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Abstract

A text understanding system with learning capabilities
is presented. New concepts are acquired by incorporat-
ing two kinds of evidence - knowledge about linguistic
constructions in which unknown lexical items occur and
knowledge about structural patterns in ontologies such
that new concept descriptions can be compared with prior
knowledge. On the basis of the quality of evidence gath-
ered this way concept hypotheses are generated, ranked
according to plausibility, and the most credible ones are
selected for assimilation into the domain knowledge base.

Introduction
We propose a text understanding approach in which con-
tinuous enhancements of domain knowledge bases are per-
formed given a core ontology (such as WordNet (Fellbaum,
1998)). New concepts are acquired taking two sources 
evidence into account: the prior knowledge of the domain
the texts are about, and linguistic constructions in which
unknown lexical items occur. Domain knowledge serves as
a comparison scale for judging the plausibility of newly de-
rived concept descriptions in the light of prior knowledge.
Linguistic knowledge helps to assess the strength of the in-
terpretative force that can be attributed to the grammatical
construction in which a new lexical item occurs. Our model
makes explicit the kind of quality-based reasoning that lies
behind such a process.

We advocate a bwwledge-intensive model of concept
learning from sparse data that is tightly integrated with the
non-learning mode of text understanding. Both learning
and understanding build on a given core ontology in the
format of terminological assertions, and hence make abun-
dant use of terminological reasoning facilities. The "plain"
text understanding mode can be considered as the instanti-
ation and continuous filling of roles with respect to single
concepts already available in the knowledge base. Under
learning conditions, a set of alternative concept hypotheses
are managed for each unknown item, with each hypothesis
denoting a newly created conceptual interpretation tenta-
tively associated with the unknown item.

A Model of Quality-Based Learning
Fig. 1 depicts how linguistic and conceptual evidence are
generated and combined for continuously discriminating
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Figure I: Architecture for Quality-Based Learning

and refining the set of concept hypotheses (the unknown
item yet to be learned is characterized by the black square).
The language processor yields structural dependency infor-
mation from the grammatical constructions in which an un-
known lexical item occurs in terms of the corresponding
parse tree. The conceptual interpretation of parse trees in-
volving unknown leaical items is used to derive concept
hypotheses, which are further enriched by conceptual an-
notations reflecting structural patterns of consistency, mu-
tual justilication, analogy, etc. in the continuously updated
terminological knowledge base. These kinds of initial ev-
idence, in particular their predictive "’goodness" for the
learning task, are represented by corresponding sets of lin-
guistic and conceptual quality labels. Multiple concept hy-
potheses for each unknown lexical item are organized in
terms of a corresponding hypothesis space, each subspace
holding different or further specialized concept hypotheses.

The quality machine estimates the overall credibility of
single concept hypotheses by taking the available set of
quality labels for each hypothesis into account. The final
computation of a preference order for the entire set of com-
peting hypotheses takes place in the qualifier, a terminolog-
ical classifier extended by an evaluation metric for quality-
based selection criteria. The output of the quality machine
is a ranked list of concept hypotheses. The ranking yields,
in decreasing order of significance, either the most plausi-
ble concept classes which classify the considered instance
or more general concept classes subsuming the considered
concept class.

Linguistic Quality Labels
Linguistic quality labels reflect structural properties of
phrasal pattcrns or discourse contexts in which unknown
lexical items occur- we assume here that the type of
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grammatical construction exercises a particular interpreta-
tive force on the unknown item and, at the same time, yields
a particular level of credibility for the hypotheses being de-
rived thereof. As an example of a high-quality label, con-
sider the case of APPOSITION. This label is generated for
constructions such as ".. theprinter @A@ ..", with "@..@’"
denoting the unknown item. The apposition almost un-
equivocally determines "@A@" (considered as a potential
noun)n to denote an instance of the concept class PRINTER.
This assumption is justified independent of further concep-
tual conditions, simply due to the nature of the linguistic
construction being used. Still of good quality, but less con-
straining, are occurrences of the unknown item in a CASE-
FRAME construction as illustrated by ".. @B@ has a size
of..,,. Here, case frame specifications of the verb "has" that
relate to its AGENT role carry over to "@B@". Given its
final semantic interpretation, "@B@" may be anything that
has a size. Hence, considering an utterance like "’The Itoh-
Ci-8 has a size of..", we may hypothesize that the concept
ITOH-CI-8 can tentatively be considered a PRODUCT,

