Detecting Motion in Single Images Using ALISA
From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Taras P. Riopka and Peter Bock

Department of Electrical Engincering and Computer Science
‘The George Washington University, Washington DC USA

riopka@seas.gwu.edu

Abstract

Motion analysis often relies on differencing operations
that inherently amplify noisc and are hindered by the
spatial correspondence problem. An alternative approach
is proposed using AIISA (Adaptive I.earning Image and
Signal Analysis) to detect differences in types of motion
by classifying the imaging effects of the motion in
single frames. With an appropriate feature set, the ALISA
engine accumulates a multi-dimensional histogram that
cstimates the probability density function of a feature
space and uses the result as a basis for classification. As a
function of image sampling rate and the scale of image
structures, the ALISA engine was able 10 discriminate
between a slow moving and fast moving object with a
confidence greater than 99%.

Introduction

Motion analysis typically requires processing of
temporally sequential frames of image data and is generally
dependent on the order of frame processing. Many standard
approaches [Haynes and Jain 1982][Hom and Schunck
1981}{Nagel 1983][Schalkoff and McVey 1982] rely on
analysis of sequential frames, often using a differencing
operation that inherently amplifies noisc. Further, point
correspondence of the same, but moving object between
frames is often problematic. In rcal scenes, an object can
often be differentiated by the characteristics of its motion
alone, for example, a slow moving object vs. a fast
moving object, circular motion vs. linear motion, an
approaching object vs. a rcoeding ohbject, erc. If the effects
of a type of motion can manifest itself in the texture of an
image, then single frames might be sufficient for
identifying the type and amount of motion, given
sufficient statistical evidence.

With this in mind, an alternative approach is proposed
using ALISA (Adaptive [caming Image and Signal
Analysis), an adaptive image classification engine based on
collective learning systems theory [Bock 1993). Using an
appropriate set of features, the ALISA engine accumulates
a multi-dimensional histogram that estimates the
probability density function of a feature space and uses the
result as a basis for classilication. Feature extraction in the
ALISA enginc is based on an analysis token, a small
window from which feature values are computed, scaled,
and quantized. The results are concatenated into a feature
vector and used to index into a multi-dimensional
histogram. Because the analysis token is applied to each
image in a fully overlapped manner, a single input image
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yields a very large number of feature vectors. During
lr.nmng the weight for each bin indexed by the featurc
vector is incremented, yielding a relative frequency of
occurrence. During testing, the weight in each bin is
nommalized into a feature-vector conditional probability
that representis the normality of the feature vector. After
processing an entire image, the normalities for each pixel
arc quantized and assembled into a normality map,
which is spatially isomorphic with the original image.

This paper addresses the research question: Can the
defining characteristics or type of motion be
effectively and efficiently encoded in the multi-
dimensional histogram accumulated by the
ALISA engine from single frames of an object
in motion? Only featurcs computed within a single
frame, not across successive frames, are used to configure
the ALISA engine, under the assumption that objects
moving at one speed will cxhibit feamre valuc
distributions that are significantly different from those
exhibited by objects moving at a different speed. Given the
pature of the collective learning paradigm, this condition
requires that thc ALISA cngine be trained on a sufficient
number of examples spanning the entire range of object
motion to be lcamed. Clearly, training on all possible
images depicting a particular type of motion, especially if
multiple objects are o be considered, is not a feasible
approach. However, if only a subset of images is 1o be
used, two subordinate rescarch questions are: What
parameters determine a minimum subset of
images; and What are the optimal configuration
parameters for the ALISA engine to learm to
discriminate between two types of motion?

Clearly, image sampling rate and the speed of object
motion determine the minimum number of images of the
moving object that must be captured for processing and
subsequent training. In addition, because only a small
subset of all the possible images of object motion are used
for training, to enable the ALISA cengine to detect object
motion on which it was not trained, a mechanism for
image interpolation was postulated. Thus, the scale of
image structures was an important parameter affecting the
ability of the AL.ISA engine to interpolate between frames.

The objective of this research was, therefore,
to measure the effect of image sampling rate
and the scale of image structures on the ability
of the ALISA engine to discriminate between
slow moving and fast moving objects moving
at constant speed under approximately the same
lighting and background conditions.



ALISA Engine Configuration

To achicve this objective, five features for the ALISA
engine were postulated: gradient direction, standard
deviation, hue, and x and y position. Thesc were selected
to minimize the effect of variations in scene jllumination.
In addition, these features are known to be useful for
motion detection, and they emphasize three relatively
stable characteristics of real scenes: edge direction, edge
magnitude, and hue. [Bock et al. 1992])[Howard and Kober
1992]|Hubshman and Achikian 1992][Kober et al.
1992]|Schmidt and Bock 1996} Despite the fact that
motion was primarily in the x-direction, both x and y
position were used as features to ensure the generality of
the approach. Dynamic ranges and precisions for all
features were determined empirically by testing the feature
set on example images; they are specified in Table 1.

