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Abstract

We propose a method to incromantally compute and use,
during the concept formation, the relevance of a concept
property. This relevance is computed through the account of
the property correlation with other ones and it is used by the
concept quality function in order to improve predictive
accuracy. The proposed approach is analyzed contenting
both the wediction power of the generated concepts and the
time and space complexity of the c4mcept formation
algorithm. Initial results show that, in the task of prediction
of values for several attributes, the proposed method has
improved the wediction pow~ of the generated concepts.

Introduction

The general aim of concept formation is to construct, based
on entity descriptions (observations), a (usually
hierarchical) categorization of entities. Each category is
provided with a definition, called a concept, which
summarizes its elements. Further aim is to use concepts to
categorize new entities and to make predictions concerning
unknown values of attributes of these entities. Therefore,
quality of a concept can be measured in terms of its ability
to make good predictions about unknog~ values of
attributes (the prediction power). Unlike supervised
systems, in which concept quality is measured from the
capacity in discovering a value for a single property, in
concept formation, the quality of a concept is measured by
its capacity in allowing prediction of values for several
attributes.
An important aspect that must be considered in concept

formation concerns the relevance (sometimes called
salience) of particular attributes/values (or properties).
Cognitive psychology (Tversky 1978), (Seifert 1989), 
machine learning (Gennari, Langley and Fisher 1989),
(Stepp and Michalsld 1986), (Decaestecker 1991)
researchers have pointed out the necessity to determine
how much a certain property is relevant within a concept.
In this paper, we propose a method to compute the

relevance of a concept property based on the correlation
between properties of the entities covered by the concept.
We describe our approach using a COBWEB-based
algorithm, called FORMVIEW, which can generate several
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hierarchies of categories describing different perspectives
(Vasco 97). In a multi-perspective context, the relevance 
a property is crucial because it determines the hierarchical
organization of categories. Since FORMVIEW uses a
probabilistic representation, correlation between properties
is computed from conditional probabilities. However, the
proposed approach is generic and can be employed in
algorithms, which may use other representations.
The prediction power of the category hierarchies

generated by the proposed method is computed and
compared with those generated by COBWEB. In
particular, we analyze the capacity of the categories
generated by these algorithms in prediction of values for
several unknown properties of entities. We show that, in
such a situation, property relevance based on the
correlation between properties improves the prediction
power of hierarchies, which are produced by concept
formation systems.

Concept Formation Systems

Concept formation (CF, for short) or incremental
conceptual clustering systems (Stepp and Michalski 1986),
(Fisher 1987) recognize regularities among a set of non-
preclussified entities and induce a concept hierarchy that
summarizes these entities. A CF algorithm is reduced to a
search, in the space of the all possible concept hierarchies,
for that one that covers the observed entities and optimizes
an evaluation function measuring a quality criterion. In
concept formation entities are treated one after another as
soon as they are observed and the classification of new
entities is made by their adequacy for the existing
conceptual categories.
Typically concept representation is probabilistic (Fisher

1987), in which concepts have a set of attributes and all
possible values for them. Each concept has the probability
that an observation is classified into the concept and each
value of a concept attribute has associated a predictability
and a predictiveness (Fisher 1987). The predictability is the
conditional probability that an observation x has value v for
an attribute a, given that x is a member of a category (2, or
P(affivlC). The predictiveness is the conditional probability
that x is member of C given that x has value v for a or
P(Cla--v).
Frame I sketches an algorithm for concept formation.
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FUNCTION PRINCIPAL (Root, Observation)
I. Incorporate Observation in Root
2. Choose the best operator to employ on the partition P of the

Root’s direct sub-concepts, among the following:
a) Incorporate Observation into a concept of P
b) Create a new concept under Root to receive Observation
c) Merge the 2 best concepts of P in a new concept that

includes Observation
d) Split a concept of P in its children, adding Observation to

the best of these
3. If the operation 2b, read another observation

Else return to 1 with Root = the concept of P in which
Observation was inserted

Frame I a CF’$ structure of control

Concept Formation taking into account the
Relevance of a Property

Using the relevance of a property in concept
formation

FORMVIEW’s concept formation process is similar to that
illustrated in Section 2. It constructs probabilistic concepts
while privileging their prediction power. The category
quality function is, like many of its predecessors, based on
the Gluck and Corter’s work on cognitive psychology
(Gluck and Cotter 1985), who have defined a function 
discover, within a hierarchical classification tree, the basic
level category. Category quality is defined as the increase
in the expected number of properties that can be correctly
predicted given knowledge of a category over the expected
number of correct predictions without such knowledge.
FORMVIEW, in addition, takes into account the relevance
of the propertics. We consider tlmt the increase in the
expected number of properties to be predicted from a
category depends on the relevance of its properties.
Formally, the utility of a category UCa is defined as below:

UCs (C)= A(p,)p(p,~C)p(C]p,)- P(C)p(p#)~

Where A(pJ = the relevance of the category property Pi +
P(p~)).

