From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Determining the Incremental Worth of Members of an Aggregate Set through
Difference-Based Induction

Avelino J. Gonzalez Sylvia Daroszewski Howard J. Hamilton
University of Central Florida Harris Corporation Dept. of Computer Science
PO Box 162450 Palm Bay, FL. University of Regina
Orlando, FL 32816-2450 Regina, Canada
ajg@ece.engrucf.edu bhamil cs.uregina.ca
Abstract

Calculating the incremental worth or weight of the
individual components of an aggregate set when only the
total worth or weight of the whole set is known is a problem
common to several domains. In this article we describe an
algarithm capable of inducing such incremental worth from
a database of similar (but not identical) aggregate sets. The
algorithm focuses on finding aggregate sets in the database
that exhibit minimal differences in their corresponding
components (referred to here as attributes and their values).
This procedure isolates the dissimilarities between nearly
similar aggregate sets so that any difference in worth
between the sets is attributed to these dissimilarities. In
effect, this algorithm serves as a mapping function that
maps the makeup and overall worth of an aggregate set into
the incremental worth of its individual attributes. It could
also be categorized as a way of calculating interpolation
vectars for the attributes in the aggregate set.

Introduction

Knowing the relative contribution of individual
components of an aggregate set in terms of their worth (or
cost, weight, etc.) to the total worth (or cost, weight, etc.)
of the whole set can be important in domains such as
engineering analysis, scientific discovery, accounting, and
real esiate appraisal. A slightly different but very similar
problem is that of obtaining the incremental worth of such
individual components, This task can be a difficult one
when only the total worth of the whole set is known.

The work described in this article focuses on an
approach to calculate the incremental worth of components
of aggregate sets. This is possible when a database
contains many aggregate sets that are homogeneous (i.c.,
have the same attributes), but dissimilar (i.e., have different
values). An algorithm is formulated which finds aggregate
sets in the database that exhibit minimal differences in
their attributes’ values. This procedure strives to isolate the
single differentiating attribute/value combination of nearly
similar aggregate sets.

1. Copyright 1998 American Association for Artificial Intelligence
(www.agai.orgl. All rights reserved.

Any difference in worth between the sets can be
attributed to this singular difference. For this reason, the
algorithm is called the difference-based induction
algorithm, or DBI algorithm for short.

Definition of Terms

An aggregate set tepresents a collection, assembly or
grouping of member components which have a common
nature or purpose. An aggregate set is made up of these
aforementioned components. The term q#ribute will be
used to signify a component of an aggregate set, and each
attribute is said to have a particular value. A group of such
attribute/value combinations can singularly describe a
specific aggregate set.

The components of an aggregate set act as integral
members, which individually add worth to the aggregate
set. However, their individual contributions to the total
worth of the aggregate set may not be explicitly known.
We will use the term worth here generically to mean a real
number representing the worth, weight, cost, price or any
other similarly quantifiable factor.

An aggregate set, AG, is therefore defined as a pair
consisting of a set containing its components (called
attributes, A), and the toial worth of the aggregate set,
(worth). Therefore, the i aggregate set AG; (of n total
aggregate sets) can be represented by a pair as

AG;=<A; worth;>.

A, is further defined as the group of attributes for the set
AG,, such that for m attributes in AGy:

Aj= {21 a2 23 A4 A5 o Ayml

where ayyis the name of the j* atiribute of the i aggregate
set.
Furthermore, each attribute, ay;, represents another pair
depicting the value of the atiribute (v), and its individual
worth (wy). The individual worth of an atiribute is the
amount that this attribute contributes to the overall worth
of the aggregate set (worth;). In the problems described
here, wy, is typically not known.

Care should be taken to not confuse the terms "value”
and “"worth". Value is the value inherent with that
attribute, much like attribute-value pairs in frames or the

Machine Learning 245

value of an attribute in a relational database. The value of
an attribute can be either discrete or continuous. Discrete
values can be binary, such as present or not-present, Yes or
No, etc., or non-binary. A non-binary attribute can take on
one of several possible values, which may be numerical or
symbolic in nature. Non-binary discrete attributes (such as
the engine-size of a car) typically have a relatively small
set of possible values (4-cyl, 6-cyl, 8-cyl.). Continuous
attributes, on the other hand, such as the time to accelerate
from O to 60 MPH, can take on a value from a much larger
domain. The range of the continuous domain values can
be divided into several sub-intervals (i.e., 5-6 secs, 7-8
secs, 9-10 secs, 10-11 secs, 12-13 secs and so on) to
convert a continuous value into a discrete one.

