z-calculus [!] [2]; the work may
also presented informally in terms of schema. Schema are
used to construct a conceptual model in practice.

Items are expressed in terms of their particular
"components’. The knowledge embedded within a
knowledge item can not be readily applied in the context of
different components. Items do not facilitate reuse.
Objects are not expressed in terms of particular
components and do facilitate reuse. Objects are a context
independent, well defined framework that can be used to
describe either simple rules or complex rule bases.

A first generation methodology, developed in a
collaborative research project between the University of
Technology, Sydney and the CSIRO Division of

Copyright O 1998. Amedcan Association for ArUfldal Intelligence (www.aaai.org}. All dghts reserved.

Information Technology; that methodology did not address
reuse effectively. That methodology was supported by a
Computer Assisted .Knowledge Engineering tool, or
CAKE tool. An experimental version of this tool was
trialed in a commercial environment. A second generation
methodology takes a unified approach to design. It
generates systems that are inherently easy to maintain, and
employs knowledge constraints [8] to further protect the
system against the introduction of update anomalies. The
second generation methodology addresses knowledge reuse
by representing knowledge as object operators.

The terms ’data’, ’information’ and ’knowledge" are used
here in a rather idiosyncratic sense. The data in an
application are those things which are taken as the
fundamental, indivisible things in that application; data
things can be represented as simple constants or variables.
The information is those things which are "implicit"
associations between data things. An implicit association
is one that has no succinct, computable representation.
Information things can be represented as tuples or
relations. The knowledge is those things which are
"explicit" associations between information things or data
things. An explicit association is one that has a succinct,
computable representation. Knowledge things can be
represented either as programs in an imperative language or
as rules in a declarative language.

Conceptual Modelling
If a conceptual model represents only the individual data,
information and knowledge things and the relationships
between those things then that model is called hierarchic’.
An item is a representation in a hierarchic conceptual
model of a data. information or knowledge thing. A
hierarchic conceptual model is ’hierarchic’ in the sense that
information items are "built out of" data items, and that
knowledge items are "built out of data and information
items". In a hierarchic model the data items which are
used to build an information item are called the
components of that information item. Likewise the data
or information items which are used to build a knowledge
item are called the components of that knowledge item [9].

A knowledge-based systems design methodology should
address reuse [10]. A design methodology will specify the
form of its conceptual model. The particular form of the

Knowledge Representation 199

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

conceptual model used by the methodology will influence
both the cost of representing knowledge, and the cost of
subsequently reusing that knowledge. A "unified
conceptual model" is described which facilitates knowledge
reuse.

The unified conceptual model consists of:

¯ a conceptual view, and
¯ a coupling map.

The conceptual view is a collection of items each of which
represents a data, information or knowledge thing. The
coupling nmp is a vertex labelled graph. For each item in
the conceptual view there is a vertex in the coupling map
labelled with that item’s name. A coupling relationship
links two items in the conceptual model if modification to
one item will, in general, require that the other item
should at least be checked for correctness if the integrity of
the conceptual model is to be preserved. The coupling
relationships form a chaining structure: a modification
leads to checking which may in turn lead to further
modifications and hence to further checking and so on. If a
coupling relationship exists between two items then that
coupling relationship is represented in the coupling map as
an arc which joins the corresponding two vertices. The
coupling map is used to support maintenance.

In §2.1 the unified representation for items is described.
Items, together with the notion of item normalisation
described below, fail to provide an adequate basis for the
simplification of the coupling map. Items are built up
from components; the component structure of items means
that the expression of a knowledge item will be
inextricably involved with its components. As an item’s
components are an integral part of that item, items do not
facilitate knowledge reuse. To overcome this inadequacy
"objects" are introduced in §2.2. Objects are item building
operators.

