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Abstract

Motion analysis often relies on differencing operations
that inherently amplify noise and are hindered by the
spatial correspondence problem. An alternative approach
is proposed using AIJSA (Adaptive learning Image and
Signal Analysis) to detect differences in types of motion
by classifying the imaging effects of the motion in
single frames. With an appropriate feature set, the ALISA
engine accumulates a multi-dimensional histogram that
estimates the probability density function of a feature
space and uses the result as a basis for classification. As a
functi(m of image sampling rate and the scale of image
structures, the AUSA engine was able to discriminate
between a slow moving and fast moving object with a
confidence greater than 99%.

Introduction

Motion analysis typically reqt/res processing of
temporally sequential frames of image clma and is generally

on the order of frame processing. N "4any standard
approaches [Haynes and Jain 1982][Horn and Schunck
1981][Nngel 1983][Schalkoff and McVey 1982] rely on
analysis of sequential frames, often using a differencing
OlXa’ation that inherently amplifies noise. Further, point
cotrespondenee of the same, but moving object betwcc~
frames is often problematic. In real scenes, aa object
often be differentiated by the characteristics of its motion
alone, for example, a slow moving object vs. a fast
moving object, circular motion vs. linear motion, an
approaching object vs. a receding object, etc.. If the effects
of a type of motion can inanifest itself in the texture of an
image, then single frames might be sufficient for
identifying the t)]~e and amount of motion, given
sufficient statistic~d evidence.

With this in mind, an alternative a~h is prolx~cd
using ALISA (Adaptive I~.aming Image -and Signal
Analysis), an adal~ive image classification engine based on
collective learning systems thcoD’ [Beck 1993]. Using an
apwopriate set of feantres, the ?d.ISA engine ata.annnlates
a multi-dimensional histogram that estimates the
probability density function of a feature space and uses the
result as a basis for classification. Feature extraction in the
AI.ISA engine is based on an analysis token, a small
window fron~ which feature values me computed, scaled,
and quantized. The results are concatenated into a l’eaUn’e
vector ~ used to index into a multi-dimensional
histogram Bec.mm~ the analysis token is applied to ead~
image in a fully overlapped manner, a single input image
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yields a very large number of feature vectors. During
training, the weight for each bin indexed by the feaua’c
vector is incremented, yielding a relative frequency of
occurrence. During testing, the weight in each bin is
normalized into a feature-vector conditional probability
that represents the normality of the feature vector. After
processing aa entire image, the normalities for each pixel
arc quantized and assembled into a normality map,
which is spatially isomorphic with. the original image.

This paper addresses the resemch question: Can the
defining characteristics or type of motion be
effectively and efficiently encoded in the multi-
dimensional histogram accumulated by the
ALISA engine from single frames of an object
in motion? Only features c~maputed within a single
frame, not across successive frames, arc used to configure
the AI.ISA engine, under the assumption that objects
moving at one speed will exhibit t’eamre value
distributions that me sil,mifieantly different from those
exhibited by objects moving at a different speed. Given the
nature of the collective learning paradigm, this cemdifion
requires that the ALISA engine be trained on a sufficient
number of examples spanning the entire range of object
motion to he lcanw.cL Clearly, training on all possible
images depicting a pat’ticul~ type of motion, especially if
multiple objects arc to be consida’ed, is not a feasible
apprtyach. Ilowever, if only a subset of images is to be
used, two subordinate research questions are: What
parameters determine a minimum subset of
images; and What are the optimal configuration
parameters for the ALISA engine to learn to
discriminate between two types of motion?

Clearly, image sampling rate and the speed of object
motion determine the minimum mlmher of images of the
moving object that must be captured for processing atxl
subsequent training. In addition, because only a small
subset of all the Imssiblc images of object motion arc used
for training, to enable the ALISA catgine to detect object
motion on wlfich it was not trained, a mechanism for
image interpolation was postulated. Thus, the scale of
image structures was ,an important parameter affecting the
ability of the AIJSA engine to interpolate between frames.

The objective of this research was, therefore,
to measure the effect of image sampling rate
and the scale of image structures on the ability
of the ALISA engine to discriminate between
slow moving and fast moving objects moving
at constant speed under approximately the same
lighting and background conditions.
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ALISA Engine Configuration

To achieve this objective, five features for the ALISA
engine were postul~ed: gradient direction, standard
deviation, hue, and x and y position, lltese were selected
to minimize the effort of variations in scene illumination.
In addition, these feamr~ are known to be useful for
motion detection, ,and they emphasize three relatively
stable charactt,~sties of real scenes: edge direction, edge
magnitude, and hue. [Pock et al. [992][Howard and Kober
l¢.D2]lHubshman and Achikian 1992][Kobet et al.
1992][Schmidt and lk~ck 1996] Despite the fact that
motion was primarily in the x-direction, both x and y
position were used as features to ensure the generality of
the approach, l~aamic ranges and precisions for all
featmes were dekal~ined empirically by testing the feature
set c41 example images; they are specifted in Table 1.