Thus, the pair defining the j* attribute a; of the
aggregate set AG; is

Aj=<vy wip.

The value of an atiribute, vi; must come from a pre-
defined set of possible values or range,
Vy (element of) {pvi pv2 PVvs DPV4 PVs ... pVj}
(if discrete) or
PVuin <= Vij <= PVmax
(if continuous range)

We furthermore define the subtle difference between

relative worth and incremental worth. If wy were to
represent the relative worth, it must be true that

WOl'thi = (W|,1 + W2+ Wi + oo + W[,m).

However, this is not a necessary condition if wy
represents the incremental worth of an attribute/value
combination. Our algorithm does not require the above
expression to hold.

A database, DB, containing n aggregate sets can be
defined as

DB = {AG; AG; AG; ... AG,}.

The DBI algorithm, however, assumes that all aggregate
sets in DB have exactly the same atiributes. Any
difference between the aggregate sets is reflected by the
values of its atiributes. However, if an aggregate set were
to lack a particular attribute, this can be represented by
assigning a value of false or none to the missing attribute.
Using the same definition formalism, this homogeneity of
aggregate sets could be represented as:

(fOl‘ all) i, a, = am,,

This would allow the following simplification in our
definition:

A={a1 az a3 A4 .. A .. a...}

246 Gonzalez

However, since the value of an attribute can differ
between the various aggregate sets, the value and its worth
remain as previously defined:

ay = <Vij Wi >.
Thus, it is not required that
(fOI' all) i, Vij = Vi and Wi = Wiy

It is the goal of our work to determine the incremental
worth of a specific attribute/value combination in an
aggregate set. Since the domains where this information
would be highly useful are not fields of exact sciences, the
relative or incremental worth of an individual
attribute/value combination can vary somewhat between
various aggregate sets in the database. Our goal, therefore,
is to find the gverage incremental or relative worth of a
particular attribute/value combination based on the overall
worths of several aggregate sets.

Lastly, the critical attribute is defined as the attribute
whose incremental worth is to be discovered for different
value assignments.

'To put these definitions in proper perspective, we will
apply them to a description of the value of cars in an
automobile dealership. A dealership may have a large
number of automobiles (aggregate sets) in their inventory
(database). Each automobile has a set of attributes (engine
size, tires, color, doors, power steering, power brakes, etc.)
which, when assigned specific values, describe it. Bach of
these attribute/value combinations contributes (o the car's
total worth. Each attribute is defined by its name (e.g., as
= engine-size), its value (e.g. w3 = 6-cyl), and its
incremental worth (in this case it represents the price) (e.g.,
w3 = 500). In some cases, the difference between cars is
in the values of their attributes (e.g., 4-cyl vs. 6-cyl engine-
size). In others, it is in whether they even exist (a car has
or does not have air conditioning).

The relative versus incremental worth of each attribute
can be explained in the difference between buying a new
car and a used car. In a new car purchase, the final price of
the car is (ideally!) determined by the car's cost of
manufacture plus the overhead and profit set by the
manufacturer, plus that of cach option ordered by the
buyer. Reduction in any of these directly affects the final
price of the car. In a used car purchase, however, the price
of the car is set by the market, rather than by the
manufacturer's cost. While increments to the retail price
are suggested because of things like low mileage or year of
make, these do not add up to the total price of the car.
Thus, these represent incremental values,

The Difference-Based Induction Algorithm
and Associated Procedures
The basic concept of our approach is that by isolating the
differences (as represented by attribute/value
combinations) between nearly similar aggregate sets in a

database, the incremental or relative worth of the
differentiating attribute/value combination can be said to
account for the difference in the total worth of the
aggregate sets. The average incremental worth of an
attribute/value combination can then be computed from
several specific computations of these differences in total
worth. We propose a technique that can efficiently identify
the differences between aggregate sets that have multiple
attribates, and quantify these differences. This
quantification of differences is not difficult when the
attribates are few, but it can be a daunting task when they
are numerous. Thus, the DBI algorithm presented here is
designed to segregate aggregate sets in terms of their
differences, and quantify the worth of these differences.