Items and objects are introduced now in general terms.
Item names are written in italics. Object names are
written in bold italics. Suppose that the conceptual view
already contains the item "part" which represents spare part
things, and the item "’cost-price" which represents cost
price things: then the information thing "spare parts have a
cost price" can be represented by "part/cost-price" which
may be built by applying the "costs" object to part and
cost-price:

parr/cost-price = costs(part, cost-price)

Suppose that the conceptual view already contains the item
"’part~sale-price" which represents the association between
spare parts and their corresponding selling price, and the
item "mark-up" which represents the data thing a universal
mark-up factor; then the knowledge thing "spare parts are
marked up by a universal mark up factor" can be
represented by [part~sale-price. part~cost-price, mark-up]
which may be built by applying the "mark.up-rule"

object to the items "part/sale-price", "part~cost-price" and
"mark-up":

[part/sale-price, pargcost-price, nu~rk-up] =
mark-up.rule(part~sale -price,

part/cost.price, mark-up)

Items and objects are described formally in §2.1 and §2.2.
The conceptual view consists of items. A fundamental

set of data items in the conceptual view are called the
"basis". The remaining items in the conceptual view are
built by applying object operators to other items in the
conceptual view.

Items
Items are a formalism for describing the things in an
application. They have three principal properties: items
have a unified format in that they may represent data,
information or knowledge things [2]; items incorporate
two powerful classes of constraints, and a single rule of
"normalisation" can be specified for items. The key to
this unified representation is the way in which the
"meaning" of an item, called its semantics, is specified.

Items have a name which by convention is written in
italics. The semantics of an item is a function which
recognises the members of the "value set" of that item.
The value set of an item will change in time x, but the
item’s semantics should remain constant. The value set of
an information item at a certain time z is the set of tuples
which are associated with a relational implementation of
that item at that time; for example, the value set of the
item named part/cost-price could be the set of tuples in the
"part/cost-price" relation at time x. Knowledge items have
value sets too. Consider the rule "the sale price of parts is
the cost price marked up by a universal mark-up factor";
suppose that this rule is represented by the item named
[part/sale-price, part~cost-price, mark-up], then this item
could have the value set of quintuples that satisfy this rule.
This idea of defining the semantics of items as recognising
functions for the members of their value set extends to
complex, recursive knowledge items too [21. Items thus
provide a unified framework for describing all of the things
in the conceptual model. An operation on items is defined
in the following section in terms of the k-calculus
representation.

Formally, given a unique name A. an n-tuple
n

(ml, m2 ran), M = E mi’ if:

i=l

¯ SA is an M-argument expression of the form:

~,y~ , 1 ,,n .i S i,,1. ,, I ~ ̂ ~
.̄.Jml,..Jmn t Al%VI ..- uml

j

SAn(Y~ Ynn)^ J(Yl ylm, Ynn)]"

200 Debenham

where [AI An} is an ordered set of not necessarily
distinct items, each item in this set is called a
component of item A:

VA is an M-argument expression of the form:

~,,I , I ,,n .r V t.l yll) ^
.Tl...Yml...Ymn t AI~,jI

n n K(y~ ,vl vn ~1.VA(Y1 Ymo) ^ ,.. ~ml
~mn,,

where {AI An} are the components of item A, and

CA is an expression of the form:

CA! ^ CA2 ̂ ...^ CAn ̂ (L)A
where L is a logical combination of:

¯ Card lies in some numerical range;
¯ Uni(Ai) for some i, 1 _< i _< n, and
¯ Can(Ai, X) for some i, 1 _<i_< n, where X is

non-empty subset of {A1 An} - {Ai};

subscripted with the name of the item A, and "Uni(a)"
a universal constraint which means that "all
members of the value set of item a must be in this
association", "Can(b, A)" is candidate constraint
which means that "the value set of the set of items
A functionally determines the value set of item b",
and "’Card" means "the number of things in the
value set". The subscripts indicate the item’s
components to which that set constraint applies.

name - item name
name l [name2 item components

x { ~f dummy variables

meaning{ of item item semantics

constraints on values value constraints
set constraints set constraints

Figure 1 i-schema format

association could also be subject to the "set constraints"
that every part must be in this association, and that each
part is associated with a unique cost-price. This
association could be represented by the information item
named part/cost-price; the ~.-calculus form for this item is:

part/cost-price{ ~.xy.[Spart(X) ^

Scost_price(Y) costs(x, y)].,

~,xy°[Vpart(X) ̂ Vcost_price(Y)
((x < 1999) --} (y < 300))].,

(Uni(part) Can(cost-price, {part }))part/cost.price]

The ~,-calculus form for items is not intended for
practical use. In practice items are presented as i-schema.
The i-schema format is shown in Figure 1. The i-schema
for the item part~cost-price is shown in Figure 2. Rules,
or knowledge, can also be defined as items. The i-schema
for the knowledge item [part~sale-price, part/cost-price,
mark-up] is also shown in Figure 2; this i-schema has
four set constraints.

