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Abstract

Instance (or object) classification in a knowledge base
management system is the very same problem as view
determination in an object DBMS, where views are subsets of
classes intensionally defined by constraints. Maintaining the
relationship between an object and its current views when the
object evolves is a difficult and costly problem. We propose a
solution for instance classification based on a partitioning of
the object space obtained through a static analysis of the
properties defining the viev, s. Four kinds of properties are
considered: domain constraints, inter-attribute dependencies,
dynamic (past temporal) constraints, and linear constr:,.ints.

Introduction

Instance classification (or recognition) in a knowledge
base management system consists in determining the
current classes of an object -an instance- according to its
attribute values and the properties characterizing the
class. As the term "class" is polysemic, we shall
consider classes as disjoi,lt families of objects, and
views as subsets of a class, characterized by constraints
on the attributes of this class. Therefore instance
classification consists in determining the current views
of an object. We make a clear distinction between views
and classes because in the standard object modcl,
coming from the programming field, an object bclon-.s
to a unique class and never cl,anges its class during its
lifetime, whereas it can belong to several views
according to its current attribute values. In a Description
Logic perspective, views are defil,ed concepts whereas
classes correspond to primitive concepts. An object is
assigned to a class but its views are automatically
determined by the system, which is the process ~:.f
instance classification. Note that instance classification
is distinct from view (or concept) classification ~hich
consists in ordering views according to the subsuml~tiL.m
relationship [2].

An object is classified when created, and re-
classified after each update. "l’hc question of t~bjcc:
updating is not usually addressed by KBMS, where the
purpose is to determine tile ctlrrcrtt subcla.,,se.~ t,f a:~
object at a given time (e.g., a f::ult, a disease). Howcxe:,
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the need to deal with large quantities of objects in
k~:o~ledge bases leads to considering the problem of
instance classification (or view determination) l’t~r
changing objects [9].

Classification is a costly operation, all the more it h:ts
to be performed after each update. Our approach aims
to minimize the re-classification cost by maximizing the
static work done on the constraints which define the
vi,:ws. Although it can be applied to other systems (e.g.,
Description Logics, object-preserving OODBMS), we
prc.,,cnt it in the context of our system. Osiris. which
ans~ ers both database requirements (large quantities of
changing objects shared by several categories of users)
and knowledge base requirements (deduction.
cl~,.ssi fication).

Data Model

In Osiris, a class is defined by the set of its constituent
views. The views are organized in a hierarchical
manner. A root view, also called the minimal view,
ct,ntains the necessary conditions for an object to
belong to the class. Other views are defined by the
views they specialize and their own properties (attribute
and/or constraints).

The extension of a class is that of its minimal view.
A~signing an object to a class implies verifying it
satisfies the properties of the minimal view. The
i,roperties (own and inherited) of other views are
necessary and sufficient conditions, thus making
possible the automatic determination of the current
view(s) of an object of the class, which is instance
clas.,,ification. The minimal view of a class is similar to
a primitive concept and the other views similar to
dcfi~,ed concepts in Description Logics. The properties
of the minimal view of a class are the integrity
c,,nstraints of the class. The properties of the other

Jews guide the classification process.
In our approach, both the checking of integrity

c,,n~traints and instance classification are part of the
cias.,,ification process, which is optimized due to a static
:,.al.vsis of the constraints which leads to a partitioning
t,f ti~c object space. Four kinds of constraints arc
c, n.~!dercd:
tl)) Domain constraints, which are Domain Predicates

(DP), i.e., of the form Attribute ~ Domain. Domain
constraints are used to restrict the definition domain

254 Simonet

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



of an attribute and are the basic constituents of
database constraints and of rule=based expert
systems.

(I) Inter-Attribute Dependencies (lAD), which are Horn
clauses whose literals are DPs. Examples of IADs
are (i 1) and (i2) below.
Domain constraints are a particular case of IAD.