The DBI algorithm builds a decision tree whose leaf
level nodes each contain a group of identical aggregate
sets. In many ways, this approach is similar to ID3 and its
successors {Quinlan 1983, 1986, 1987, 1993]. Quinlan's
algorithms induce a classification tree from a set of
training examples that are described in terms of a
collection of attributes, where each example belongs to one
of several mutually exclusive classes. A set of rules is
produced from this tree that is capable of classifying
examples similar to those from which the rules were
induced. Each mule is represented by a path in the
classification tree that goes from the root node to a leaf
node indicating a specific classification. Each level in that
path specifies one attribute and the branches emanating
from the nodes in a level represent their possible values.

The differences between the DBI algorithm and ID3,
C4, C4.5 and other similar ones, are not so much in how
each builds the classification tree, but rather, in how the
tree is used after it is built, and the source of the
examples.

Objective of the DBI Algorithm

In order to understand how the DBI algorithm works, it is
important to first understand what it attempts to achieve in
the context of the definitions provided in the previous
section. The objective of the DBI algorithm is to calculate
a general estimate for the incremental worth of each
attribute/value combination when compared with another
value for the same attribute. More specifically, it
empirically computes the average incremental worth,
Iw;,,, of a specific value pv, of attribute j when compared
with value pv, for the same attribute. This estimate can
then be used to estimate the total worth of a new aggregate
set when it is compared to other aggregate sets in the
database which differ by this attribute/value combination.
Ideally, the empirically discovered Iw,s, is constant for all
aggregate sets, but this is not a necessary condition.

It should be noted that the DBI algorithm does not
attempt to determine the individual values of w;; for each
aggregate set in the database. While these values are
typically unknown, they are often not necessary, and thus,

it is not our main objective. They can be easily computed
by making some simple modifications to the algorithm.
However, we have left this as a subject of future work.

Description of DBI Algorithm

Each level in a classification tree, as in conventional
induction algorithms, represents one atiribute. The
exception to this is the leaf level, which simply acts as a
repository of aggregatie sets to be used in further analysis.
With this exception, all nodes at the same level represent
the same attribute. Each branch emanating from a node
represents a specific possible value or a "discretized” range
of values for that atiribute,

Aggregate sets found in DB are distributed throughout
the tree according to their attributes and their values.
Beginning with the root node, distribution takes place by
repeatedly passing each aggregate set from a present node
at one level to a child node at the next level through the
branch corresponding to the aggregate set’s value for the
atiribute represented by the parent node. Therefore, all
aggregate sets collected in any one node are ideatical
insofar as the attributes considered in that level and in all
ancestor levels of the tree. As new successor levels are
added and the aggregate sets are further distributed, they
will be further segregated, with fewer and fewer sets
populating any one node. This process continues until all
attributes have been represented in the tree up to and
including the critical attribute, which is represented at the
level above the leaf level. .

Aggregate sets found at the same leaf node are identical
to each other. They, however, are similar to the sets in a
sibling leaf node in all attribute values except one - the
attribute at the level of the leaves' parent node. Thus, any
differences in worth between aggregate sets in sibling
leaves can be inferred to be attributed to the difference in
the value of that single attribute.

The classification of the groupings to which aggregate
sets in the leaf nodes belong is not important in the DBI
algorithm, It is only important to know that the sefs are
similar among themselves, and minimally different from
sets populating sibling leaf nodes. Identifying and
quantifying these differences is the final objective of the
DBI algorithm. The following section describes the
technique proposed in greater detail.

Construction of the DBI Algorithm Tree

This section describes the procedure used in the
construction of the DBI algorithm tree. This procedure is
composed of the following steps: 1) data preparation and
preprocessing, 2) selection of critical attribute, 3) tree
construction, 4) aggregate set pruning, and 5) paired leaf
analysis. The DBI algorithm is described in this section.

