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Abstract

In order to reduce computatiomd ald storage
c~sts of learning methods, we present a proto-
t.,~T)e selection algorithm. This apl)roach uses il,-
formation contained in a connected neighborhood
graph. It determines the number of homogeneous
subsets in the Rp space, and uses it to fix the
number of prototypes in advance. Once this num-
ber is determined, we. idcntii~," prototypes apply-
ing a stratified Monte C~rlo sampling algoritl,n,.
We. prc~ent an application of our algorithm oll a
simulat(xl example, comparing results witil those
obtained with other methods.

Introduction

Sel(x.tion of relevant prototype subsets has interested
mlmerous se’~rehcrs in pattern recognition for a long
time. For example, non parametric classification meth-
ods such as k-nemwt-neighbors (tIart 1968), Parzen’s
¯ u~indou,s (Parzen 1962) or more generally methods
ba~d on geonmtrical models (Seb~mn t996), (Preparata
and Shamos 1985), have the reputation to have high
computational and storage costs (Jain 1997), (’~Vatson
1981), (Devijver 1.082). Actually.. the belonging class
determitmtion of a new instance often rcquire~ distanoc
calculations with all points stored in memory. Never-
thcless, the simplicity of these approach(~ encourages
searchers in pattern re(u~gnition to build strategies to
r(xluce the size of the learning sample, kec~fing cla.~sifi-
cation accuracy (Hart 1968), (Gates 1972), (Ichino 
Sklansky 1985) and (Skalak 1994).

Intuitively, we think that a small number of proto-
cypes can have comparable performanc~ (and perhaps
higher) to those obtained with a whole m~mplc. We
justin’ this id~x with two re~asons :

I. Some noises or repetitions in data could be deletcxl,

2. ~t(’h prototype can be viewexl a~s a supl)lementary
dcgrcx~, of freedom. If we rex|uce the mmlber of proto-
type~, we can sometimes avoid overfitting situations.
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Intelligence (www.aaai.org). All rights reserved.

Figure. 1: Point pruning by the rectangle method : 2
points are linked by an edge if the rectangle covering
them does not contain an)" point ; points l and 2 are
then deleted because the are not linked to any poiut of
the set.

To reduce storage, costs, some approachc~ us(r algo-
rithms ~leeting misclassified instances such ~-~ the con-
densex/ nearest neighbors (Hart 1968) which a/low.s 
find a consistent subsel, i.e. by correctly classifying
all the remaining points in the sample set. In ((.lares
1972), the author propos~ the rexl.uced ncare..~t neigh-
bor rule which improves the previous algorithm finding
the minimal consistent ~ub~et if this one 1)elon~,~ to the
Hart’s consistent subset.

Among lhe other available algorithms, lchino and
Sklansky, in (Iehino and Sklansky 1985), propose 
take into account empty r(x’tangles linking points be-
longing to different classes to select prototyl)cs (fig-
ure 1).

In (Skalak 1.994), the author suggcsls two diiferent
prototype sekx:tion algorithms : the first one is a Mon! c
Carlo sampling algorithm ; the second one applic~ ran-
dora mutation hill climbing, where fitness fu.nctio.n is
the classification SllC(’(~.~s rat(: on the lc,’trning .~ample.
Our approach presented in this article is derived from
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the first one. This is the reason why we briefly review
in tim next section the useful aspects of the Skalak:s ~-
lection algorithm. This method being limited to simple
problems where clasps of patterns are easily" separable,
we propose in section 3 an extension of the principle
which determines in ad~ance the number of prototypes
from a connected neighborhood graph. In order to show
the interest of our approach, we apply the algorithm on
~,n example in section 4.

The Monte Carlo Sampling Algorithm

Thc principle of the Monte Carlo method is based on
rcpcated stochastic trials (n). This way to proceed al-
lows to approximate the solution of a givcn problem.
In (Skalak 1994), the author suggests the following al-
gorithm to determine prototypes. The number of pro-
totypes (m) is fixed in advance as being the number 
classes to learn.

I. Select. ’n random samples, each sample with replace-
ment, of m instances from the training set.

2. For each sample, compute its classification accuracy
on the training set, using a 1-near~qt neighbor algo-
rithm (Cover and Hart. 1967).

3. Select the sample with the highest (:htssification ac-
curacy on the training set.

4. Cla.ssi~. the test set using as prototypes the sample
with the highest classification ac~curacy on the train-
ing set.

This approach is simple to apply, but. t.o fix m as
being thc number of classes is restrictive. Actually, it
is limit, ed to simple problems where cla.-~ses of pat! erns
are easy to separate. We can imagine some problems
where the m classes are mixtxi, and where m prototypes
are not sufficient. In the next section, we propose an
improvement of this algorithm, searching for the num-
ber of protot~2~es in ad~ncc, and applying afterwards
a stratified Monte Carlo sampling.

Figure 2: Examples of geometrical structures : on the
one trend, the first example (a) shows a simple probleln
dealing with 2 classes (black and white). These classes
arc represented by two main structures of points be-
longing to the same class ; on the other hand, the sec-
ond example (b) shows mixed classes, with numerous
geometrical structures.

Homogeneous Subsets Extraction and
Prototypes Selection

We think that performances of a learning algorithm,
whatever the algorithm may be, depends necessarily
on geometrical structures of classes to learn (figure 2).
Thus, we propose to characterize these structures in Rp,

called homogeneous subset.s, from the construction of a
connected neighborhood graph.

