
Determining the Incremental Worth of Members of an Aggregate Set through
Difference-Based Induction

Avelino J. GonT~lez
University of Central Florida

PO Box 162450
Orlando, FL 32816-2450

ai~(~cce.en~r.ucfedu

Sylvia Dm-oszewski
Harris Corporation

Palm Bay, FL

Howard J. Hamilton
Dept. of Ccanputer Science

University of Regina
Regina, Canada

hamiltont~cs.m-egina.ca

Abstract

Calculating the incremental worth or weight of the
individual components of an aggregate set when only the
total worth or weight of the whole set is known is a problem
common to several domains. In this article we describe an
algc~’ithm capable of inducing such incremental worth from
a database of similar (but not identical) aggregate sets. The
algorithm focuses on finding aggregate sets in the database
that exhibit minimal differences in their corresponding
components (referred to here as affr/buwa and their values).
This 1~ocedure isolates the diasimflarities between nearly
similar aggregate sets so that any difference in worth
between the sets is attributed to these dissimilarities. In
effect, this algorithm sm’ves as a mapping function that
maps the makeup and overall wcecth cf an aggregate set into
the incremental wcrth of its individual attributes. It cotfld
also be categorized as a way of calculating interpolation
vectors f~ the attributes in the aggregate set.

Introduction
Knowing the relative contribution of individual
components of aa aggregate set in terms of their worth (or
cost, weight, etc.) to the total worth (or cost, weight, etc.)
of the whole set can be important in domains such as
engineering analysis, scientific discovery, accounting, and
real estate appraisal. A slightly different but very similar
problem is that of obtaining the incremental worth of such
individual components. This ta~k can be a difficult one
when only the total worth of the whole set is known.

The work described in this article focuses on an
approach to calculate the incremental worth of components
of aggregate sets. This is possible when a database
contains many aggregat9 sets that are homogeneous (i.e.,
have the same attributes), but dissimilar (i.e., have different
values). An algorithm is formulated which finds aggregate
sets in the d_~base that exhibit minimal differences in
their attributes’ values. This procedure strives to isolate the
single differentiating attribute/value combination of nearly
s~nilm" aggregate sets.

1. Copyright 1998 American Association for Artificial Intelligence
(www.aaai.oraL Alt fights reserved.

Any difference in worth betweert the sets can be
attributed to this singular difference. For this reason, the
algorithm is called the difference-based induction
algorithm, or DBI algorithm for short.

Definition of Terms
An aggregate set represents a collection, assembly or
grouping of member components which have a common
nature or purpose. An aggregate set is made up of these
aforementioned components. The term attribute will be
used to signify a canponent of an aggregate set, and each
attribute is said to have a partio,lAr value. A group of such
attribute/value combinations can singnlarly describe a
specific aggregate set.

The ccanponents of an aggregate set act as integral
members, which in~vidually add worth to the aggregate
set. However, their individual conlributions to the total
worth of the aggregate set may not be explicitly known.
We will use the term worth here generically to mean a real
number representing the worth, weight, cost, price or any
other similarly quantifiable factor.

An aggregate set, AG, is therefore defined as a pair
ccusisting of a set containing its components (called
attributes, A), and the total worth of the aggregate set,
(worth). Therefore, the ’~ aggregate set AG! (of n total
aggregate sets) can be represented by a pair as

AG, = <At worth1>.

At is further defined as the group of attributes for the set
AGi, such that for m attributes in AGI:

At = {au a,~ a~ a~ a~ ... a~.}
where all is the name of the ju~ attribute of the i~ aggregate
set.

Furthe~’more, each aUribute, atj, represents another pair
depicting the value of the attribute (v~l), and its individual
worth (w~). The individual worth of an attribute is the
amount that this attribute conu’ibutes to the overall worth
of the aggregate set (worth0. In the problems described
here, w~a is typically not known.

Care should be taken to not confuse the terms "value"
and "worth". Value is the value inherent with that
attribute, much like attribute-value pairs in frames or the

Machine Learning 245

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

value of an attribute in a relational c~t_~base. The value of
an attribute can be either discrete or continuous. Discrete
values can be binary, such as present or not-present, Yes or
No, etc., or nou-binary. A non-binary aUribute can take on
one of several possible values, which may be numerical or
symbolic in nature. Non-binary discrete attributes (such as
the engine-size of a car) typically have a relatively small
set of possible values (4-cyl, 6-cyl, 8-cyL). Continuous
attributes, on the other hand, such as the time to accelerate
from 0 to 60 MPH, can take on a value from a much larger
domain. The range of the continuous domain values can
be divided into several sub-intervals (i.e., 5-6 secs, 7-8
secs, 9-10 secs, 10-11 secs, 12-13 secs and so on) to
couvert a continuous value into a discrete one.