Objects

then the named triple A[SA, VA, CA] is an n-adic item
with item name A, SA is called the semantics of A, VA is
called the value constraints of A and CA is called the set
constraints of A.

For example, an application may contain an association
whereby each part is associated with a cost-price. This
association could be subject to the "value constraint" that
parts whose part-number is less that 1,999 will be
associated with a cost price of no more than $300. This

Items and objects may be used in such a way as to
facilitate knowledge reuse. Objects are item building
operators. They have four principal properties: objects
have a unified format no matter whether they represent
data, information or knowledge operators; objects
incorporate two powerful classes of constraints; objects
enable items to be built in such a way as to reveal their
inherent structure, and a single rule of ’normalisation’ can
be specified for objects. Objects may either be represented

[part/co ~t-price [
pan cost-price
x y

costs~xq)
x<1999 --, ~<_300

V
............. O

Figure 2 i-schemas

[part/sa~ :-price, part/cost-price, mark-up]
part/sale-p ’dce paiCcost-e,ice " rk-up

~X,W~ (x,y) z

(w = z × y)
"~W>~

v { v
.. 0

o I
{ o {

Knowledge Representation 201

llume

(tuplel)/typel] (tuple2)/type2

meanin~ of obiect
constraints on variables

set constraints

object name

tuple type pairs

object semantics
value constraints

set constraints

costs]

~X)/xl [~}’?/xl
’x’ costs ’}"

x<1999 -* },<_300

................. 0

Fi[~ure 3 o-schema format and the obiect ’costs’

mark-up-rule

Ix,w)/I2] ~x,},?/12 (z?/I)l
W=Z×~/

"~’ W>]/

V ! V I

...1 0

0 i

=========================== o]
Figure 4 o-schema for object ’mark.up-rule’

inlbrmally as "’o-schema" or fi~rmally as k-calculus
expressions. Object names are written in bold italic script.

An n-adic object is an operator which maps n given
items into another item for some value of n. The
specification of each object will presume that the set of
items to which that object may be applied are of a specific
"’type". The t),pe of an m-adic item is determined both by
whether it is a data item, an information item or a
knowledge item and by the value of m; these types are
denoted respectively by Dm, I m and Km. Unspecified, or
free, type which is denoted by Xm is also permitted. The
definition of an object is similar to that of an item. An
object consists of: an object name, argument types, object
semantics, object value constraints, and object set
constraints. The object name is written in bold italics.
The argument ~.’pes are a set of types of items to which
that object operator may be applied. The object semantics
is an expression which recognises the members of the
value set of any item generated by the object. The object
value constraints is an expression which must be satisfied
by all members of the value set of any item generated by
the object. The object set constraints are constraints on
the structure of the value set of any item generated by the
object.

Objects may be defined formally as k-calculus
expressions in a similar way to the formal, k-calculus
definition of items. The formal definition of objects will
not be described here. In practice objects are presented as
o-schema. The o-schema format for objects is shown in
Figure 3. If two objects have the property that the
semantics of one logically implies the semantics of the
other then the first object is a sub-object of the second. If
two objects have the property that they are each sub-
objects of each other then those two objects are said to be
equivalent.

For example, the o-schema for the costs object is
shown in Figure 3. The o-schema for the costs object
contains two set constraints. The ’V’ symbol has the
obvious extension of meaning to its use for items;
likewise for the horizontal line and the ’o’ symbol. The
o-schema for the mark.up-rule knowledge object is
shown in Figure 4. Data objects provide a representation
of sub-typing. For example, the cost-price object
shown as a box with sloping sides in Figure 5 may be
applied to the price item to generate the cost-price item
which is a sub-type of price. The n-adic operator comp
with trivial "constant ’true’" semantics is called the
compound operator; it can be used to generate compound
items from a set of n items.