Let us now turn to a discussion of the phrase "The switch
of the Itoh-Ci-8..". We use a concept description language
(for a survey, cf. Woods & Schmolze (1992)) for represent-
ing the content of texts and the emerging concept hypothe-
ses. Considering this phrase, a straightforward translation
into corresponding concept descriptions yields:

(PI) switch-Ol : SWITCH
(P2) ltoh-Ci-8 HAS-SWITCH switch-Or
(P3) HAS-SWITCH "-"

(OUTPUTDEV LI INPUTDEV LJ IHAS’PARTISwITCH
STORAGEDEV LJ COMPUTER)

Assertion PI indicates that the instance 8witch-Ol be-
longs to the concept class SWITCH, P2 relates Itoh-Ci-8
and switeh-O1 via the binary relation HAS-SWITCH. The
relation HAS-SWITCH is defined, finally, as the set of all
HAS-PART relations which have their domain restricted
to the disjunction of the concepts OUTPUTDEV, INPUT-
DEV, STORAGEDEViees or COMPUTER and their range re-
stricted to SWITCHes.

Depending on the type of the syntactic construction in
which the unknown lexical item occurs, different hypothe-
sis generation rules may fire. In our example, "Tile switch
of the ltoh-Ci-8..", a genitive noun phrase places only few
constraints on the item to be acquired. In the following,
let target be the unknown item ("ltoh-Ci-8") and base be
the known item ("switch"), whose conceptual relation 
the target is constrained by the syntactic relation in which
their lexical counterparts co-occur. The main constraint for
genitives says that the target concept fills (exactly) one 
the n roles of the base concept. Since the correct role can-
not be yet decided upon, n alternative hypotheses have to
be posited (unless additional constraints apply), and the tar-
get concept has to be assigned its a liller of the i-th role of
base in the corresponding i-th hypothesis space. As a con-
sequence, the classitier is able to derive a suitable concept

n Such a part-of speech hypothesis can directly be derived fk~m
the inventory of valence and word order specifications underlying
the dependency grammar model we use (Hahn et HI., 1994).
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hypothesis by specializing the target concept (initially TOP,
by default) according to the value restriction of the base
concept’s i-th role. Additionally, this rule assigns a syntac-
tic quality label to each i-th hypothesis indicating the type
of syntactic construction in which target and base co-occur.

Returning to our example, the target concept ITOH-CI-8
is already predicted as a PRODUCT according to the inter-
pretation of the phrase "The Itoh-Ci-8 has a size ~’..". The
conceptual representation of PRODUCT is given by:

PRODUCT "--
VHAS-PART.PHYSICALOBJECT I-I VHAS-SIZE.SIZE I"1
VHAS-PRICE.PRICE I-I VHAS-WEIGHT.WEIGHT

This expression reads as "all fillers of HAS-PART, HAS-
SIZE, HAS-PRICE, HAS-WEIGHT roles must be concepts
subsumed by PHYSICALOBJECT, SIZE, PRICE, WEIGHT,
respectively". Accordingly, tour roles remain to be con-
sidered for relating the target ITOH-CI-8 - as a tenta-
tive PRODUCT - to the base concept SWITCH. Three of
them, HAS-SIZE, HAS-PRICE, and HAS-WEIGHT, are ruled
out due to the violation of a simple integrity constraint
(SWITCH does not denote a unit of measure). Therefore,
only the role HAS-PART must be considered. Due to the
definition of HAS-SWITCH (of. P3), the instantiation of
HAS-PART is specialized to HAS-SWITCH by the classifier,
since the range of the HAS-PART relation is already re-
stricted to SWITCH. Hence, tour distinct hypotheses are
immediately created due to the domain restrictions of the
role HAS-SWITCH, viz. OUTPUTDEV, INPUTDEV, STOR7
AGEDEV and COMPUTER, and are managed in four hy-
pothesis spaces hi, h,~, ha and h4, respectively. We roughly
sketch their contents in the following concept descriptions
(note that for Itoh-Ci-8 we also include parts of the im-
plicit is-a hierarchy):