Thus, the pair defining the j,h attribute aj of the
aggregate set AGi is

Ai = <via wi~>.

The value of an attribute, via must come from a pre-
defined set of possible values or range,

Vtj (element of){pvt pv2 pvs pv4 pvs ...pvj}

(if discrete)
pw.. <= rid <= pv..x

(if continuous range)

We furthcn-nore define the subtle difference between
relative worth and incremental worth. If w~l were to
represent the relative worth, it must be true that

worthj = (wj,l + wi,2 + wl,3 + + wi,=).

However, this is not a necessary condition if wu
represents the incremental worth of an attribute/value
cc~nbination. Our algoriflun does not require the above
expression m hold.

A database, DB, containing n aggregate sets can be
defined as

DB = {AGI AG2 AG3 AGe}.

The DBI algorithm, however, assumes that all aggregate
sets in DB have exactly the same attributes. Any
difference between the aggregate sets is reflected by the
values of its attributes. However, if an aggregate set were
to lack a particular attribute, this can be represented by
assigning a value of false or none to the missing attribute.
Using the same definition formalism, this homogeneity of
aggregate sets could be represented as:

(for all) i, W =a,+u

This would allow the following simplification in our
definition:

A={al a2 a3 a4 .. aj .. a=}

However, since the value of an attribute can differ
betweert the various aggregate sets, the value and its worth
remain as previously defined:

aj = <vid wq >.

Thus, it is ~ required that

(for all) i, vij = vl÷ld and wti = wmj

It is the goal of our work to determine the incremental
worth of a specific attribute/value combination in an
aggregate set. Since the domains where this information
would be highly useful are not fields of exact sciences, the
relative or incremental worth of an ipAividual
attribute/value combination can vary somewhat between
various aggregate sets in the d_A~abase. Our goal, therefore,
is to find the average incremental or relative worth of a
particular attribute4value combination based on the overall
worths of several aggregate sets.

Lastly, the critical attribute is defined as the attribute
whose incremea3tal worth is to be discovered for different
value assignments.

To put these definitions in proper perspective, we will
apply them to a description of the value of cars in an
automobile dealership. A dealership may have a large
number of automobiles (aggregate sets) in their invontory
(database). Each automobile has a set of atwibutes (engine
size, tires, color, doors, power steering, power brakes, etc.)
which, when assigned specific values, describe it. Each of
these atlribute/value combinations contributes to the car’s
total worth. Each attribute is defined by its name (e.g., a3
= engine-size), its value (e.g., vi,3 = 6-cyl), and its
incremental worth (in this case it represents the price) (e.g.,
w~,~ = 500). In some cases, the differance between cars is
in the values of their attributes (e.g., 4-cyl vs. 6-eyl engine-
size). In others, it is in whethex they even exist (a car has
or does not have air conditioning).

The relative versus incremental worth of each aUribute
can be explained in the difference between buying a new
car and a used car. In a new car purchase, the final price of
the car is (ideally[) determined by the car’s cost
manufacture plus the overhead and profit set by the
manufacturer, plus that of each option ordered by the
buyer. Reduction in any of these directly affects the final
price of the car. In a used car purchase, however, the price
of the car is set by the market, rather than by the
manufacturer’s cost. While increments to the retail price
are suggested because of things like low mileage or year of
make, these do not add up to the total price of the car.
Thus, these represent incremental values.

The Difference-Based Induction Algorithm
and Associated Procedures

The basic concept of our approach is that by isolating the
differences (as represented by aUribute/value
combinations) between nearly similar aggregate sets in

246 Gonzalez

database, the incremental or relative worth of the
differentiating attribute/value combination can be said to
account for the diff~enee in the total worth of the
aggregate sets. The average incremental worth of an
attribute/value combination can then be computed from
several specific Cemlmtations of these differences in total
worth. We propose a technique that can efficiently identify
the differences betwee~ aggregate sets that have multiple
attributes, and quantify these differences. This
quantificatkm of differences is not difficult when the
attributes are few, but it can be a daunting ~sk when they
are numerous. Thus, the DBI algorithm IXesented here is
designed to segregate aggregate sets in terms of their
differences, and quantify the we~th of these diff~ences.