Computing property relevance

To compute property relevance, FORMVIEW uses a
strategy that relies on attribute dependence (or attribute
correlation) in the way that was defined by Fisher (Fisher
1987). Formally, the dependence of an attribute A,. on
other n attributes A; can be defined as :

¢

Where V#, signifies the jith value of attribute At and Aj
Am.

In fact, this function measures the average increase in the
ability to guess a value of A, given the value of a second
attribute Ai. We consider that this strategy accounts for the

relationship between attribute dependence and the abifity
to correctly infer an attribute’s value using a probabilistic
concept hierarchy. We can thus determine those attributes
that depend on others and, as a consequence, those that
influence the prediction of others. By an influent attribute,
we mean that, if we know its value, it allows a good
prediction about the value of others. We have thus defined
the total influence Tinfl of an attribute Ak on others A~ as
the following:

Mdep(Am, At) where Ak ~eA,.
Tinfl(A*)= .=l

n

Our claim is that attribute dependence gives a measure to
ponder attribute relevance, which, in this context, means
how much an attribute correlates with others.

Computing property relevance for each concept

To compute an attribute dependence, we have defined the
probability of predicting a property p given another
property p’ ; P(p[p ’). Actually, for each concept C within a
hierarchy, we have P(p[p’ and C). The acquisition of this
probability is problematic, since it cannot be computed
only from the predictability and predictiveness stored by
FORMVIEW. Instead of keeping all the 2x2-property
correlation, which would take too much space, or of
computing such a correlation for each new observation.
which would be computationally expensive, we have
defined a procedure that implements a tradeoff between
time and space requirements.

AI A2 A3 A4
Obsl vl v3 v5 v7
Obs2 v2 v4 v6 v8
Obs3 vl v3 v6 v7
Obs4 v2 v3 v6 v8

a2
Iv3 v4

al vl 2
v2 1 1

a2 v3 3

a3 a4
v$ v6 v7 v8

1 1 2
2 2

1 2 2 1
v4 1 1 1

-i ...... ~] 1a3 v5
v6 ............ 3 __[ 1 2

a4 v7
v8 .............

Frame 2 Example ofu triangular array used by FORMVIEW
after 4 observations

Our procedure consists of maintaining two triangular
arrays which keep the 2x2-property correlation" T-root and
T-son. These arrays keep such a correlation for all the
observations already seen. T-root is updated once for each
new observation. It allows computing the relevance of the
root’s properties. T-son accompanies side by side the path
followed by the observation during its categorization. It is
updated at each hierarchical level until the observation
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arrives at the leaves. Frame 2 exemplifies the format of the
used arrays after four observations.

Procedures for computing the relevance of a
property

FORMVIEW procedures for computing dependence and
correlation are shown in Frame 3. They were inserted into
the procedure which does the incorporation of an
observation (steps 4 and 5 in Frame 3).
Step four concerns the update of the arrays, which

maintain the frequeney of a property correlation. Two
procedures are responsible for that activity: Update.Array
and RefineTson. In Update.Array, the frequency of a
property correlation is computed for all the concept
properties. The retrieve of rids frequency for a specific
property is done in step 1.1.1. Function Shift allows it to
access the cell which stores the correlation between the
properties. Let us suppose the example shown in Frame 3.
For the properties (Al--vl) and (A4--v7), Sh/fl returns 
1 and shifts 6 columns, which correspond to the sam of all
the values of attributes less than (considering the array’s
order) atlribute A4. Thus, we can access cell (1,7) of 
array.

Step five in Frame 3 concerns the computation of the
relevance of each concept attribute of the hierarchy. The
procedure ComputeRelevance computes the relevance of a
propen’y using the conditional probability that an entity has
a property given that another property is known. These
properties are computed from the frequency of a property
correlation represented in T-son.
The procedure RefineTso, refines T-son each time

FORMVIEM descends the concept hierarchy. This
refinement consists of updating T-son in order to let it only
with the account of the existing correlation between the
properties of observations covered by the current root
concept. For each concept, T-son’s actualization is based
on the following strategy: if the quantity of observations
covered by a concept is greater than the total of its brothers
(children of the concept’s father), T-son is updated from
those observations which are covered by these later.
Otherwise, T-son only stores rite property correlation from
observations covered by a concept.

