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Abstract

Classifying by hand complex data coming from psy-
dlology experiments can be a long and difficult task,
because of the quantity of data to classify and the
amount of training it may require. One way to allevi-
ate this problem is to use machine learning techniques.
We built a classifier based on decision trees that re-
produces the classifying process used by two humans
on a sample of data and that learns how to classify
unseen data. The automatic classifier proved to be
more accurate, more constant and much faster than
classification by hand.
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Introduction

Classification of complex data coming from psychologi-
cal experiments is an important issue in cognitive psy-
chology. Such classification is often done by two or
more persons who subjectively rate the human behav-
ior. This process can be long and labor-intensive, and
there is often too much data to be classified by humans
ill a reasonable amount of time. Moreover, the psychol-
ogy comnmnity considers the classification acceptable
if the inter-rater reliability between the persons is at
least 80%, which, given the variability of human data,
often demands a lot of training.

We encountered such a problem regarding the clas-
sification of human behavior over time. We built a
Icarning classifier to make the classification faster and
morc reliable. In the following, we describe our data,
the classifier we built, and the results we obtained.

The KA-ATC© Task

In the Ka~fcr-Ackerman Air Traffic ControlO task
(Ackerman & Kanfer 1994) is used to study problem-
solving and learning in a dynamic environment. When
performing this task, participants are presented with

°Copyright © 1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure h Startup screen of the KA-ATC© task, an]ro-
tated to show the hold-levels, the runways, and areas
where information is given to the participants.

the start-up screen shown in Figure I. Planes in a hold-
pattern in the upper left corner of the screen must bc
moved down to runways in the lower-left corner before
they run out of fuel. The hold-pattern contains 3 hold
levels, each of them containing 4 hold rows.

The planes are moved between adjacent hold-levels
and from hold-level 1 to the runways using cursor-
movement keys. A complex set of rules constrains
which planes can land on which runways depending
on the wind direction, wind speed, and other weather
conditions. As time passes, the planes use up their
5ml (indicated in the FUEL column, in minutes until
crash), the wind and weather change, and more pla,es
queue up to be admitted to the hold-pattern. Planes
are accepted into an empty hold-row from the queue
by hitting the F1 key. Points are awarded [’or land-
ing planes; points are subtracted [’or crashing planes,
landing planes with low fuel, and attempting to move
planes to places that violate the rules (e.g., to aa al-
ready occupied hold-row or to the wrong runway [’or
the current weather conditions). Participants perform
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Figure 2: Prototypical strategies: stacked (top), se-
quentiM (middle), opportunistic (bottom)

the task during 10-minute trials, and are instructed to
maximize their score.

Timestamped keystroke data from over 3500 partic-
ipants are available on a CD-ROM (Ackerman & Kan-
fer 1994). These data are the basis for learning models
that use different AI and cognitive architectures. We
are interested in a specific study (study number 2) 
which each of the 58 participants performed 24 10-
minute trials. Prior to writing a cognitive model of
one of those participants, we became interested in a
particular aspect of the task: how participants accept
planes from the queue into the hold-pattern (John 
Lallement 1997). Several strategies can be observed,
that we present in the next section.

Queue acceptance strategies
Figure 2 shows for three trials when planes are ac-
cepted from the queue and in which hold-row they are
brought. Each timeline represents a trims, with sec-
onds since the start of the trial (x-axis) and the 12 hold-
rows (y-axis). The three hold-levels are separated 
dotted horizontal lines. Each time a plane is brought
in from the queue, a dot appears on the timeline at the
hold-row in which the plane was accepted.

We are interested in the strategies used for filling and
emptying the hold rows. We identified three strategies:
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Figure 3: Abrupt shift within a trial.

NIS STA S]~Q OPP
Training set 31.2% 41.2% 18.0% 9.6%
Test set 36.0% 20.3% 0.0% 43.7%

Table I: Percentage of the quarter-trials in each class
for the two sets

stacked, sequential, and opportunistic. Stacked indi-
cates that the participant stacks up a series of planes
one right after the other before landing them MI and
starting over (Figure 2, top). Sequential indicates that
the participant is attending to one plane at a time,
bringing it in to a particular hold-row and then landing
it, and starting over (Figure 2, middle). Opportunistic
indicates that the participant alternates between land-
ing planes and filling in hold-rows whenever the other
demands of the task afford aa opportunity to do so
(Figure 2, bottom).

