
Integrating Machine Learning in Parallel Heuristic Search

R. Craig Varnell
Stephen F. Austin State University

varnell@cs.sfasu.edu

Diane J. Cook
University of Texas at Arlington

eook@cse.uta.edu

Abstract

Many artificial intelligence applications rely on search-
ing through large, complex spaces. Iterative
Deepening-A* (IDA’) is a procedure capable of find-
ing a least cost path to a goal; however, the execution
time on a single processor is often too long for most
applications.
Parallel processing can be used to reduce the complex-
ity and run time of a search problem by dividing the
work load over multiple processors. A number of tech-
niques have been introduced that improve the perfor-
mance of heuristic search. Each approach has a number
of parameters that are often selected by the user be-
fore the problem is executed. It is common to find that
the selection of parameters for one approach will con-
flict with parameters for another approach and poor
performance will result.
This research uses a knowledge base constructed by the
C4.5 machine learning system to continuously select
approaches and the associated parameters throughout
the execution of a problem. Therefore, as the search
moves deeper into the tree structure, the approach will
be modified to adapt to the tree structure. A series of
experiments has been performed with the fifteen puz-
zle problem domain. A significant improvement in per-
formance has resulted from using machine learning to
select an appropriate approach for a problem.

Introduction

Many artificial intelligence applications depend on a
search algorithm that is required to locate a goal of
some form in a very large space. A number of heuristic-
based techniques have been incorporated into the brute-
force search algorithms that reduce the time to locate
a goal. Serial processing of such algorithms results in
long execution times for problems that commonly need
real-time responses. This section will examine both se-
rial and parallel approaches to heuristic search.

Search Spaces and Tree Structures

The typical search problem consists of three basic com-
ponents:

Copyright 1998, American Association for Artificial In-
telligence (www.aani.org). All rights reserved.

¯ An initial state

¯ A goal description

¯ A set of operators

The initial state represents the starting point of the
search problem. A search problem is often represented
as a tree structure, and the initial state is the root of
the tree. The goal state represents what is to be accom-
plished or what the final product should be. For each
state, the operators are applied producing a new state.
The role of the search algorithm is to transform the
initial state into a goal state by applying the correct
sequence of operators. From any given configuration,
or state, in the search space a set of operators is ap-
plied to the state producing a new set of states. This
creates a parent/child relationship in that each of the
new states is generated from its parent state. One way
that a search problem is commonly represented is as a
graph structure. The states of the search space are the
vertices of the graph, and the operators applied to each
state serve as the edges of the graph.

The graph structure does not represent the search
tree in the most concise form since there are no cycles of
duplicate nodes in a search problem and tree algorithms
are simpler than graph algorithms. For this reason, the
search problem is also commonly represented as a tree
with the initial configuration serving as the root of the
tree, children in the tree that are generated as the result
of applying one or more operators to the parent state,
and a goal located somewhere in the tree structure.

The A* Algorithm

The A° algorithm serves as the foundation for most
single-agent heuristic search algorithms. A heuristic
estimating function, h(x), is used to return a heuris-
tic estimate of the distance that node x is from a goal
node. The value g(x) is used to represent the cost
associated with moving from the initial state to node
x. Combining these two values into a simple formula,
f(z) - g(z) h(z), cr eates anest imate of theso-
lution path cost containing node x. The value of f(x)
represents the cost incurred from the initial state plus
an estimate of the cost to reach a goal state. When

240 Varnell

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

h(z) becomes zero, the goM has been located and the
algorithm terminates locating an optimal solution.

The problem associated with A* is that memory will
quickly be exhausted, just as the case for breadth-first
search. New nodes are placed on the stack and for every
iteration of A* the stack grows by b - 1 nodes.