Performance Task

In our process of evaluation of FORMVIEW, we pay
attention to the prediction power of a hierarchy generated
by it. The basic idea is to submit a set of ~questions~
(normally, incomplete observations) to the system, whose
answer is based on the generated representation. The
quality of the representation is measured according to its
capacity to give ~good~ answers (i.e. to infer values for
attributes).
We have used three test domains: two animal

classification domains (ZOO domains) and the Pittsburgh’s
bridges domain.

Ine~zpozate(C, O, O=~.g~)

i. Update C’s conditional probabilities

2. Include O in list of observations covered by C

3. Update the number of observations covered by

the node

4. If C is root {father(C)=~ nil 

4.1 UpdateArray (T-root, O)

4.2 T-son = T-root

Else 4.3 RefineTsons (T-son, C, C brothers, O)

4.4 UpdateArray (T-son, O)

5. Computerelevance (T-son)

UpdateAzza¥ (Array, O}

1. For each property Pt of O

1.1 For each property p= of O (z ~ i)

1.1.1.Add 1 to Array( ( (Sub{p, 

attribute)+Sub(pi~s valuel}-ll, (shift(Sub(p=’s

attribute)}+ Sub(p=’s value})))

/* Sub(x} = retrieves the array subscribe of an

attribute or a value

/* shift(Sub(x)) = account the number values for

the attributes with sub less than Sub(x)

RefineTson (Array, C, FC, O)

1. if IC’s observations[ > [FC’s observations[

1.1 Subtract in Array the correlations from

observations covered by FC

Else

1.2 Create Array with account of correlations

from observations covered by FC

(~I~ teRel evmnae (Array}

i. For each property p, of a concept

i.i For the other properties p= of this same

concept (p= ~ p~l
i. 1. I. SubAtmin ffi min (SubIp=" s attribute},

Sub(p,~s attribute))

1.1.2.SubValmin = Sub of the attribute value

having SubAtmin

l. i. 3. SubAtmax = max (Sub (pf’s attribute),

Sub(p,~s attribute) 

l.l.4.SubValmax ffi Sub of the attribuze value

that has SubAtmax

I.i. 5. P(pllp.)=

Array( ( (shift (SubAtmin) +

SubValmin ), (shift ISubAtmax) +SubValmax) ) 

Array( (shl ft (Sub(p,’s attribute) ) +Sub(px 

value) ),

(shift(Sub(px’s attribute))+Sub(px~s value)))

l.l.6.Pertp, = Pertpt + (P(PlIP%)’ - p(p=]=}

1.2 Pertpl = Pertpl/Nb propertles-i

Frame 3 Procedures for computing a property relevance

The ZOO domains
The zoo domain was taken from the UCI machine-learning
dataset consisting of 53 observations with 18 mlributes
describing animals. We have divided this dataset into two
sets of observations described by 10 and 11 properdes,
respectively. In fact, we have adapted this domain through
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the insertion of attributes in order to represent two
perspectives: the pet and the physiologic perspectives.
Prediction of several properties in this domain was useful

to show more clearly the contribution of the use of
predictive influence as a heuristic to compute the relevance
of a property. Indeed, hierarchies generated from this
heuristic have a better prediction power than those
generated by other systems. It is due to the fact that
concepts are organized around properties having a strong
predictive influence. Thus, when one infers the value of a
property, he/she increases the probability to infer values
for other properties influenced by the first one. Figure 1
and Figure 2 illustrate tests done in two ZOO domains.

:[at :tat 4at Sat

0,6

o. 0,2 [UICOBWEB

0
10 20 30 40

N. Observations

Fig, 1 Prediction of several attributes in FORMVIEW and
COBWEB : ZOO Physiologic

2at 3at 4at Bat

0,7 LI;)COBWEB

.ll o.,
F|

0,4

0,3
10 20 30 40

N. Observations

Fig. 2 Prediction of several attributes in FORMVIEW and
COBWEB : ZOO Pet

The Pittsburgh Bridges domain

The prediction of several properties often appears in
problems of conception. Therefore, we decided to use the
domain of Pittsburgh’s bridges in our tests. Design
domains are characterized by having a set of specification
properties which define the user’s needs and a set of design
properties wldch describe the artifact’s clmracteristics. The
bridge domain contains descriptions of 108 bridges built in
Pittsburgh since 1818. Each observation is described by 12
properties of which seven are specification properties and
five are design properties. This domain ~ largely
explored by (Reich 1994 and Reich and Fenves 1991),
where they show the suitability of COBWEB-like systems
to design domains.
We have again defined attribute relevance as a function