In order to examine the distribution and the evolu-
tion of the strategies in study 2, we needed to identify
the strategies used in 1,392 trials (58 participants, 24
trims per participant). Identifying strategies is often
difficult; whereas figure 2 presents a prototypical ex-
ample of each strategy, most of the trials are in fact
noisy. Moreover, the strategy can change during a
trim (as shown on figure 3), and this change can 
abrupt or more gradual. Even if a trial gives a general
visual impression that prompts for a specific classifica-
tion, the precise criteria for classification are diflicuh
to formulate. Several iterations at writing procedurcs
and training researchers to visually classify those data
were made, all failing to reach the 80% inter-rater re-
liability criteria (B. E. John, personM communication,
October 1996). The best inter-rater reliability we ob-
tained was 74.3% between the author and a colleague
on a set of 424 trials. One of the problems faced by the
humans evaluator was a not sufficient intra-rater reli-
ability; a trial labelled a certain way could be labelled
a different way at another time by the same person.

We decided to build a classifier that would automat-
ically and consistently classify the trials into one of the
three strategies, or no identifiable strategy. Because of
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Feature Type
Number of points in the trial Integer
Average number of points per non-empty time period Real
Average number of consecutive points on a same position Real
Location (1=level 1, 2=1. 2, 3=1. 1~2, 4=1. 3, 5=1. 1&3, 6=1. 2&3, 7=all Integer
strategy type (0=no strategy, 1=opportunistic, 2=sequential, 3-stacked) Integer

Table 2: Structure of a training example

the lack of precisely formulated criteria to label the tri-
als, the classifier would have to learn from examples.
Automatic labelling seemed also necessary because of
the size of the data to classify (1,392 trials for the spe-
cific experiment we are currently interested in, and well
over potentially 10,000 trials on the CD-ROM).

Training and test sets

To constitute the training set, we labelled by hand 424
trials of an experiment similar to the one we are inter-
ested in. Because of the possible variation of strategy
during a trial, the trials were labelled according to the
following principle: try to identify a strategy for the
whole trial. If possible, the whole trial, and therefore
its four quarters, receive this strategy as label. If not
possible, break the trial into two halves, and repeat
the process until the quarter-trial level. If a quarter-
trial does not show any identifiable strategy, label it as
such. This multi-level cl .assification method reflects a
natural thought process; a trial is broken into smaller
parts only if it cannot be classified as a whole. This
method is more tolerant to noise than a mono-level one
(directly classifying the quarter-trials) would be. The
trials are almost always noisy, and a certain amount of
aoise can be more easily disregarded in a whole trial
than in a quarter trial. It was therefore important to
build a classifier that would replicate this multi-level
classification process.

Tile percentage of agreement between the two la-
belling persons was 74.3% at the level of quarter tri-
als. The final labelling of the training set was done
by agreement or compromise between the two per-
sons. Each quarter-trial received a label among: no
identitiable strategy (NIS), stacked (STA), sequen-
tial (SEQ), opportunistic (OPP). Despite the 
satisfactory inter-rater reliability, the consensus is
more trusted than any of the individual classifications,
and it is from this consensus that the classifier will
learn. We similarly constituted an independent test
set of 48 randomly picked trials of the study we are in-
terested in, in order to test the classifier on previously
unseen data.

The frequency of each class in the two sets is given

in Table 1. For each set, the base learning rate (pick
the most common class) would be slightly above 40%.

Features

The classifier we built is based on decision trecs, that
seemed adequate for the type of complex temporal data
we are handling. Decision trees classify data based on
a set of features; the features must be relevant and givc
enough information about each data point (here, each
trial) to make its classification possible. The features
we used are:

¯ The average number of points per non-empty time
period: a 600 seconds trial is broken into at most
60 10-second period (the first period starts at the
first point in the chart, so there may be less than 60
periods). A higher value for this feature will prompt
toward a stacked strategy.

¯ The average number of consecutive points on a same
hold row. A higher value for that feature will prompt
toward a sequential strategy.

¯ The location of the points: level 1 only, level 2 only,
etc. If more than 90% of the poiats are in a certain
level, then the feature takes this level as value. This
feature is relevant because of a correlation between
the strategies and the location; for example, sequen-
tial tends to be in level one only, whereas stacked
tcnds to use several levels.

¯ The total number of points during the trial. A small
number of points will prompt toward no identifiable
strategy.

A program was written to compute these features
for every trial we wanted to classify and every trial in
the training and test sets. ’[’he structure of a training
example as it will be used by the decision trees is given
in tahle 2.