Two parameters were postulated to represent the scale of
image structures: the size of the receptive field used for
feature extraction, called the analysis-token-size, and
the number of qwmtization levels used for the x and y
position features, "’called the position-preeision. "]]a:se
were factors of tile exl~’riment to test the l~l’nnnance of
the AIJSA engine.

Givc.~n the condition of constant object speed and
cons’taut image-sampling rate, a single parameter is
sufficient to estimate tile true average speed of an object:
the average pixel displacement of the moving object
between two sequential frames, called the inter-frame
object displacement (IFOD). This parmnetcrwas also
a factor in the exlgdment.

Fg~gllee Dymuak Rmlte (’Jr) Tekel b
Gradient l)irecti~x 0 tO0 8 t
$gand~d Devj~ticm O-4O 8 t
Hu¢ O.q~ g I
X Pmduon 0100 P (
Y Pomliett 0-100 P t

Table 1: ALISA engine feature parameters
(Parameters p and t are experiment factors)

Motion Detection Experiment
To pro~ide a realistic situation for this research, a moving
person was selected as the object of interest in the motion-
detection experiment. A series of experiments was designed
to validate the following research hypothesis: Under
the given conditions, there is a set of factor
values that optimizes the ability of the ALISA
engine to discriminate between walking and
running motion. The factors, once again, wexc inter-
frmltc-object displacement, position-precision, md
almlysis-token-sive.

Performance Metric
To measure the ability of the ALISA mlgine to

disc~imhmte between different types of motion, a metric of
motion normality must be postulated. In this research,
the metric for motion normality was based on the
normality of individual pixcls in the normality map

associated with a given image. A normal pixel in an
image is defmed as a pixel whose om-esponding feature
vector probability is greater than zero. This defmition
implies that the feature vector ammspouding to a pixel of
interest must have been observed at least once by the
ALISA engine to be considewd normal. The criteria for
pixel normality is very strict: if a feature vector value for a
given test image is one that has been discovered previously
during training, then the corresixmding pixel is normal;
otherwise, the pixel is non-normal. Pixel normality is
tlgtgfot¢ closely associatut with exploration of the feature
space of the given object motion.

Motion normality is defined for four sets of images. The
base sequenee is the total set (B)of digitized images
obtained from the sequea~ of frames rec~kd by the video

of the object of interest. A training sequence
is a subset of images (R) ,~mpled from the base UXlUeace
(i.e., R C B) at a specified rote beginning with the first
image. A sub-sampled-control-sequenee is a subset
of images sampled from the b~e sequence at the same rate
as the training sequence, but with a diffagnt phase, i.e.,
be~nning with a different starting image. Finally, a test
sequence consists of images containing examples of
object motion that axe c0n~dered to be different from the
normal object motion that was learned during training.

Images in the base sequence, which includes the training
.~gncc and all of the sub-sampled-control-sequences,
should be classified by the ALISA engine as images of
normal motion. Images in the test sequence should be
classified as images of non-normal motion. The measm’e
of non-nonnulity for this reseaw, h is the non-normality
area ratio (NAR): the ratio of the number of non-nonnal
pixels in an image to the total number of pixels. The
non-normality area threshold (NAT) is the
maxnnum NAR over all sub-sampled-control-sequences
associated with a particular training sequgal~ (i.e., over all
sequences out of phase with the training sequence) for an)"
specific combination of research factors (treatment).

Postulate: Image motion is normal if the NAR of
an image is less than or equal to the NAT using the
same ALISA configuration; otherwise, image motion
is non-normal.

"l]3e perf~ metric used to measure the motion
discriminating ability of the AIJSA engine follows
directly from this postulate-

Postulate: Motion discrimination measure
(MDM) is the difference between the average NAR for
a set of test images and the NAT value for the set of
training images (normal motion) using the stone
ALISA configuration.

MDM is assumed to be an accurate measure of the
ability of the ALISA engine to discriminate between
normal and non-normal object motion.
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Experiment Factor Settings

Fottr position-precisions, applied to both the x anti y
position features, were testexl: Pl = 12, P2 = 17, I~ = 23,
andp4 = 40. Four analysis-token sizes were tested: t I = 3,
t2 = 5, t3 = 7 and t4 = 9, where each size ret~rs to one
dimension (in pixels) of a sqtm~ne token. Four values 
inter-frame object displacenlent were tested: IFOD1 = 1.9
pixels, IFOD2 = 4.7 pixels, I[’~)D 3 = 8.5 pixels, "and
IFOD4 = 13.2 pixcls.