The DBI algorithm builds a decisiou tree whose leaf
level nodes each c~tain a group of identical aggregate
sets. In many ways, this approach is similar to ID3 and its
successors [Quinlan 1983, 1986, 1987, 1993]. Quinlan’s
algorithms induce a classification tree from a set of
training examples that are described in terms of a
collectiou of attributes, where each example belougs to oue
of several mutually exclusive classes. A set of rules is
produced frcqm this tree that is capable of classifying
examples similar to those froth which the roles were
induced. Each rule is represented by a path in the
classification tree that goes froth the root node to a leaf
node indicating a specific classification. Each level in that
path specifies oue attribute and the branches emanating
from the nodes in a level represent their possible values.

The differences betwee~ the DBI algorithm and ID3,
CA, C4.5 and other similar ones, are not so much in how
each builds the classification tree, but rather, in how the
tree is used after it is built, and the source of the
examples.

Objective of the DBI Algorithm
In c~der to understsnd how the DBI algorithm works, it is
important to first understand what it attempts to achieve in
the cc~text of the defmitious provided in the previous
section. The objective of the DBI algorithm is to calculate
a general estimate for the incremental worth of each
attribute/value c¢lnbination when compared with anothe~
value for the same attribute. More specifically, it
empirically computes the average incremental worth,
lwj,,~, of a specific value pv= of attribute j when cc~pared
with value pvI for the same attribute. This estimate can
then be used to estimate the total worth of a new aggregate
set when it is compared to other aggregate sets in the
database which differ by this attribute~value cembination.
Ideally, the empirically discovered Iwj,z,7 is constant for all
aggregate sets, but this is not a necessary condition.

It should be noted that the DBI algorithm (Ices not
attempt to determine the individual values of w~j for each
aggregate set in the database. While these values are
typically unknown, they are often not necessary, and thus,

it is not cur main objective. They can be easily c, vmFated
by making scrne simple modificatiens to the algorithm.
However, we have left this as a subject of future work.

Description of DBI Algorithm
Each level in a classification tree, as in couventional
induction algorithms, represeats one attribute. The
exception to this is the leaf level, which simply acts as a
repository of aggregate sets to be used in fialher analysis.
With this exceptiou, all nodes at the same level represent
the same attribute. Each branch emanating from a node
represents a specific possible value or a "discretized" range
of values for that attribute.

Aggregate sets found in DB are distributed throughout
the tree according to their attributes and their values.
Begirming with the root node, distribution takes place by
repeatedly passing each aggregate set frcern a present node
at cene level to a child node at the next level through the
branch correspouding to the aggregate set’s value for the
attribute represented by the parent node. Therefore, all
aggregate sets collected in any one node are identical
insofar as the attributes considered in that level and in all
ancestor levels of the tree. As new successor levels are
added and the aggregate sets are further dislributed, they
will be further segregated, with fewer and fewer sets
populating any one node. This process continues tmtil all
atlributes have been represented in the tree up to and
including the critical attribute, which is represented at the
level above the leaf level.

Aggregate sets found at the ~me leaf node are identical
to each oth~. They, however, are similar to the sets in a
sibling leaf node in all attribute values except one - the
attribute at the level of the leaves’ parent node. Thus, any
differences in worth between aggregate sets in sibling
leaves can be inferred to be attributed to the difference in
the value of that single attribute.

The classification of the groupings to which aggregate
sets in the leaf nodes belong is not important in the DBI
algoriflun. It is ouly important to know that the sets are
similar emong themselves, and minimally different frum
sets populating sibling leaf nodes. Identifying and
quantifying these differences is the final objective of the
DBI algorithm. The following section describes the
technique proposed in greater detail.

Construction of the DBI Algorithm Tree
This section describes the procedure used in the
construction of the DBI algorithm tree. This procedure is
cmnposed of the following steps: I) data preparation and
preprocessing, 2) selectiou of critical auribute, 3) tree
construction, 4) aggregate set pruning, and 5) paired leaf
analysis. The DBI algorithm is described in this section.