of the attribute dependence. The task consists of inferring
values for all the product properties. We suppose that the
specification properties are less susceptible of noises since

they are informed by the user guiding the process of
construction of the artifact.
Figure 3 shows the predictive accuracy of FORMVIEW

a~ainst that of COBWEB. The results of these tests
indicated us the adequacy of FORMVIEW in constructing
hierarchies for the tasks of design. Actually, specification
properties are much correlated and, consequently, very
influent. This causes good inferences on properties of the
product.

100%

Oe,~ ’| I I I I I I I I |

10 20 30 40 50 60 70 80 90 100

Fig, 3 Prediction power from Pittsburgh domain

Complexity

To examine the time and space complexity required by
FORMVIEW’s approach, we consider:
n the number of categorized entities
L the average branch factor of the concept tree
The cost of the procedure for computing property

relevance is bound to the cost of updating T-root and 7:
son. It should be reminded that, FORMVIEW stores, in
these arrays, the 2x2-correlation for each concept property.
First, we determine the nocessaty space to stock these
correlations. Let cell be the unit where the frequency of
correlation between two properties will be kept.
In each array that maintains the frequency of correlation

between properties, for n observations, which have in
average nbA T at~butes with in average nb V values, we

nbAT~nbV

need E i cells, that is to say, o (nb A T x n b V )=
i=1

cells.
As for the time complexity, we have the cost to update T-

root and T-son. when a new observation is categorized.
The cost of T-root’s update is the same as that required in
space. T-son’s updating is more expensive than that of T-
root because it must be done to each level of the hierarchy
(on average time log~). For each level, only the
frequencies of correlation between observation properties
covered by tile current node must be represented. Thus, T-
son must be actualized m times (re<n), where m represents
the minimum between the nuntber of observations which
are not covered by the current node and the number of
observations covered by the current node. In the worst
case, we have m = n12, which would make the geometric
progression (n/2, n/4, n/8 ..... 1) for all the depth of the tree.
The cost of T-son actualization is thus the order:

0(2"" x (nbAT x nbV)2).
Finally, it is necessary to mention that thc cost of

computing the predictive influence for every concept also
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requires time effort of the order o (~bA r x .by )’.
The total cost of the procedure for computing the

predictive influence of property is:
o(2"" ~ (,,bAr ~ ,,bY)’ los~ (.bAr x .bV )’ ) -
o ,by ),(2"" + los:))

Related Work

The definition of a property relevance has been treated in
early incremental concept formation systems. ADECLU
(Decaestecker 1993) uses a statistical measure to quantify
the correlation between the property of a concept and the
variable "membership of the concept". It maintains a 2x2-
contingence table for each property of each concept.
However, there is no account of the correlation between
the properties.
In ECOBWEB (Reich and Fenves 1991), property

relevance is taken into account in the categorization
process in the same way we have implemented here.
However, the information of which properties are relevant
is given by the user. Clnster/CA (Stepp and Michalski
1986) eq, mlly uses the information about property
relevance defined by the user in the GDN (Goal
Dependence Network). Early versions of FORMVIEW
also follow this same idea (Vasco, Faucher and Chouraqui
1995), (Vasoo, Faucher and Chouraqui 1996).
The non-incremental system WITT (Hanson and Bauer

1989) computes the correlation between properties to
create categories. It keeps for each concept and each
property pair a contingence table. Such a table contains the
frequency of simulUmeous occurrence of property pairs.
For A attributes, WrIT keeps for each concept A(A-I)/2
contingence tables. This can be a very tough requirement
in terms of space.

Conclusion and Future Research

We have defined a method to compute and use the
relevance of a prope~y in concept formation systems. The
first results obtained with the use of property relevance are
encouraging. They shown us that, FORMVIEW’s approach
can provide raprcsentations it generates with better
prediction power than those generated from systems that
do not take into account the relevance of properties.
However, additional tests are necessary, mainly with
regards to evaluate the performance of FORMVIEW with
more data. In order to analyze the generality of the
proposed method, future research consists of the
application of this method to systems which use different
representations.
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