(ltoh-Ci-8 : OUTPUTDEV)hx, (Itoh-Ci-8 : DEVXCE)h~, ..,
( Itoh-Ci-8 HAS-SWITCH Switch.O-OOO25)ha
(ltoh-Ci-8 : INPUTDEV)h~, (Itoh-Ci-8: DEVICE)h~, ....
( Itoh-Ci-8 HAS-SWITCH Switch.O-OOO25)h2

(Itoh-Ci-8 : STORAGEDEV)n3, (ltoh-Ci-8 : DEVICE)ha,..,
( ltoh-Ci-8 HAS-SWiTCH Switch.O-OOO25)ha
( l toh-C i-8 : COMPUTF.R)n4, ( l toh-Ci-8 : HARI)WARE)h4 ....
( I toh-G’i-8 HAS-SWITCH SIoitch.O-OOO25 )h,

Conceptual Quality Labels

Conceptual quality labels result from comparing the rep-
resentation structures of a concept hypothesis with already
existing representation structures in the underlying domain
knowledge base from the viewpoint of structural similarity,
incompatibility, etc. The closer the match, the more credit
is lent to a hypothesis. For instance, a very positive con-
ceptual quality label such as M-DEDUCED is assigned to
multiple derivations of the same concept hypothesis in dif-
ferent hypothesis (sub)spaces. Positive labels are also as-
signed to terminological expressions which share structural
similarities, though they are not identical. For instance, the
label C-SUPPORTED is assigned to any hypothesized rela-
tion R1 between two instances when another relation, R2,
already exists in the KB involving the same two instances,



Phrase Semantic Interpretationbut where the role fillers occur in "inverted" order (note that
R1 and R2 need not necessarily be semantically inverse re-
lations such as with "buy" and "sell"). This rule of cross
support captures the inherent symmetry between concepts
related via quasi-inverse conceptual relations.

Considering our example, for ITOH-CI-8 the concept
hypotheses OUTPUTDEV, INPUTDEV and STORAGEDEV
were derived independently of each other in different hy-
pothesis spaces. Hence, DEvIcE as their common super-
concept has been multiply derived by the classifier in each
of these spaces, too. Accordingly, this hypothesis is as-
signed a high degree of confidence by the classifier which
derives the conceptual quality label M-DEDUCED:

(ltoh-Ci-8 : DEVlCE)ht F1 (ltoh-Ci-8 : DEVICE)h2 ==~
([toh-Ci-8 : DEVICE)hx : M-DEDUCED ......

Quality-Based Classification

Whenever new evidence tbr or against a concept hypoth-
esis is brought forth in a single learning step all concept
hypotheses are reevaluated. First, weak or even unten-
able hypotheses are eliminated from further consideration.
The corresponding quality-based selection among hypothe-
sis spaces is grounded on threshold levels (later on referred
to as TH). Their definition takes mostly linguistic evidence
into account. At the first threshold level, all hypothesis
spaces with the maximum of APPOSITION labels are se-
lected. If more than one hypothesis is left to be consid-
ered, only concept hypotheses with the maximum number
of CASEFRAME assignments are approved at the second
threshold level. Those hypothesis spaces that have fulfilled
these threshold criteria will then be classified relative to
two different credibiliO’ levels (later on referred to as CB).
The first level of credibility contains all hypothesis spaces
which have the maximum of M-DEDUCED labels, while at
the second level (again, with more than one hypothesis left
to be considered) those are chosen which are assigned the
maximum of C-SUPPORTED labels. A more technical ter-
minological specification of the entire qualification calculus
is given by Schnattinger & Hahn (1996).

For an illustration, consider the tirst phrase: "The ltoh-
Ci-8 has a size of..". The assignment of the syntactic qual-
ity label CASEFRAME to this phrase is triggered only in
those hypothesis spaces where the unknown item is con-
sidered a PHYSICALOBJECT (cf. Table 2, learning step 1).
The remaining hypotheses (cf. Table 2, learning step 2)
cannot be annotated by CASEFRAME, since the concepts
they represent have no property such as SIZE. As a conse-
quence, their hypothesis spaces are ruled out by the crite-
rion set up at the second threshold level, and the still valid
concept hypothesis PHYSICALOBJECT is further refined as
PRODUCT. As far as the sample phrase "The switch of the
ltoh-Ci-8 .." is concerned, four more specific hypothesis
spaces are generated from the PRODUCT hypothesis, three
of which stipulate a DEVICE hypothesis. Since the con-
ceptual quality label M-DEDUCED has been derived by the
classifier, this result yields a preliminary ranking with these
three DEVICE hypotheses preferred over the one associated
with COMPUTER (cf. Table 2, learning step 3).