Objects are used to construct the items in the conceptual
view. A conceptual view consists of:

¯ a basis, which is a fundamental set of data items on
which the conceptual model is founded;

¯ an object libra,’, which is a set of object operators
which are used to construct the items in the conceptual
view with the exception of the items in the basis, and

¯ a conceptual diagram, which shows how the objects in
the object library are used to construct the items in the
conceptual view.

A simple conceptual diagram is shown in Figure 5.

Objects facilitate knowledge reuse. For example the
mark-up-rule knowledge object described above may be
applied to any three items of type (I 2,12.D1) to
generate a knowledge item. Any particular knowledge
item generated in this way will contain the same basic
wisdom in the mark-up-rule knowledge object. In 11] a
join operator is defined. This operator enables knowledge
objects to be combined so that they may represent
combinations of complex rules. In theory, at least, an
object operator can be constructed in this way to represent
the essence of the knowledge in a entire knowledge base.
Such an object operator may be applied to any appropriate
set of basis data items to generate a particular knowledge
base.

202 Debenham

Basic data items

Sub-typed data items

Information items [

Knowledge items

Figure 5 Simple conceptual diagram

I .

2.

3.

4.

5.

6.

7.

8.

costs X

I [part/sale-price, part/cost-price, mark-up] !

References
Debenham, J.K. "Knowledge Simplification", in
proceedings 9th International Symposium on
Methodologies for Intelligent Systems ISMIS’96,
Zakopane, Poland, June 1996.
Debenham, J.K. "’Integrating Knowledge Base and
Database", in proceedings /Oth ACM Annual
Symposium on Applied Computing SAC’96,
Philadelphia, February 1996, pp28-32.
Debenham J.K. "’A Unified Approach to Requirements
Specification and System Analysis in the Design of
Knowledge-Based Systems", in proceedings Seventh
International Conference on Software Engineering and
Knowledge Engineering SEKE’95, Washington DC,
June 1995, pp144-146.
Lehner, F., Hofman, H.F., Setzer, R. and Maier, R.
"’Maintenance of Knowledge Bases", in proceedings
Fourth International Conference DEXA93, Prague,
September 1993. pp436-447.
Debenham, J.K. "Understanding Expert Systems
Maintenance", in proceedings Sixth International
Conference on Database and Expert Systems
Applications DEXA ’95, London, September 1995.
Kang, B., Gambetta, W. and Compton, P. "Validation
and Verification with Ripple Down Rules",
International Journal of Human Computer Studies
Vo144 (2) pp257-270 (1996).
Coenen F. and Bench-Capon, T. "’Building Knowledge
Based Systems for Maintainability", in proceedings
Third International Conference on Database and Expert
Systems Applications DEXA’92, Valencia. Spain,
September, 1992, pp415-420.
Debenham, J.K. "Knowledge Constraints", in
proceedings Eighth International Conference on
Industrial and Engineering Applications of Artificial

9.

10.

11.

12.

Intelligence and Expert Systems lEA/AlE’95,
Melbourne, June 1995, pp553-562.
Tayar, N. "A Model for Developing Large Shared
Knowledge Bases" in proceedings Second International
Conference on Information and Knowledge
Management, Washington, November 1993, pp717-
719.
Katsuno, H. and Mendelzon, A.O. "On the Difference
between Updating a Knowledge Base and Revising It",
in proceedings Second International Conference on
Principles of Knowledge Representation and
Reasoning, KR’91, Morgan Kaufmann, 1991.
Debenham, J.K. "Knowledge Systems Design",
Prentice Hall, 1989.
Gray, P.M.D. "Expert Systems and Object-Oriented
Databases: Evolving a New Software Architecture". in
"Research and Development in Expert Systems ~r,
Cambridge University Press, 1989, pp 284-295.

Knowledge Representation 203