Iterative-Deepening A*
The depth-first iterative deepening algorithm ensures a
solution is located by incrementing the cutoff value from
one iteration to the next and performing a pruning op-
eration when the depth obtained during the search ex-
ceeds the cutoff value. A similar approach is described
by Korf (Korf 1985) using the A* cutoff criteria. The
initial cutoff value is set to the heuristic value of the
initial state and a pruning operation is performed when
the total cost of a node, f(z) g(z) + h(z), exceeds
the cutoff value. Instead of increasing the cutoff value
by one each iteration, the cutoff is increased to the min-
imum f value that exceeds the previous threshold. This
ensures that an optimal solution is not bypassed by in-
creasing the cutoff value too much and not performing
unnecessary work by increasing the cutoff by too little.
Iterations of IDA* are performed until a solution is lo-
cated that represents an optimal path from the initial
state to the goal.

The complexity of IDA* is the same as A* in that the
same number of nodes are generated in locating a goal.
The advantage over A* is that a reduced amount of
memory is needed to perform a problem. A significant
amount of wasted work is performed with the IDA*
algorithm; however, the greatest number of nodes are
generated during the final iteration and therefore the
previous iterations represent a small percentage of the
total execution time for locating a goal node.

Parallel Heuristic Search
Advances in parallel and distributed computing of-
fer potential improvements in performance to such
compute-intensive tasks. As a result, a number of ap-
proaches to parallel AI have been developed that make
use of parallel processing hardware to improve vari-
ous search algorithms. While existing applications in
parallel search have many contributions to offer, com-
paring these approaches and determining the best use
of each contribution is difficult because of the diverse
search algorithms, architectures, and applications. The
use of a wrong approach can produce parallel execu-
tion time greater than that of a serial version of the
algorithm; whereas another approach can produce near-
linear speedup.

We addressed this problem in previous research by
designing the Eureka parallel search architecture(Vat-
nell 1997) which utilizes a machine learning system to
automate the process of selecting an approach and asso-
ciated parameters for solving a problem. Eureka solves
a problem in two phases: first, a shallow search is per-
formed on a single processor where the characteristics
of a search tree are gathered. Second, the statistics are

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure I: Fifteen Puzzle Problem

used as input into the C4.5 machine learning system
and the approaches and associated parameters are au-
tomatically determined. The knowledge base is devel-
oped using problems across various domains and prob-
lem structures. This paper shows additional research
performed on the Eureka architecture where the shal-
low search is no longer required for measuring the char-
acteristics of the search tree. This step is performed in
the parallel search phase.

Fifteen Puzzle Problem
The fifteen puzzle is constructed with a set of fifteen
movable tiles in a four-by-four frame with one blank
spot. The tiles which are horizontally or vertically ad-
jacent to the blank spot may be slid into the blank
spot. The object of the puzzle is to find a sequence of
tile movements that will transform the initial tile ar-
rangement into a specified goal tile arrangement. An
example of the fifteen puzzle problem is shown in figure
I. A set of I00 instances of the fifteen puzzle problem
were developed by Korf (Powley & Korf 1991), ranging
from extremely easy to extremely difficult.

Parallel Search Approaches

A number of researchers have explored methods for im-
proving the efficiency of search using parallel hardware.
In this section, we will summarize these existing meth-
ods used for task distribution, balancing work among
processors, and for changing the left-to-right order of
the search tree.

Task Distribution

When multiple processors are used to solve a problem,
the work must be divided among the processors us-
ing an efficient distribution scheme. Examples of task
distribution include parallel window search (Powley
Korf 1991) and distributed tree search(Kumar & Rao
1990). A hybrid approach combines the features of par-
allel window search with distributed tree search divid-
ing processors into clusters (Cook & Nerur 1993). Each
cluster is given a unique cost threshold and the search
space is divided between processors within each cluster.

Load Balancing
When a problem is broken into disjoint subtasks, the
workload will likely vary among processors. Load bal-

Machine Learning 241

ancing is an essential component of parallel search as
one processor will become idle before others (Kumar,
Ananth, & Rao 1991; Kumar & Rao 1989). The de-
cisions to be made include how to perform load bal-
ancing and the frequency of performing load balanc-
ing(Kumar, Ananth, & Rao 1991). A number of ap-
proaches have been introduced for performing load bal-
ancing (Huang & Davis 1989; Kumar, Ananth, & Rao
1991; Kumar & Rao 1989; Mahapatra & Dutt 1995;
Saletore 1990) each of which performs differently based
on the problem structure. As to the frequency of load
balancing, the actual load balancing operation can be
performed when a processor becomes idle or on a sched-
uled basis.