The classifier

Architecture

An initial experiment with a single ID3 (Quinlan 1986)
and a single OC-1 (Murthy, Kasif, & Salzberg 1994)
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Tree Training Pruning Test
Full trial 175 75 174
Half trial 420 180 248
Quarter trial 840 360 496

Table 3: Number of training, pruning and test exam-
ples for each type of tree

Tree set Average Average
number of leaves depth

Full trial 9.78 4.82
Half trial 22.40 7.96
Quarter trial 31.80 9.26

Table 4: Structure of the trees

decision tree showed that 0C-1 tree gave significantly
better results on our data. Unlike ID-3, OC-1 divides
the data into regions using hyperplanes that are not
necessarily parallel to the axis. This initial experiment
prompted us to build our classifier using the OC-1 de-
cision tree algorithm.

Ensembles of decision trees have been shown to per-
form better than single decision trees (Quinlan 1996;
Diet,erich 1997). Our classifier is an ensemble of OC-
1 trees, that replicates the way we labelled the trials.
It is composed of three levels, each level being a set
of 50 OC-1 trees (one set for the whole trials, one set
for the half trials and one set for the quarter trials).
At each level, each of the 50 trees proposes a classifica-
tion; tile final decision is the vote of the majority of tile
trees, accompanied by a confidence rate, given by the
percentage of trees that voted for that classification.

Training

Each tree was trained on a random subset of the
training set (using the bagging method (Breiman
1994)): the trees of the full trial level were trained
using 40% of our 424 hand-labelled trials for train-
ing, and 20% for pruning, leaving 40% unused. The
trees of the half-trial level were trained using the same
proportion of the 848 half-trials, and similarly for the
quarter-trial level trees (table 3).

Table 4 shows the average number of leaves and
depth for the 50 trees of each category. As expected
(because the number of examples grows when trials are
divided, and at the same time the examples become
more and more noisy), both values raise significantly
for smaller sizes of trials.

Huinan8
Classifier NIS STA SEQ OPP
NIS 22.1% 1.4% 0.1% 0.(}%
STA 6.1% 39.7% 0.0% 0.2%
SEQ 0.8% 0.0% 17.9% 0.0%
OPP 2.2% 0.1% 0.0% 8.8%

Table 5: Confusion matrix between the classifier and
the humans’ consensus, expressed in percentage of the
1696 hand-labelled quarter trials
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Figure 4: Agreement between the classifier and the
humans’ consensus vs confidence rate of the classifier

Labelling

To label a new trial, the classifier first tried to label
the full trial, and, if no strategy was identified, then
tried to label its two halves separately. The process
repeats until the level of quarter trials. If no strategy
was identified at the quarter-trial level, the quarter
trial was labelled no identifiable strategy.

Results
The confusion matrix (table 5) shows in details how
the classification done by the classifier compares to the
humans’ consensus for the whole set of trials (40% of
the data were unknown to each tree). The agreement
rate (trial classified the same way by the humans and
the classifier) is 88.5% (sum of the diagonal). The rate
of false alarms (the classifier assigns a strategy to a trial
that was labelled as NIS by the humans) is 2.1%. The
rate of misses (the classifier labels as NIS a trial that
was assigned a strategy by the humans) is 9.1%. The
rate of confusion between two identifiable strategies
is 0.3%. The classifier is therefore conservative (false
alarms are less common than misses) and very seldom
confuses two identifiable strategies; both these results
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are suitable for our data analysis.
We also tested the classifier on the previously unseen

48 examples of the test set; the final agreement rate
between the classifier and the humans’ consensus was
85.4% at the level of quarter trials.

The confidence rate is related to the accuracy of the
classification, as shown in figure 4. The average con-
fidence rate of the classifier was 90.5% for the agree-
ment cases, and only 68% for the disagreement cases.
For confidence rates over 90%, the agreement was over
90%. The extra information provided by the confi-
dence rate is useful: a low confidence rate for a trial
will prompt for a double-check of this trial by a human
evaluator.

Conclusion
These results, well above the human inter-rater relia-
bility of 74.3%, show that this hierarchical ensemble of
decision trees was able to replicate the multi-level pro-
cess of labelling and to learn the unformulated criteria
we used to label the training and test sets. The labels
attributed are consistent with the humans’ consensus,
that we trust more than a single human’s classifica-
tion. Of course, the classifier is consistent and will
always attribute the same label to a given trial. Fi-
nally, the supplementary confidence rate information
allowed us to take a closer look at the trials labelled
with low confidence.

It took the two trained humans hours to rate 424
trials; it takes seconds for the classifier to rate our
1,392 trials, with a better reliability. Such classification
methods using machine learning techniques prove to be
a valuable tool for cognitive psychology: evaluation of
large quantities of fuzzy data that was intractable by
psychologists before is now accessible.
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