(H) Historic constraints (e.g., hl), which are 
temporal logic (propositional) formulas, constructed
from state formulas to which past temporal
operators and connectives are applied. Two past
temporal operators are considered: the universal
operator O (<< always in the past ))) and 
existential operator 0 (,~ once in the past ,,).

Historic constraints are a superset of Inter-Attribute
dependencies.

(L) Linear constraints on continuous domains (e.g., I1).
We present below the treatment of binary
constraints. N-ary constraints (N>2) arc also
considered by first translating them into binary ones.

Here are examples of view definitions in the class
PERSON.

Example
class PERSON

ssNo: INT;
(dl):
(d2):
(d3):

(d4):
(d5):
(il):

02):

--Minimal view

age: INT in ]0, 140]; -- Domain constraint
sex: CHAR in {’m’,’f};

militaryService: STRING in {"no". "ongoing",
"done", "deferred", "exempt" };
income: REAL > someConstant;
nbChildren: INT _> 0;
age< 18 ~ militaryService = "no";

-- Inter-Attribute Dependency
age>18 and sex="m"~ militaryServicc in
{"ongoing", "done", "deferred", "exempt"};

end PERSON;
view ADULT: PERSON age >_ 18; end ADULT;

view SENIOR: PERSON age >-- 65; end SENIOR;

view HIGHLIFE: PERSON
(hi) O ( age>30 ~ 0 (salary > 200 

^ 0 age>30; -- Historic constraint
end HIGHLIFE;

view LOWINCOME: PERSON
(11) income - nbChildren * someFactor < 50;

-- Linear constraint
end LOWINCOME;

To belong to the class PERSON, an object must satisfy
the constraints of the minimal view, i.e.. constraints
(d l-d5) and (i l-J2). According to the current value of 
attributes, it will be classified in other views, possibly
none. We now present the building and use of the object
space partitioning.

Classification Space

Instance classification in Osiris is performed on the
basis of a partitioning of the object space, called the
Classification Space, which is obtained by a static

analysis of the Domain Predicates occurring in the
constraints of type (D) and (I) in the views of a p-type.

Each DP on an attribute defines a partitioning of this
attribute into two blocks: the extension of the DP and
its complement to the definition domain of the attribute.
The product of all the partitions defined by the DPs on
an attribute is also a partition. We call its elements
Stable SubDomains, in short SSD, because when an
attribute changes its value while remaining in the same
SSD, no DP changes its truth value. Some SSDs of the
example given above are:

age: dI I = [0, 18[, d12 = [18, 30], d13 = ]30, 65[.
all4 = [65,140]

sex: d21={’m’}, d22={T]
militaryService: d3 I={"no"},

.d32=1 "ongoing", "done", "deferred", "exempt"}

Eq-classes of a class are then defined as the quotient
space of the object space relative to an equivalence
relationship called DP-equivalence. Two instances ol
and 02 are DP-equivalent iff V p ¢ A, p(ol)=p(o2),
where A is the set of DPs occurring in the views of the
class.

Given an Eq-class, it is possible to determine its
views at compile time, i.e., the views its objects satisfy
and those they do not satisfy (when considering only
domain-based constraints, i.e., assertions of type (D)
and (1)). To do so, one has only to cheek the assertions
of the view for an object of the Eq-class. because all the
objects have the same behaviour relative to DPs, hence
to assertions, and consequently to views.

The cartesian product of the SSDs of the attributes of
a p-type is called its classification space. It is
constituted by a set of eq-classes. As the number of eq-
classes of a p-type is exponential to the number of
attributes, they are never represented in their totality.
Only the eq=classes which contain at least an object of
the database are effectively created and used to index
tile objects [lO]. However, the classification space
underlies the classification process and much of the
work done by the Osiris system. The classification
Space of the p-type PERSON is shown Fig. I.

Eq-class (d 14,d22,d32)

Military~erviee , ,’ ., ..... 1’. ..1.°,.,~,.°.,°.. _-... ....... ¯

.+.---.T-..I,"’ :- ,,." ! .,"i_,.’::.i: ./’i -W’I :

d : "* %’-- : " " ~-’~ " ) "32 : f... e..,:g,.1,,,,,,,.a,,,,al ........
~,,,/,a,,

p ".- t--- o
..~---. ......