Tree Ordering
Problem solutions can exist anywhere in the search
space. Using IDA= search, the children are expanded
in a depth-first manner from left to right, bounded in
depth by the cost threshold. If the solution lies on the
right side of the tree, a far greater number of nodes
must be expanded than if the solution lies on the left
side of the tree. With tree ordering the order of creating
new children is changed in an attempt to quickly locate
the goal. Some examples of tree ordering include lo-
cal ordering (Powley & Korf 1991) and transformation
ordering (Cook, Hall, & Thomas 1993).

The Eureka Search Architecture
We consider two approaches in designing a system that
will choose the best technique for a particular prob-
lem. The first is to manually build a set of rules which
can be very time consuming and not produce accurate
results for all problems. For a problem such as paral-
lel heuristic search, choosing a technique by comparing
the execution time of one approach to another leads to
minimal success. In most cases, performance is deter-
mined by a problem characteristic such as goal location
or branching factor which are frequently not obvious
when comparing only problem execution times.

A second approach, which we find to be the more
effective, is to develop a rule base by using a machine
learning system. For our research, we use the C4.5 ma-
chine learning system (Quinlan 1993) which creates
decision tree and rule base from the learning examples.
A decision tree induction method for machine learning
is chosen since it is possible to produce a set of human-
readable rules.

Phases of Operation
The Eureka architecture is based on two phases of oper-
ation. The first is an information gathering operation.
A set of problems are run and statistical measurements
are obtained that characterize one tree structure from
another. This data is used to train the machine learning
system along with a classification of the approach that
performed best. The second phase is the production
operation where the approach used for solving a new
problem is determined by the machine learning system.

242 Vamell

Problems Addressed
The problem with this was three fold. First, the serial
shallow tree expansion used time that could be better
spent on the parallel search. The serial job would per-
form complete iterations of IDA* until a predetermined
number of nodes were generated. Since search trees will
vary there can be a wide variation in the time required
to perform the shallow search. The second problem in-
volves the procedure for determining the structure of
a search tree. The tree characteristics are obtained
from this shallow search in the form of statistical mea-
surements which accurately reflect the nature of the
search space at a low level in the tree but not necessar-
ily for the deeper levels. Therefore, a better technique is
needed for gathering the tree measurements. Third, is
the method for establishing approaches and associated
parameters. Once the serial job completes, the statis-
tics are input to the knowledge base created with the
C4.5 machine learning system. The approaches used for
the parallel job are determined from the shallow search
and remain the same for the duration of the parallel
job.

To address these problems, the Eureka architecture
was modified to use the parallel search iterations to dy-
namically reconfigure the strategy choices. The initial
expansions on a serial processor were therefore not re-
quired. Statistical measurements are obtained from the
parallel search job throughout the execution of a prob-
lem. Also the tree statistics are gathered from each it-
eration of IDA* and the approaches and parameters are
reestablished based on the new information received on
the tree structure. From one iteration to the next, the
number of nodes expanded increases by moving deeper
in the search space and, as a result, the measurable
statistics more accurately represent the tree structure.

The actual steps for developing a rule base are as
follows:

1. Timings are captured from a variety of problem do-
mains and search techniques. Multiple domains are
used since certain factors, such as the branching fac-
tor, tend to be problem specific. Each problem is
tagged with the strategy which performs best. For
example, if we are examining strategies to load bal-
ancing, a number of different methods exist for per-
forming load balancing. A problem is classified with
the strategy that performed best for load balancing
and these will serve as the classes for the machine
learning system. Statistics are also gathered that can
correctly classify one problem structure from another.
These will serve as the problem attributes in the ma-
chine learning system.

2. The attributes are combined with the corresponding
classes and input as training examples to a machine
learning system. A knowledge base consisting of a
set of if/then rules is produced.

3. A new problem makes use of the knowledge base to
pick a parallel search strategy for a given parallel ar-
chitecture. The measurable statistics are constantly

gathered on the search problem and provided as input
to the learning system. The knowledge based gener-
ated during the training sessions are accessed and a
method that is appropriate for the problem structure
is used.