Definition 1 : A graph G is composed of a set of ver-
ticea noted ~ linked by a set of edgez noted .4 ; they a~?
thus the couple (VZ,A ).

Definition 2 : A graph is considered conne~:tc~ if, for
any couple of point,~ {a, b} E E’~, there exists a s<a’ies of
edges joimng a to b.

Wc automatically deternfine the number of proto-
types applying the following algorithm :

1. Construction of the minimum spanning tree. This
neighborhood graph ks connected and toni ains the
nearest neighbor of each point (figure 3).

Figure 3: Mininmm Spanning qYee (MST) : in this
graph the edge len~h sum is minimum. Froln n points.
thc MST has ~dwavs n-I edges.

2. Construction of homogeneous subsets, deleting edges
connecting points which belong to different, chtssc,~
(white and black). Thus, a homogeneous subset is a
connected sub-graph of the Minimum Spanning Tree
(figure 4).

® ®
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Figure 4: Homogeneous subsets

Machine Learning 251



Tile number of homogeneous subsets seems to charac-
terize the complexity to learn classes of patterns. Thus,
the more this number is high, the more the num-
ber of prototypes must be high. Actually, when the
problem is simple to learn (figure 2.a), a small number
of prototypes is sufficient, to characterize all the learn-
ing set.. On the contrary, when the problem is (x)mplex
(figure 2.b), the number of prototypes converges on the
number of learning points. Thus, we dcx:ide to fix the
mnnber of prototypes in a(l~nce as being the number
of homogeneous subscls. Afterwards, we search for the
best instan¢x~ of each homogeneous subset, to identi~’
its protot.~33e. To do t.hai, we apply a stratified Monte
C.arlo sampling.

¯ ¯ ++

.

l"igure 5: Example with two classem and 100 points

Example

Presentation

Wc apply in this section our prototype selection algo-
ril hm. Our problem is a simulation, with two classes (’q
and C2 (figure 5), where:

I. (Ti contains 50 black points : VXi E Ct,Xi =
N(p, a~ 

2. (."2 contains F~ white points ; VXi E C..2,Xi =-
N(p, a.2), where crI > a~.

With th(~e parameters we. wanted to avoid two cx-
! reme situa!ions :

1. Ihe 2 ¢’la.~es are linearly separal)le. In this (’~L~(: (loo
simple) 2 prototypes are sufficient.

2. the 2 classe,~ are totally mixed. In this ease (too com-
plex) the tmmber of prototypes (?n) converges on 
number of points (n).

The validation set is (’Oml)(rsed of 100 new ca~s,
extually chtxsen among the t~l~tr() clas.~ C1 and C.~.
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Table l : Results obtained on a ~diclat.ion set : the first.
column corresponds to the sucz.e.~s rate obl.ain(xl with
our procedure ; the second corresponds to t, hc. Skalak’s
method, and the third one to the succc,~s rate o})tained
wit.hout reduction of the learning set

Results

In order to show the interest of our approa(’h we want
to verify that the rexluction of the learning set ¢1o~
not reduce significantly the revognit.ion perforntance~ of
the model built on this new learning sample. We nmst
verify that the success rate obtained wit h the sub.set is
not significantly weaker t.han Lhe ont: obtained wit h the
whole sample.

Applying our algorithm of homogent.~ms sub~,t ex-
tract:ion, we obtain m = 32 structures (figure 6). l{e,-
sults are presented ilL tit(; table 1, with ’n = I(X) t.rials.

This experiment shows that our algorithm allows to
obtain a large reductkm in sl orage, and results are (’lose
t.o those obt.ained with the whole learning ~;t.. The al)-
plicat, iol, of a frequency (xmlparison test doc~ not. show
a significant difference between the two rates (7"1% vs
73%). On the contrary, we bring to thc fore. with tt,is
example the limits of the SLalak’s algorithm, where the
number of prototyl)cs is fixed in advance ~m t.h(" number

Figure 6: .Mininmm Spanning tree built on the training
sample ; edge~ linking points which belong to difforem
classes are deleted ; |hen, we obtain 32 holnogt’ll(~tnls
sulx~et.s.



Conclusion

We think that the reduction of storage costs of a learn-
ing se¢ is close~" related to the mixing of classes. In
this article we have proposed to characterize this mixing
by searching for geometrical structures (called homoge-
neous subsets) that link points of the same class. The
smaller the number of structures is, the more the re-
duction of storage costs is possible. The main interest
of our approach is to establish a priori the reduction
rate of the learning set. Once the number m of pro-
totypes is a priori fixed, numerous methods to select
them are then available : stochastic approaches, genetic
algorithms, etc. We have used a Monte Carlo sampling
algorithm to compare our approach with other works.
Nevertheless, we think that the I-nearest neighbor rule
is not always adapted to classes with different, stan-
dard deviation. Then, we are working on new labeling
rules which take into account, other neighborhood struc-
tures : Gabriel structure, Delaunay polyhedrons, Lunes,
etc. (Preparata and Shamos 1985). These decision rules
may allow to extract better prototypes from homoge-
neous subsets, using not only the I-nearest neighbor to
label a new unknown point but also the neighbors of
neighbors.
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