Machine Leaming 247

Data Preparation and Preprocessing. This step ensures

that all the aggregate sets to be used as “training examples™
are similar in structure,

Selection of the Critical Attribute. The first step in the
DBI algorithm is to select the critical attribute for each of
the classification trees to be built. The critical attribute is
an important one, as it is the one whose incremental worth
is to be induced from the data. To determine the
incremental worths for the values of more than one
attribute (as would typically be the case), distinct
classification trees are built by the DBI algorithm, one for
each atribute whose worth for various values is to be
determined.

Tree Construction Procedure. The DBI algorithm builds
the tree one level at a time, starting with the root node.
The number of distinct values represented by the aggregate
sets at the current node determines the number of branches
to be created at that node. If there is at least one aggregate
set supporting a branch, one will be created for that
aggregate set. Only the branches that are supported by
aggregate sets are incorporated into the node; thus no
"null” or redundant branches are ever created using this
technique.

The attribute assigned to the root node can be any
attribute except the critical one. However, in the interest of
efficiency, some heuristics can be used to select the
attribute represented at the root node or any other non-leaf
node. Please refer to (Daroszewski, 1995) for a description
of these heuristics.

Pruning Heuristics. After a complete classification tree is
constructed for each critical attribute, the algorithm enters
into the case pruning phase. Here, heuristics are applied to
identify and discard those aggregate sets whose worths are
not consistent with those of other aggregate sets in the leaf-
level group. See (Daroszewski , 1995) for more details.

Computation of Incremental Worth - The Paired-Leaf
Analysis. The final phase of the DBI algorithm is the
incremental worth calculation, the process of determining
the worth for the critical attribute of a DBI tree. This
process involves a technique referred to as paired-leaf
analysis.

Paired-leaf analysis is applied to two sibling leaf nodes.
All aggregate sets populating these leaves have identical
values for all attributes except for the critical attribute (the
parent nodes of the leaf-level nodes). Therefore, it can be
inferred that any difference in worth between aggregate
sets in two sibling leaves is the difference in their values of
the critical attribute,

The paired-leaf analysis, therefore, computes the
incremental worth W, (the incremental worth of the j*
attribute having value pvy versus having value pvy) by
examining W, the average of the overall worths of the
aggregate sets populating a specific leaf (having value pvyx

248 Gonzalez

for the leaf node value) with Wy, .., the average worth of
the aggregate sets populating a sibling leaf (having the
value of pvy for the leaf node value).

For discrete values, the incremental worth is

Wiy = (Wpa—Wyy)

For continuous value attributes that have been mapped
to intervals, the underlying continuous values should be
used, rather than discrete interval names. For these values,
the difference between the averages should be further
divided by the difference between the values themselves.
The formula should now look as follows:

wl,!.y = (wpvx - wpvy) / (pvx ~pvy) =

For example, suppose continuous values for automobile
acceleration times, which range from 1 to 20 seconds, have
been mapped into two-second intervals {{1,2) [3.4] 15,6],
..., [19,20]}. Thus, if one car has an acccleration time of 6
seconds (interval [5.6]), and another 13 (interval [13,14]),
the difference used should be (13 — 6) = 7, not the fact that
they are 4 intervals away

Finally, the same average difference found between

other pairs of sibling leaf nodes could be used to arrive ata
final average of the incremental worth for that critical
attribute.
Tree Construction Algorithm. The DBI algorithm
will organize the aggregate sets in the database in the form
of a classification tree. The tree construction algorithm is
as follows:

1. Read all aggregate sets from the database into
memory.

2. Select the atiributes whose incremental worth is to be
determined from the set of all possible attributes
occurring in each aggregate set. It will typically be
all, but the option exists to determine the worth of only
a subset of the attributes.

3. Put these attributes in a list and call it
Total_Attribute_List.

4. Make a list called Critical_Attribute_List and set it
initially to Total_Attribute_List.

5. Until Critical_Attribute List is empty, do the
following:

a) Remove the first eclement of the
Critical_Attribute_List, and store it in a variable
critical_attribute.

b) Make a list called Test_Atiribute_List and set it
to Total_Attribute_List.

¢) Remove the critical_attribute from the
Test_Attribute_List.

d) Create a classification tree consisting of an
unlabeled root node.