Machine Learning 247

Data Preparation and Preprocessing. This step ensures
that all the aggregate sets to be used as "training examples"
are similar in structure.

Selection of the Critical Attribute. The first step in the
DBI algorithm is to select the critical attribute for each of
the classification trees to be built. The critical attribute is
an important one, as it is the one whose incremental worth
is to be induced from the data. To determine the
incremental woxths for the values of more than one
attribute (as would typically be the case), distinct
classification trees are built by the DBI algorithm, one for
each attribute whose worth for various values is to be
determined.

Tree Construction Procedure. The DBI algorithm builds
the tree one level at a time, starting with the root node.
The nmnber of distinct values represented by the aggregate
sets at the current node determines the number of branches
to be created at that node. If there is at least one aggregate
set supporting a branch, one will be created for that
aggregate set. Only the branches that are supported by
aggregate sets are incorporated into the node; thus no
"null" or redundant branches are ever created using this
technique.

The attribute assigned to the root node can be any
attribute except the critical one. However, in the interest of
efficiency, some heuristics cart be used to select the
attribute represented at the root node or any other non-leaf
node. Please refer to (Daroszewski, 1995) for a description
of these heuristics.

Pruning Heuristics. After a ctanplete classification tree is
constructed for each critical attribute, the algorithm enters
into the case pruning phase. Here, heuristics are applied to
identify and discard those aggregate sets whose worths are
not consistent with those of other aggregate sets in the leaf-
level group. See (Daroszewski, 1995) for more details.

Computation of Incremental Worth - The Paired-Leaf
Analysis. The final phase of the DBI algorithm is the
incremental worth calculation, the process of determining
the worth for the critical attribute of a DBI tree. This
process involves a technique referred to as paired-leaf
analysis.

Paired-leaf analysis is applied to two sibling leaf nodes.
All aggregate sets populating these leaves have identical
values for all attributes except for the critical attribute (the
parent nodes of the leaf-level nodes). Therefore, it can be
inferred that any difference in worth between aggregate
sets in two sibling leaves is the difference in their values of
the critical attribute.

The paired-leaf analysis, therefore, computes the
incremental worth W~I (the incremeatal worth of the jt~
attribute having value pvx versus having value pvy) by
examining Wj,~, the average of the overall worths of the
aggregate sets populating a specific leaf (having value pvx

for the leaf node value) with Wj, ~,y the average worth of
the aggregate sets populating a sibling leaf (having the
value of pv~ for the leaf node value).

For discrete values, the incremental worth is

Wj~I = tWp~- W.1)

For continuous value attributes that have been mapped
to integvals, the underlying continuous values should be
used, rather than discrete interval names. For these values,
the difference between the averages should be further
divided by the difference between the values themselves.
The formula should now look as follows:

Wj,x,y = (Wp,ffi - Wp,7) I (pvx - pry)

For example, suppose continuous values for automobile
acceleration times, which range from 1 to 20 seconds, have
been mapped into two-second int~vals {[1,2] [3,4] [5,6],
.... [19,20] }. Thus, if one car has an acceleration time of 6
seconds (interval [5,6]), and another 13 (interval [13,14]),
the difference used should be (13 - 6) = 7, not the fact that
they are 4 intervals away

Finally, the same average difference found between
other pairs of sibling leaf nodes could be used to arrive at a
final average of the incremental worth for that critical
attribute.
Tree Construction Algorithm. The DBI algorithm
will organize the aggregate sets in the database in the form
of a classification tree. The tree construction algorithm is
as follows:

1. Read all aggregate sets from the database into
memory.

2. Select the attributes whose incremental worth is to be
determined from the set of all possible attributes
occurring in each aggregate set. It will typically be
all, but the option exists to determine the worth of only
a subset of the attributes.

3. Put these attributes in a list and call it
Total Attribute List.m

4. Make a list called Critical_Attribute_List and set it
initially to Total_Attribute_List.

5. Until Critieal_AttributelJist is empty, do the
following:
a) Remove the first element of the

Critical_Attribute_List, and store it in a variable
critical attribute.

b) Make a list called Test Attribute List and set it
to Total Attribute Li~.

c) Remove the c~tical attribute from the
Test Attribute List.

d) Crea~e a clas~fication tree consisting of an
unlabeled root node.