I. The hoh-Ci-8
2. has a size of ..

(possess. 1 ,agent,ltoh-Ci-8)
(possess. I ,patient,Size. 1)
~-~ (itoh-Ci-8,has-size,Size. 1)

3. The switch of the ltoh-Ci.8
4. The housing of the ltoh-Ci.8
5. ltoh-Ci-8 with a memory
6. hoh-Ci-8’s LED lines
7. hoh-Ci-8 with a resolution

(Itoh-Ci-g,has-switch,Switch. 1)
(Itoh-Ci-8,has-housing,Housing. I)
(ltoh-Ci-8,has-memoty,Memory. 1)
(Itoh-Ci-8,has-partJ.,ED-Line. I)
(Itoh-Ci-g,has-rate,Resolution. I)

Table i: Phrases and Interpretations Related to "ltoh-Ci-8"

Evaluation
In this section, we present data from an empirical evalua-
tion of the text learner. We considered a total of 101 texts
taken from a corpus of information technology magazines.
For each oftbem 5 to 15 learning steps were considered. A
learning step consists of the inferences being made at the
level of hypothesis spaces after new textual input has been
supplied in which the item to be learned occurs. In order
to clarify the input data for the learner, consider Table 1.
It consists of seven single phrases in which the unknown
item "ltoh-Ci-8" occurs, together with the respective se-
mantic interpretations. The knowledge base on which we
performed our experiments currently comprises 325 con-
cept definitions and 447 conceptual relations.

In a series of experiments, we investigated the learning
accuracy of the system, i.e., the degree to which the sys-
tern correctly predicts the concept class which subsumes
or classifies the target concept to be learned. Taxonomic
hierarchies emerge naturally in terminological knowledge
representation frameworks. So a prediction can be more
or less precise, i.e., it may approximate the goal concept
at different levels of specificity. This is captured by our
measure of learning accuracy which takes into account the
conceptual distance of a hypothesis to the goal concept of
an instance. Learning accuracy (LA) is defined here as (n
being the number of concept hypotheses for a single target):

E LA,
LA := with

n
iE{t...n}

~ if FPi = 0
LAi :=

else

SPi specifies the length of the shortest path (in terms of
the number of nodes being traversed) from the ToP node
of the concept hierarchy to the maximally specific concept
subsuming the instance to be learned in hypothesis i; UPi
specifies the length of the path from the ToP node to that
concept node in hypothesis i which is common to both the
shortest path (as defined above) and the actual path to the
predicted concept (whether correct or not); FPi specifies
the length of the path from the ToP node to the predicted
fin this case fal~’e) concept and DPi denotes the node dis-
tance between the predicted (false) node and the most spe-
cific common concept (on the path from the TOP node to
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Figure 2: LA for an Under- Figure 3: LA for a Slightly In-
specified Concept Hypothesis correct Concept Hypothesis

the predicted false node) still correctly subsuming the tar-
get in hypothesis i. Figures 2 and 3 depict sample configu-
rations for concrete LA values involving these parameters.
Fig. 2 illustrates a correct, yet too general prediction with
LAi = .?,5, while Fig. 3 contains an incorrect concept hy-
pothesis with LAi = .6. Though the measure is sensitive
to the depth of the concept graphs in a knowledge base,
it produced adequate results in the information technology
domain we considered. As the graphs in knowledge bases
for "natural" domains typically have an almost canonical
depth that ranges between seven to ten nodes from the most
general to the most specific concept (of., e.g., the WordNet
lexical database (Fellbaum, 1998)), our experience seems
to generalize to other domains as well.