Experiment Procedure

’Example images of the object of interest are shown in
Figure !. A person walking left-to-tight in the field of
view was defmedas normal motion; a person running left-
to-fight was defined as non-normal motion.

(a) person walking

Figure I: (a) normal motion

~-’~,.~,~, .:...:~ :.-:......::. ~: .’

(b) person running

(b) non-normal motion

Movement was horizx3ntal "at constant speed and paralld
to the optical plane of the video camera. Scene
illumination was constant and diffuse throughout the
recording of the base sequence. A Sony model CCD-TRSI
color video t,~anera recorder was used to acquire all ~Jdeo
sequence. Each frame was an 160x120 mray of 8-bit
pixels. The base seqmmce txmsisted of 186 frames of a
person walking from the left side to the right side of the
field of view.

The IFOD for the base sequence was computed by
dividing the width of each image in pixels (160) by the
number of frames xequiaxl for a specific point on the object
of interest to move from the left edge to the right edge of
the field of view. Training sequences were extracted from
the base sequence using IFOD valnes that were mtdtiples
of the b~ sequence IFOD, as shown in "Fable 2.

I 8ampllnR
Image Sequence IFX)D Value (n)

Base 0.94 I
Training I 1.9 2
Training 2 4.7 5
Training 3 8.5 9
Traininl~ 4 13.2 14

Table 2: Digitized image sequen~ data.

Nmnber of
Images

186
93
37
20
13

.........................

Training sequences were obtained by sampling the first
image of the base sequence and every n images thereafter,
where n is the sampling value shown in Table 2. Sub-

sampled-c(mtml-sequcnces for each training soqtmxce were
obtained by sampling the I~tse seqnence with the stone
sampling value as the training seqneno.:, but begimfing
with a different starling image.

I]ecanse the sub-smnpledcontrol images are out of phase
with the traimng images, the number of sub-sanlplcd-
txmtrol-sequences atgl the number of images in each
sequence were dependent on the sampling value for the
training sequence. For example, if the sampling value was
5 (every 5111 image was used for tndning), a set of 4 sub-
sampled-con~l-sequetg~es were generated, one for stm~ing
image number 2, 3, 4, and 5. The numbcrof sub-sanxpled-
control-sequences is, therefore, one less than the san~ple
value. The number of images in each sub-sampled-contr(d-
sequence was the stone (+_.1) as the nunlber of inmges 
the training sequence.

An ALISA engine (MacAIJSA version 5.2.2) was
Irained on each tr,’dning sequence for every treatment, i.e.,
every combination of Ix)sift(m-precision and atmlysis-
token-sizx:, resulting in 16 trai~,-d histogrmns per training
sequence, l~ch of the 16 trained histogrmns was then
tested on the sub-sampled-control-sequences associated
with the training sequence. Average NAR v’,dues Ibr tag:h
sub-sampled-coutrol -sequence were computed. ’[’he
maximum value over all sub-,,aunpled-control-sequences in
the set associated with the training seqtamce was reed as
the NAT value for that training sequence. This value was
actually the maximum non-normality that "had to be
tolerated in order for the maned ,M_.ISA engine to detect
out-of-phase images as normal. It was used as a threshold
to define the boun "dary between normal and non-normal
motion.

l~ach trained AI,ISA histogram was then tested on a test
sequence consisting of 30 images of a person running.
(See Figure lb.) The average NAR for each lest was
computed and, along with the correspondhag NAT value,
used to compute the MDM performance metric.

Results and Conclusions

"Ilae following research hylx)thcsis was asserted for this
experimenl: Under the given conditions, there is
an optimal set of factors that enables the
ALISA engine to discriminate between walking
and running motion. To validate this re,starch
hypothesis, the following trail hypothesis was asserted:
Under the given conditions, for every set of
factor values the ability of the ALISA engine
to discriminate between walking and running
motion can be attributed to chance, To v;didate
the research hypothesis, it was necessary to be able to
reject this null hypothesis with a high confidence.

Figure 2 shows the MI’)M l~zlbmmncc metric plotted as
a function of the experiment factors. Large positive MDM
values in Figure 2 are strongly txmelated with a
combination of factor values (operating lx)int) for which
motion in the set of test images (person rmming) is mm-
rmrmal with a very high degree of c(mfidence.
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Figure 2: Motion discrimination by the ALISA engine as a function of the experiment factors.
The ntunbcred peaks show which combinations of factors enable the ALISA engine
to discriminate between walking and running motion with very high confidence.