--e) Until the Test_Attribute_List is empty, do:

248 Gonzalez

it)

iii)

Using the criteria above) select the next
test attribute from the
Test Attribute List.
As~,l the test a’U~bute to me cmxent
node of the ch.~d~ ~ee,
Create br-~es c~rr~dmg to
possible values of the currently selected
test attribute.
Distribute each aggregate set into the
next level by assigning them to the
corresponding branches, according to
their value for the attribute being tested
at the clm~t node.
Delete the test a~ibute frmn the
Test_AttributeList.

vi) Create a new unlabeled node
level at the end of branches
generated.

f) Assign erlticul_attrlbute to the last node level
created.

g) Create branches c(z’responding to possible values
of the currently selected test attribute.

It) Distribute each aggregate set into the leaf level by
assigning them to the era’responding branches,
according to their value for the attribute being
tested at the current node.

i) Prune the aggregate sets irrelevant for analysis
through the heuristics described in Section 3.3.4

j) Apply paired-leaf analysis to determine the partial
worth estimate for the critical attribute.

k) Ccmpute the final wcrth for the critical attribute.
6. End

A mc~e detailed description of the system in pseudocode
can be found in [Daroszewski, 1995].

Implementation and Evaluation of the
Difference.Based Induction Algorithm

A prototype was built which implements the DBI
algorithm. The domain used f~ the prototype was in
residential property appraisal. This domain lends itself
very well to this approach because determining the
incremmtal worth of the specific attributes of a house (the
aggregate set) has a significant impact m its appraised
value (its overall wcxth). Large databases of sold houses
are typically a~jlable to be used to determine the
incremental w~th of Several attributes.

We developed a DBI algorithm prototype and
extensively tested it ca a database of 84 single-family
houses sold during 1994 in the Alafaya Woods
subdivisiou, Oviedo, Florida. Sales data was obtained
from the Multiple Listing Service (MLS) database

The prototype will accept the entry of a feature of a
house whose incremental worth is to be computed frc~ the
MLS database for that sectim of the city at that time. It
will return a single number indicating what the market
ccmiders to be the incremental ~ of that In~exty
feature when compared to one of lesse~" worth

Results of Prototype Evaluation
To evaluate its effectiveness, its results were ccempared to
those developed in~zmlly by an expert for the same
neighb~hood area during the same period of time. The
aUributes cempared we~’e the number of bedrooms, the
number of bathrooms, the living area, existence of a pool,
existence of a garage, existence of a fireplace and age of
house. The DBI prototype results were in the form of a
range of values, something typically done in the appraisal
business. The percent difference betweea the maximum
and minimum of said ranges whm compared to the
cmTesIxmding ranges ccemputed by the expert were as
fotlows (the ccennents in parentheses relxe..umt the
expert’s evaluatiou of the comparison): Living area: 0-
2.4% ("acceptable"); Bedrooms: 49-72% ("marginally
acceptable"); bathrooms: 154-186% Ctmacceptable’);
garage: 0.3-49% ("acceptable"); swimming pool: 2.5-19%
("acceptable"); fireplace: 2.5-I09% ("low end acceptable,
high end not acceptable’); age of house: 20-42%
("acceptable"). The complete data and a more detailed
discussiou of results can be found in (Daroszewski, 1995).

Conclusion
The results obtained indicate that the procedure worked
well with a relatively small database. However,
zmaeceptable results were obtained for the number of
bedrooms, fireplace, and the number of bathrooms. These
discrepancies could be atwibuted to the limited number of
houses populating the leafs used in the paired-leaf analysis.

References
Daroszewski, S.G. 1995. Mining Metric Knowledge from

Databases Using Feature-Oriented Induction. Master’s
thesis, Doparlment of Electrical and Cemlmter
Engineering, University of Cemral Flc¢ida, Orlando, FL.

Quinlan, J. R. 1983. Learning Efficient Classification
Procedures and their Application to Chess End Games.
In Michalski, R. S., J. G. Carbouell, and T. M. Mitchell,
eds Machine Learning: An Artificial Intelligence
Approach. San Mateo, California: Morgan Kaufmmm.

Quinlan, J. R. 1987. Decisive Trees as Probabilistic
Classifiers. In Proceedings of the Fourth Intematioual
W~kshop ou Machine Learning, 31-37. Irvine,

Quiidan J. R. 1993. C4.5: Programs for Machine
Learning, San Mateo, C.alifomia: Morgan Kaufraann,.

Machine Learning 249