4. As the new problem is executing, statistics are be-
ing gathered that characterize the problem and, as
the search moves deeper into the search space, these
statistics better represent the true structure. There-
fore, the strategy taken for a particular problem will
continue to change throughout the execution of the
problem. The statistics are supplied to the machine
learning system which decides the best approach to
take.

Measurable Characteristics
In the previous section, we indicated that statistics were
gathered in order to characterize one problem from an-
other. This section describes these factors that charac-
terize a search tree.

1. Branching factor
The branching factor reflects the number of children
for each node averaged across the entire search space.
The branching factor contributes to the complexity
of the IDA* algorithm.

2. Heuristic Branching Factor

The heuristic branching factor is defined as the ratio
of the number of nodes with a given value of f with
the next smaller value of y (Powley & Korf 1991).
This gives an indication as to the number of node
expansions which must be expanded below a leaf node
of a previous iteration of IDA* in order to complete
the current iteration.

3. Tree Imbalance
The tree imbalance is a statistical measurement be-
tween zero and one indicating the degree of balanc-
ing in a search space. This is measured at the second
level of the search space off of the root node. The
degree of imbalance of a search tree can affect the
performance of many parallel search techniques by
reducing the number of nodes and thus reducing the
execution time to locate a goal.

4. Heuristic Error

Heuristic error is defined as the difference, on aver-
age, between the estimated distance to a goal node
and the true distance to the closest goal node. It is
impossible to know the exact location of a goal in a
search space until one is generated. The heuristic, be-
ing an estimate of the distance to a goal, is sometimes
extremely accurate and, at other times, extremely in-
accurate. Therefore, we are estimating the heuristic
error by substituting the goal node with the node
having the lowest heuristic for a threshold of IDA*.
The node with the lowest heuristic does not always
represent a node on the path to a goal; however we

have found it to be common for the lowest heuris-
tic to be a node on the path to the goal. This can
be explained by the fact that there are usually sev-
eral nodes in a search space with the same heuristic.
The heuristic error is able to show the strength of the
heuristic function for a particular problem domain. A
large heuristic error represents an uninformed heuris-
tic function, whereas a small heuristic error repre-
sents a strong heuristic function.

5. Solution cost
In the IDA* algorithm a cost is associated with the
generation of a child node and this cost accumulates
as the search advances deeper into the search spade.
We define the solution cost as the cumulative cost of
mo~s from the initial state to a goal state. Since the
solution to a search problem is never known until a
goal is located, the solution cost for a non-successful
iteration of IDA* can only estimate a solution cost.
This can be performed a number of ways. We made
the assumption that a goal node could possibly be
located in the path of a node in the search space
in which the cost estimate (h) is the least for the
iteration.

Each parameter in isolation is incapable of character-
izing a search space or describing the best approach
to a particular problem; however, when combined to-
gether they can differentiate a problem to a degree by
its unique characteristics. Each of these factors is uti-
lized as an antecedent for the rule base.

Eureka Architecture Results
In this section we will describe the results obtained from
the Eureka architecture. To create the test cases, we
ran each problem instance multiple times, once using
each parallel search strategy in isolation. The search
strategy producing the best speedup is considered to be
the "correct" classification of the corresponding search
tree. The resulting strategy is then provided as a learn-
ing case to the C4.5 machine learning system. The tests
were performed on 64 processors of an nCUBE2 parallel
computer system

The C4.5 results are produced by performing a ten-
fold cross validation run of the 98 problems of the fifteen
puzzle data. A cross validation scheme repeatedly splits
the training instances into two groups: one of which is
used by C4.5 to develop the decision tree and rule set
and the other which is used for testing the resulting
decision tree and rules. For each strategy covered in
this section we compare the individual approaches to
the C4.5 recommended approach. For example, in ana-
lyzing the optimal number of clusters to be assigned to
a problem, we show’ the average speedup for one, two,
and four clusters. This is followed by the speedup ob-
tained when C4.5 decides the number of clusters to be
used for each problem.