The thee most significant operating points (labeled 1,
2, and 3 in Figure 2) are given by the 3-tuples (II-’OD,
position-precision, analysis-token-size): (13.2, 17, 3),
(8.5, 23, 5) and (13.2, 23. 5). These operating points
restdted in N~M~ vahtes for the running person which
exceeded their corresponding NAT values with a confidence
greater than 99%, clearly identif)4ng the motion as non-
normal. Thus, the null hypothesis can be r~.~d with
99% "~dence. This strongly suggests that under
the given eonditions, there is an optimal set of
factors that enables the ALISA engine to
discriminate between walking and running
motion. Seven other operating points that exhibit a
confidence for rejecling the null hypothesis of greater than
80% are labeled 4 through 10 in Figure 2 in order of
deexeasing confidence.

Figure 3 shows four examples of graphs of the average
NAR for sub-sampled-control-sequences plotted against the
corresponding starting image (phase) in the base seqt~nce.
Recall that the sub-sampled-ce~ml-,,~’,quences ~spcmd
to images of object motion out of phase with the images
used for training. Sub-sampled-control-seqtlences close to
either the left or right side of each graph correspond to
images almost in phase with the training images, while
those in the middle correspond to images very out of phase
with the training images.

In all cases, the average non-normality area ratio (NAR)
increases as the precision used lbr the position featmes
increases. Average NAR also increases as the analysis-
token-size ~. Both of these observations arc
consistent and reasonable, since a higher featut~ resolution
necessarily results in a larger histogram, deczcasing the
proportion of the feature space that can he tdl’ectively
expl(~ed during training with afixed number of images. In
other words, smoothing (using lower precision and l~ger
analysis-token-size) results in a more thorough exploration
of the corresponding partition of the feature space,
enabling the AI,ISA engine to interpolate between frames
more accurately.

In the sub-sampled-control-seqt~ences, ",although lower
position-precisions and "larger analysis-token-sizes worked
together to smooth images, resulting in lower average
NAR values, additional informal experiments revealed that
this was not the case when cl-cafly anomalous objects wexe
present. In sueh test images (not shown) lower precision
Ibr the position features tended to reduce noise in the
normality maps, while larger analysis-token-size leaded to
increase noise in the normality maps. l~w position-
precision, therefore, consistently reduced noise and res~alted
in superior image interpolation, "allowing a lower image
sampling rate and hence fewer images for object motion
training.
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Figure 3: Ex~ples of average NAR for sub-sampled-control-sequences as a function of phase

Although a larger an’alysis-token-size improved image
interpolation and reduced the NAT obtained from sub-
sampled-oontroi-secptences, counterintuitively it also
increased the noise in the associated normality maps. This
may be due to the lX)ssibility that smoothing of
anomalous regions only incrtmses the area over which the
points are anomalous, which works in opposition to the
benefits obtained from lower position-precision. Except for
the increased computational requiremenLs, this can he
advantageous, because it suggests that with larger analysis-
token-size, oonjmicfive benefits result, i.e., anomalies are
emphasized and image interpolation is enhanced.

It is interesfng to note that the variation of average
NAR with image phase was ormtra~’ to expectation. The
average NAR for images nearly in phase with the training
images was almost the same as the average NAR of
images farthest away in phase from the training images.

This is tmc for most combinations of resem’ch factors,
except for comhinafons of large IFOI) and large analysis-
mken-siT~ (see Figure 3h and 3d). The effect appears 
increase with position-predsion and becomes significant
with a conlidence gnmter than 75% when IFOD is greater
than twice the resolution of the position ¢xxxdinates.
Provided this condition is true, this implies that the
AI.ISA engine is capable of interpolating equally well (or
equally poorly) regardle.~s of the phase of the missing
images.

Finally, the l~culiar perkxlic fluctLmtions in average
NAR for IFOI)=13.2 (see Figure 3a and 3b) arise from
aliasing, because this II.DD is close to the period of the
person’s walk.

To eliminate aliasing and reduce ambiguities in the
results, it may be useful to repeat this work with objects
that are not symmetrical atwi do not exhibit ix.’ri(xiicities in
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motion. I[owcvcr, bccattsc moticm atudysis often involves
real scenes with all kinds of motion, this nmy not always
be l~ssible. Unfortunately, it is unclear if the optimmn
operating points obt~fincd for IFO1)=!3.2 me duc to an
interesting combination of factors, or merely ccinc4denct,~
arising from aliasing. The olaimum ol~rating point for
IFOD=8.5, however, may be qtfle real. If so, this begs the
questkm of why the subtle distinctions betw~n rumfing
motion and walking motion would be more aplmrclll to the
AI.ISA engine with a marc spm,’sely populag’d histogram
(II,~)1)=-8.5 mid I!:OD=13.2) than to the AI,ISA engine
with a marc densely lx~pulatcd histogrmn (II:OD=l.9 m~l
11:OI)--4.9). The results of this work clearly emphasize the
lgx~tl for as low a v’,due of IFOI) as lX~ssible to leduce the
possibility of aliasing, but warrant further investigation.
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