£¢’. ...... "7~ ...... ; ’. ~ ...... ¯
d31 [ .z- _- .... , . "’~" --

_-----i.-" !,,," /d22
Sex’-dll - d12 "dl--"3 " dl’-’4"

Fig. ! : Eq-classes of the class PERSON
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Domain-based Constraints

we first consider instance classification in views
defined by domain-based constraints, i.e., domain
constraints (D) and inter-attribute dependencies (I).

Instance classification is performed by an automata
with a connectionist architecture where all the nodes
and arcs are determined statically (there is no learning).
SSDs of the classifying attributes constitute its input
layer, and views constitute the output layer. We present
below the principle automata (Fig. 2) although it is not
used in practice because of its size due to the explicit
representation of the eq-classes. However, it is simpler
to understand than the actual network, where the eq-
class layer is replaced by two intermediate layers
representing the logical connectives of the constraints.

For a completely known object, only one cell of tile
eq-class layer will be active, that representing its eq-
class, and corresponding to its attribute values. Active
cells have an output value 0. others 1.

The output function of the cq-class layer is tile
product of its input values. So, the active eq-cla.,,s cell is
that whose input is Ix l×...xl. The other cells have at
least one input value which is O. There are as many ¢cl:s
as the Cartesian product of the SSDs. All the connections
are not represented on the diagram of Fig. 2.

The output function of the views layer is the sum uf
the input values of a view cell, thus expressing that a
view is valid if and only if the object being classific,l
belongs to one of the eq-class which validates that vie~.
So, all the views which are connected to the valid ell-
class are themselves valid and have an output value 1;
the other views are invalid and have an output wdue 0.

INPUT Eq-classes OUTPUT
Attribute SDSs Views

Attr1~

V1

V4

Fig. 2 : Principle Classification Network

In the case of object updating, when tile modified
attribute does not change its SSD, it is not necessary to
perform further classification because of the stability
property of SSDs: the object continues to satisfy exactly

the same views.Therefore, following most updates.
instance classification will be reduced to checking that
the attribute remains in the same SSD.

The input to this automata is 0 or I for each SSD ard
the output is a value in [0,1] for each view. 0 and 1
represent valid and invalid views respectively. Given
incompletely known objects, intermediate values
represent views which are "possible", i.e., neither vahd
nc~r invalid. The size of the automata is polynomial to
the number of classifying attributes.

Historic Constraints

The historic constraints, we consider are expressed in
Past Propositional Temporal Logic (PPTL). For a more
comprehensive presentation of historic constraints see,
e.g. [3] [4] [5]. Informally speaking, PPTL is propo~i-
tion:d logic extended with two temporal operators: CI
interpreted as ~, always in the past ,, and 0 interpreted as
,, once in the past ~,. The universal nature of D and the
cx istential nature of 0 make these two operators dual by
th’-’ relation O A -- ---, 0.-.-,A (or 0A = -.-,3 ---, AA.
Therefore, the PPTL syntax only requires one of these
tv.o operators. It is common practice however to
ct,n~idcr them both.

For example, to define in Osiris a view MONSTER
to express that it is an animal whose weight has never
c,,me under 400kg one it attained the size of 20m, one
~,~ ould write the assertion:

[3 (0 size>20 => weight>400) ^ 0 (size>20)

I’I’TL- Consider a set Vp= {p,q .... } of propositional
symbols, the set { ^, v, ~, ¢:~ } of binary operator
symbols, the set {--,,(),0,13} of unary operator
symbols and the two boolean true and false. Formulas
of I’I’TL on Vp are defined as follows :
(i) true and false are formulas ;
(it) any element of Vp is a formula ;
t tit) if F and G are formulas, then so are ---,F, F^ G,
(ivl. F v G, F ~ G, F ¢:~ G, El F, OF. (F);

nothing else is a formula.
’l’cmporal logic formulas are classically interpreted

t.~ .models made of a 3-uple M=<W,R,m> (Kripke
frames). In this 3-uple, W is a set of dates, R is a binary
rcl.ttion on W named relation of temporal precedence
a.d m:W---~P(Vp) is a function from W to the
i:.~erset of Vp. This function associates to each date
the ..,et of propositional symbols which evaluate to true
u" this date.