Given this measure, Table 2 illustrates how the various
concept hypotheses for ITOH-CI-8 develop in learning ac-
curacy from one step to the other, relative to the data from
Table !. The numbers in brackets in the column Con-
cept Hypotheses indicate for each hypothesized concept
the number of subsumed concepts in the underlying knowl-
edge base; LA CB gives the accuracy rate for the full qual-
ification calculus including threshold and credibility crite-
ria, LATH for threshold criteria only, while LA - depicts
the accuracy values produced by the terminological reason-
ing component without incorporating these quality criteria.
As can be seen from Table 2, the full qualification calculus
produces either the same or even more accurate results, the
same or fewer hypothesis spaces (indicated by the number
of rows), and derives the correct prediction more rapidly (in
step 6) than the less knowledgeable variants (in step 7).

The data also illustrate the continuous specialization of
concept hypotheses achieved by the terminological classi-
fier, e.g., from PHYSICALOBJECT2 in step ! via PRODUCT
in step 2 to OUTPUTDEVice and PRINTER in steps 3 and
4, respectively. The overall learning accuracy may even
temporarily decrease in the course of hypothesizing (e.g.,
from step 3 to 4 or step 5 to 6 for LA - and LA TH), but
the learning accuracy value for the full qualification calcu-
lus (LA CB) always increases. Fig. 4 depicts the learning
accuracy curve for the entire data set (101 texts). The eval-
uation starts from LA values in the interval between 48% to
54% for LA --/LATH and LA CB, respectively, in the first
learning step. In the final step, LA rises up to 79%, 83%
and 87% for LA -, LATH and LA CB, respectively.

The pure terminological reasoning machinery which

2The upper-level concepts of our domain ontology were taken
from Nirenburg & Raskin (1987).

does not incorporate the qualification calculus always
achieves an inferior level of learning accuracy and gener-
ates more hypothesis spaces than the learner equipped with

Concept
I Hypotheses_ I LA] I’A- TH i LAcBI

PHYSICAI.OBJECT(17fi) 0.30 0.30 U.3U
MENTALOBJECT(0) 0.16 0.16 0.16
INFORMATIONOBJECT(5) 0.16 0.16 0.16
MASSOBJECT(O) 0,16 0.16 0.16
NORM(3) 0.16 0.16 0.16
TECHNOLOGY(I) 0.16 0.16 0.16
MODE(5) 0.16 0.16 0.16
FEATURE(0} 0.16 0.16 0,16
Learning Step I i~:0.18 ~/:0.18 1~:0.18
PRODUCT(136) 0.50 0.50 0.50
MENTALOB.iECT(0) 0,16
INFORMATIONOBJECT(5) 0.16
MASSOBJECT(0) 0.16
NORM(3) 0.16
TECHNOI.OGY(I) 0.l 6
M()DE(5) 0.16
FEATURE(.0) O. 16
Learning Step 2 1~:0.21 I/:0.50 ~:0.50
COMPUTER(.5) 0.50 0-50
OUTPUTDEVice(9) 0.80 0.80 (I.80
STORAGEDEViCe(5) 0.55 0.55 0.55
INPUTDEVice(2) 0.55 0.55 0.55
Learning Step 3 ~:0.60 ~:0.60 ~:0.63
N OT E B O O K (O) 0.43 O. 43
PORTABLE(0) 0.43 0.43
PC(()) 0.43 0.43
WORKSTATION(0) 0.43 0.43
DES KTOI’(0) 0.43 0.43
PRINTER(3) 0.90 0.90
VISUALDEVice(2) 0.66 0.66
LOUDSPEAKER(0) 0.66 0.66
PLOTTER(0) 0.66 0.66
RW-STORE(2) 0.50 0.50
RO-STORE( I 0.50 0.50
MOUSE(()) 0.50 0.50
KEYBOARD(0} 0.50 0.50