For this research we examined the area subtask dis-
tribution and specifically, the selection of the number of

Machine Learning 243

Table 1: Clustering Results
Approach 15Puzzle Sig. Test
1Cluster 52.02 0.41
2Cluster 57.04 0.39
4Cluster 56.83 0.00
Eureka selection 65.37

clusters. The strategy taken and resulting performance
increase will be covered in this section.

Clustering
We tested the clustering algorithm using 1, 2, and 4
clusters on 64 processors of an nCUBE-2 parallel com-
puter. Test results for the clustering algorithm are in
table 1.

In this table, the values in the column labeled Speedup
are produced with the equation Speedup:Serial time /
Parallel time and is a measurement commonly used to
compare the execution time of a job run with multiple
processors (Parallel time) compared to the same job
run on a single processor (Serial time). The first three
rows in this table contains the average speedup of the 98
problems with each problem run with a fixed number of
clusters. For the fourth row, indicated by Eureka, the
number of clusters was dynamically selected based on
the problem’s structure. The average speedup obtained
using this approach produced better results.

Future Work.and Conclusions
We are currently in the process of implementing new
problems within our system. Natural language process-
ing is one area that can impact from this research. We
are using the WordNet 1.6 (Miller 1995) for text pars-
ing and inferencing. A second goal of future research is
to apply the automation selection and use of machine
learning to other strategy selection problems. Embed-
ding a machine learning system into other applications
allows for the program to assume a dynamic problem
solving approach where the decisions are based on the
problem structure.

The process of choosing a technique for solving a
problem is integral to all scientific fields. The factors
influencing the selection of one approach over another
become more complicated than simply choosing the cor-
rect data structure for a problem.

Our research demonstrates that a machine learning
system, such as C4.5, can be incorporated into a system
where multiple strategies exist for solving the problem
and produce an improvement in performance.

References

Cook, D., and Nerur, S. 1993. Maximizing the speedup
of parallel search using HyPS*. In Proceedings of the
Third International Workshop on Parallel Processing
for Artificial Intelligence - IJCAI-g3.

244 Varnell

Cook, D.; Hall, L.; and Thomas, W. 1993. Par-
allel search using transformation-ordering iterative
deepening-A*. International Journal o] Intelligent
Mechanisms.

Huang, S., and Davis, L. 1989. Parallel iterative A**
search: An admissible distributed search algorithm. In
Proceedings of the International Joint Con]erence on
Artificial lntelhgenee, 23-29.

Korf, R. 1985. Depth-first iterative deepening - an
optimal admissible tree search. Artificial Intelligence
27:97-109.
Kumar, V., and Ran, V. 1989. Load balancing on the
hypercube architecture. In Proceedings of the 4th Con-
ference on Hypercubes, Concurrent Computers, and
Applications, volume 1.
Kumar, V., and Rao, V. 1990. Scalable parallel formu-
lations of depth-first search. In Kumar, V.; Gopalakr-
ishnan, P.; and Kanal, L., eds., Parallel Algorithms
]or Machine Intelligence and Vision. Springer-Verlag.
1-41.

Kumar, V.; Ananth, G.; and Rao, V. 1991. Scal-
able load balancing techniques for parallel comput-
ers. Technical Report 91-55, Computer Science De-
partment.
Mahapatra, N., and Dutt, S. 1995. New anticipatory
load balancing strategies for parallel A* algorithms. In
Proceedings of the DIMA CS Series on Discrete Math-
ematics and Theoretical Computer Science.

Miller, G. 1995. Wordnet: A lexical database. Com-
munications of the ACM 38(11):39-41.
Powley, C., and Korf, R. 1991. Single-agent parallel
window search. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 13(5).

Quinlan, J. 1993. C4.5: Programs For Machine Learn-
ing. Morgan Kaufmann.
Saletore, V. 1990. A distributed and adaptive dy-
namic load balancing scheme for parallel processing of
medium--grain tasks. In Proc. Fifth Distributed Mem-
ory Computing Conference.

Varnell, R. C. 1997. An Architecture for Improving the
Performance of Parallel Search. Ph.D. Dissertation,
The University of Texas at Arlington.