A Model for Evaluation - Given a historic assertion H
~ith n elementary proposititons Pi. Vp={pl ..... Pn}.
,’..~ each Pi can be evaluated to true or false, we can
ct:n.,dder the set HE of truth-vectors which is the
c:trtcsian product

n n
X (true,false) or more simply X (+,-).

,=I i=l
l.-:tch element of HZ is called a truth-vector. For

example, if H is made of two element:,ry proposititms
Plet P2, ]-Iz= { (+,+), (+,-), (-,+), (-,-) 
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Any state of an object O is associated with a unique
truth-vector of HE. For example, if a state makes Pl
true but not P2, then this state is associated with the
truth-vector (+,-). Therefore one can canonically
associate to S(O) a unique sequence of truth-vectors
noted SI~(O). Now, the truth value of H in the current
state only depends on the truth value of its elementary
propositions on S(O) and therefore only depends 
Sz(O) which constitutes the model of interpretation 
H. Taking the notations of the last §, one has :
W: the set of states of object O ;

R: the order relation on W which describes the
sequence S(O) 

m: the function which associates to each state of the
object O the corresponding truth-vector.

Evaluation - A nai"ve evaluation of historic assertions
relies on the examination of the past states of objects.
The method we propose does not require accessing the
past states of an object (histor’-less method), and its
cost is therefore low and constant. It consists in
associating a finite state automaton to each historic
assertion. Each object has a pointer on this automaton
which indicates its current state. When the object is
updated, this pointer is moved accordingly. If the
current state corresponds to a final node of the
automaton, the historic assertion is verified, otherwise it
is not.

Let H be a historic assertion. L(H) is the language
made of the sequences of HZ for which H evalu:ttcs to
true. For any historic assertion H, one proves (scc [5],
chapter 10) that L(H) is regular and given by 
following compositional formulas :

(i) R(Pi) = [+_.]*. [+i] (ii) R(~F) = [+1"~ - 1~, (F)

(iii) R(FvG)= R(F)u R(G) (iv) R(OF)= R(F). 

As a consequence, for any historic assertion 11 there
exists a regular expression R(H) which describes the
language L(H). For example, for the historic assertion

O (0Pl v Pl), one gets [+]+( [+]+ ( [-1-]*. [+]1. [---]+ 

u ([+]*. [+]]))). [+-]+,~

According to the definition of L(H), H evaluates to true
for an object O iff S~(O)~ L(H). According to 
preceding theorem, it is equivalent to chuck that
S~(O)e R(H). Evaluating a historic assertion 
therefore equivalent to checking that a word belongs to
the language described by a regular expression. It is
quite usual to use finite state automata to perform this
task.

Indeed, it is a well known result that for any regular
expression there is an automaton which recognises the
same language. Since a non-deterministic automaton
can always be translated to a deterministic one, we only
consider here deterministic automata. The automaton
for R(hl) shown Fig. 3 was generated with the Rank
Xerox finite state compiler (http://www.rxrc.
xerox.com/research/mltt/fst/fsinput.html). This automa-
ton is made of three nodes. One of them, fq2, is a final
node.

Finally, the proposed method of evaluation for historic
asscrtions has two pans :

i building ofthefinite state automata (one per historic
assertion). This is performed by first translating the
historic assertions to regular expressions and next to
au|omata. A pointer to each of these automata is then
added to each object. The pointers initially point to
the initial node of the corresponding automata.

ii monitoring. After each update on an object, Its
pointers are moved according to the truth-vector
associated with the new state of the object (since
automata are deterministic only one new state is
possible). If the new node reached is a final node,
then it means that the corresponding historic
assertion evaluates to true.