0.90
0.66
0,66
0.66
0.50
0.5O

Learning Step 4 ~:0.54 ~:0.54 ji:0.65
NOTEBOOK(U) 0.43 0.43
PORTABLE(0) 0.43 0.43
PC(0) 0.43 0.43
WORKSTATION(0) 0.43 0.43
DESKTOP(0) 0.43 0.43
LASERPRINTER(O) 1.00 1,00 1.00
INKJETPRINTER(0) 0.75 0.75 0.75
NEEDLEPRINTER(0) 0.75 0.75 0.75
Learning Step 5 ~:0.58 ~:0.58 ~:0.83
NOTEBOOK(O) 0.43 0.43
PORTABLE(0) 0.43 0.43
PC(O) 0.43 0.43
WORKSTATION(0) 0.43 0.43
DESKTOP(0) 0.43 0.43
LASERPRINTER(0~ 1.00 1.00 1.00
Learning Step 6 ~:0.52 ~:0.52 ~[: 1,00
LASERPRINTER(O) I .OO I .O0 1.00
Learning Step 7 ~:1,00 ~:1.0 l/:l.00

Table 2: Learning Steps for a Text Featuring "’ltoh-Ci-8"’

the qualification calculus. Furthermore, the inclusion of
conceptual criteria (CB) supplementing the linguistic cri-
teria (TH) helps a lot to focus on the relevant hypothesis
spaces and to further discriminate the valid hypotheses (in
the range of 4% precision). Note that a significant plateau
of accuracy is usually reached after the third step (viz. 67%,
73%, and 76% tbr LA-, LATH, and LA CB, respectively,
in Fig. 4). This indicates that our approach finds the most
relevant distinctions in a very early phase of the learning
process, i.e., it requires only a few examples.
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Figure 4: Learning Accuracy (LA) for the Entire Data Set

Related Work
Our approach bears a close relationship to the work of
Mooney (1987), Gomez & Segami (1989), Rau et 
(1989), Hastings (1996), and Moorman & Ram (1996), 
all aim at the automated learning of word meanings from
context using a knowledge-intensive approach. Our work
differs from theirs in that the need to cope with several
competing concept hypotheses and to aim at a reason-based
.~’election is not an issue in those studies.

The work closest to ours has been carried out by Ran
et al. (1989) and Hastings (1996). Concept hypotheses 
also generated from linguistic and conceptual data. Unlike
our approach, the selection of hypotheses depends only on
an ongoing discrimination process based on the availabil-
ity of these data but does not incorporate an inferencing
scheme for reasoned hypothesis selection. The difference in
learning performance - in the light of our evaluation study
- amounts to 8%, considering the difference between LA -
(plain terminological reasoning) and LA CB values (termi-
nological metareasoning based on the qualification calcu-
lus). Hence, our claim that we produce competitive results.

Note that the requirement to provide learning facilities
for large-scale text understanders also distinguishes our ap-
proach from the currently active field of information ex-
traction (IE) (Appclt ct al., 1993). The IE task is defined 
terms of a pre-fixed set of templates which have to be in-
stantiated (i.e., filled wittl factual knowledge items) in the
course of text analysis. Unlike the procedure we propose,
no new templates have to be created.

Conclusion
In this paper, we have introduced a methodology for gener-
ating new knowledge items from texts and integrating them
into an existing domain knowledge base. This is based on
the incremental assignment and evaluation of the quality
of linguistic and conceptual evidence for emerging concept
hypotheses. The concept acquisition mechanism we pro-
pose is fully integrated in the text understanding mode. No
specialized learning algorithm is needed, since learning is a
(recta)reasoning task carried out by the classifier of a termi-
nological reasoning system. However, heuristic guidance
for selecting between plausible hypotheses comes from the
different quality criteria. Our experimental data indicate
that given these heuristics we achieve a high degree of prun-
ing of the search space for hypotheses in very early phases

of the learning cycle.
Our experiments are still restricted to the case of a sin-

gle unknown concept in the entire text. Generalizing to
n unknown concepts can be considered from two perspec-
tives. When hypotheses of another target item are generated
and incrementally assessed relative to an already given base
item, no effect occurs. When, however, two targets (i.e.,
two unknown items) have to be related, then the number of
hypotheses that have to be taken into account is equal to the
product of the number of hypothesis spaces currently asso-
ciated with each of them. In the future, we intend to study
such scenarios. Fortunately, our evaluation results also indi-
cate that the number of hypothesis spaces decreases rapidly
as does the learning rate, i.e., the number of concepts in-
cluded in the remaining concept hypotheses. So, the learn-
ing system should remain within feasible bounds, even un-
der these less favorable conditions.
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