™g) Until the Test_Attribute_List is empty, do:

i) Using the criteria above, select the next
test attribute from the
Test_Attribute_List.

ii) Assign the test attribute to the current
node of the classification tree.

iii) Create branches corresponding to
possible values of the currently selected
test attribute.

iv) Distribute each aggregate set into the
next level by assigning them to the
corresponding branches, according to
their value for the attribute being tested
at the current node.

v) Delete the test attribute from the
Test_Attribute_List.

vi) Create a new unlabeled node
level at the end of branches
generated.

f) Assign critical_attribute to the last node level
created.

g) Create branches corresponding to possible values
of the currently selected test attribute.

h) Distribute each aggregate set into the leaf level by
assigning them to the corresponding branches,
according to their value for the attribute being
tested at the current node.

i) Prune the aggregate sets irrelevant for analysis
through the heuristics described in Section 3.3.4

j) Apply paired-leaf analysis to determine the partial
worth estimate for the critical attribute.

k) Compute the final worth for the critical attribute,

6. End

A more detailed description of the system in pseudocode
can be found in [Daroszewski, 1995].

Implementation and Evaluation of the
Difference-Based Induction Algorithm

A prototype was built which implements the DBI
algorithm. The domain used for the prototype was in
residential property appraisal. This domain lends itself
very well to this approach because determining the
incremental worth of the specific attributes of a house (the
aggregate set) has a significant impact on its appraised
value (its overall worth). Large databases of sold houses
are typically available to be used to determine the
incremental worth of several atiributes.

We developed a DBI algorithm prototype and
extensively tested it on a database of 84 single-family
houses sold during 1994 in the Alafaya Woods
subdivision, Oviedo, Florida. Sales data was obtained
from the Multiple Listing Service (MLS) database

The prototype will accept the entry of a feature of a
house whose incremental worth is to be computed from the
MLS database for that section of the city at that time. It
will return a single number indicating what the market
considers 1o be the incremental worth of that property
feature when compared to one of lesser worth

Results of Prototype Evaluation

To evaluate its effectiveness, its results were compared to
those developed manually by an expert for the same
neighborhood area during the same period of time. The
attributes compared were the number of bedrooms, the
number of bathrooms, the living area, existence of a pool,
existence of a garage, existence of a fireplace and age of
house. The DBI prototype results were in the form of a
range of values, something typically done in the appraisal
business. The percent difference between the maximum
and minimum of said ranges when compared to the
corresponding ranges computed by the expert were as
follows (the comments in parentheses represent the
expert’s evaluation of the comparison): Living area: 0-
24% (“acceptable™); Bedrooms: 49-72% (“marginally
acceptable™); bathrooms: 154-186% (“unacceptable™);
garage: 0.3-49% (“acceptable”); swimming pool: 2.5-19%
(“acceptable™); fireplace: 2.5-109% (“low end acceptable,
high end not acceptable™); age of house: 20-42%
(“acceptable™). The complete data and a more detailed
discussion of results can be found in (Daroszewski, 1995).

Conclusion

The results obtained indicate that the procedure worked
well with a relatively small database. However,
unacceptable results were obtained for the number of
bedrooms, fireplace, and the number of bathrooms. These
discrepancies could be attributed to the limited number of
houses populating the leafs used in the paired-leaf analysis.

References

Daroszewski, S.G. 1995. Mining Metric Knowledge from
Databases Using Feature-Oriented Induction, Master's
thesis, Department of Electrical and Computer
Engineering, University of Central Florida, Orlando, FL.

Quinlan, J. R. 1983. Leaming Efficient Classification
Procedures and their Application to Chess End Games.
In Michalski, R. S., J. G. Carbonell, and T. M. Mitchell,
eds Machine Learning: An Ariificial Intelligence
Approach. San Mateo, California: Morgan Kaufmann,

Quinlan, J. R. 1987. Decision Trees as Probabilistic
Classifiers. In Proceedings of the Fourth International
Workshop on Machine Learning, 31-37. Irvine,
California.

Quinlan J. R. 1993. C4.5: Programs for Machine
Learning, San Mateo, California: Morgan Kaufimann,.

Machine Leaming 249