Classification- In view definition, historic assertions
act as boolean attributes, therefore extending the
classifying space by one dimension. For example,
adding the view MANAGER to the P-type EMPLOYEE
wuuld result in adding an axis for the historic assertion
(hl) in the Classification Space of Fig. I. This axis
would only be divided into two parts : true and false.
This easy embedding of historic assertions in the
Classification Space makes possible to consider views
dclqned by static and historic assertions at no additional
CoM.

Linear Binary Constraints

As the treatntent of domain-based constraints is highly
optimized, classification w.r.t, more complex
ctmstraints is performed only on views already
recognized as satisfying the domain-based constraints.
In the following we consider linear binary constraints
but the approach can be extended to more general
constraints.

The classification space can further be used for the
determination of views defined by linear constraints.
Given a view with domain-based constraints and linear
co,straints (L), the partitioning of the object space 
the constraints of type (D) and (1) defines eq-classes
where the objects have the same comportment towards
these constraints. Each eq-class may also be qualified
w.r.t, a linear constraint Li(X,Y) as valid (v), invalid 
or tu be checked (?), as illustrated by Fig. 4. Valid
(rcsp. invalid) eq-classes are entirely on the valid (resp.
invalid) side of the constraint, wheras those to be
checked intersect the constraint.
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invalid hwalld

invalid ?~ valid

~
~"~J? valid valkl

valid vahd valid valid

Y
Fig. 4 Linear constraint and eq-classes

When aa object belongs to a (v) or 6) eq-elass, 
validity remains unchanged as long as the object
renlains in the same eq-class. Therefore, when an object
is updated, if it does not change its eq-class, it is not
necessary to classify it again. Only when its eq-class is
(?) the constraint has to be checked. The set of (?) 
classes of a constraint (L) is called its triggering set.

One straightforward method to check linear
constraints consists in extending the classification
automata with a "constraint" layer containing one cell
for each linear constraints in the p-type. The input of
the cell for a binary constraint L(X,Y) is m:tde of its
triggering set of eq-classes and of the values of the two
variables X and Y. Its output is I if the constraint is
satisfied or not triggered, 0 otherwise. In the following,
the constraints of a view include both own and inherited
constraints.

In the classification net~.ork, each output cell
corresponding to a view with linear constraints is
replaced by an intermediate ecll VI), connected t~* the
eq-classes of the view, which reflects tire satisfacti,m uf
domain-based constraints. The link between \:1) ai~d a
constituent eq-class is suppressed if the eq-cluss is
invalid for at least one of the linear constraints of the
view. The output cell for V is connected to VI~ and t,~
each cell corresponding to a constraint of the view. The
transition function of the output cell is the product of its
input values, i.e., its output is 1, meaning tile view is
satisfied, iff the domain based constraints are s:,tisfied
(output of VD is 1) and al! the linear constraints u:e
satisfied.

Through this method, a constraint is evaluated o~dy
when the object to classify belongs to an eq-class of its
triggering set. Moreover. when the object is m~dilicd
while remaining in tile same cq-cl:tss, it needs nut be
reclassified if this eq-class does not belong to .’m:, linear
constraint triggering set.

Another approach has been explored in [71. It
consists in representing the eq-classcs and the
constraints by graph micro-structures, following Jegou’.,,
approach [8]. The subdomains are used instead td" ,,,ingle
variable values to build the micro-structt, rcs. The
principle has been presented in [6].

Coiiclusion

In this paper we have presented a method for instance
classification based on a static analysis of the i,roperti,:s
defining the classes. In the case of d,mlain-bascd

constraints this analysis leads to a partitioning of the
object space into a so-called classification space which
guides the classification process, and also the
representation of persistent objects [10]. The princq~:c
network which has been presented is not used in the
Osiris system, but is replaced by a network based on the
assertions, whose size is polynomial to the number of
attributes [l]. The extension to this network for the
linear constraints is the same as that presented above.

The approach using the micro-structure is a
promising one which has still to be evaluated and
compared with the one based on tile classification
hot,york.
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