Two parameters were postulated to represent the scale of
image structures: the size of the receptive field used for
featurc cxtraction, called the analysis-token-size, and
the number of quantization levels used for the x and y
position features, called the position-precision. These
were factors of the experiment to test the performance of
the ALISA enginc.

Given the condition of constant object speed and
constant image-sampling rate, a single parameter is
sufficient to cstimatc the true average speed of an object:
the average pixel displacement of the moving object
between two sequential frames, called the inter-frame
object displacement (IFOD). This parameter was also
a factor in the experiment.

Featare Dynamic Range (%) Precision Token Sire
Gradient Direction 0100 B t
Stundard Deviation 040 ] t
Hue 950 B t
X Positrion 0100 P '

Y Pomition 0-100 p t

Table 1: ALISA engine feature parameters
(Parameters p and t are experiment factors)

Motion Detection Experiment

To provide a realistic situation for this rescarch, a moving
person was sclected as the object of interest in the motion-
delection experiment. A scries of experiments was designed
to validate the following research hypothesis: Under
the given conditions, there is a set of factor
values that optimizes the ability of the ALISA
engine to discriminate between walking and
running motion. The factors, once again, werce inter-
frame-object  displacement,  position-precision, and
analysis-token-size.

Performance Metric

To measurc the ability of the ALISA cngine to
discriminate between different types of motion, a metric of
motion normality must be postulated. In this research,
the metric for motion nommality was based on the
normality of individual pixels in thc normality map

associated with a given image. A normal pixel in an
image is defined as a pixel whose corresponding feature
vector probability is greater than zero. This definition
implies that the feature vector cosresponding to a pixel of
interest must have been observed at least once by the
ALISA engine to be considered normal. The criteria for
pixel normality is very strict: if a feature vector value fora
given test image is one that has been discovered previously
during training, then the corresponding pixel is normal;
otherwise, the pixel is non-normal. Pixel normality is
therefore closely associated with exploration of the feature
space of the given object motion.

Motion pormality is defined for four sets of images. The
base sequence is the total set (B) of digitized images
oblained from the sequence of frames recorded by the video
recorder of the object of interest. A training sequence
is a subset of images (R) sampled from the base sequence
(i.e., R C B) at a specified rate beginning with the first
image. A sub-sampled-control-sequence is a subset
of images sampled from the base sequence at the same rate
as the training sequence, but with a different phasc, i.e.,
beginning with a different starting image. Finally, a test
sequence consists of images containing examples of
object motion that are considered to be different from the
normal object motion that was learned during training.

Images in the base sequence, which includes the training
sequence and all of the qub-smnpled—conunl -sequences,
should be classified by the ALISA engine as images of
normal motion. Images in the test sequence should be
classified as images of non-normal motion. The measure
of non-normality for this research is the non-normality
area ratio (NAR): the ratio of the number of non-normal
pixels in an image to the total number of pixels. The
non-normality area threshold (NAT) is the
maximum NAR over all sub-sampled-control-sequences
associated with a particular training sequence (i.e., overall
sequences out of phase with the training sequence) for any
specific combination of research factors (treatment).

Postulate: Image motion is normal if the NAR of
an image is less than or equal to the NAT using the
same ALISA configuration; otherwise, image motion
is non-normal.

The performance metric used to measure the motion
discriminating ability of the ALISA engine follows
directly from this postulate:

Postulate: Motion discrimination measure
(MDM) is the difference between the average NAR for
a set of test images and the NAT value for the set of
training images (normal motion) using the same
ALISA configuration.

MDM is assumed to be an accurate measure of the
ability of the ALISA engine to discriminate between
normal and non-normal object motion.
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Experiment Factor Settings

Four position-precisions, applied to both the x and y
position fcatures, were tested: p; = 12, py = 17, py = 23,
and p4 = 40. Four analysis-token sizes were tested: t; = 3,
ty =5, t3= 7 and t; =9, where each size refers to one
dimension (in pixels) of a square token. Four values of
inter-frame object displacement were tested: [FOD; = 1.9
pixels, [FOD, = 4.7 pixels, I'OD3 = 8.5 pixcls, ad
IFOD,4 = 13.2 pixels.

Experiment Procedure

Example images of the object of interest are shown in
Figurc 1. A person walking left-to-right in the field of
view was defined as normal motion; a person running left-
to-right was defined as non-normal motion.
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(a) person walking

(b) person nimning
Figure 1: (a) normal motion (b) non-normal motion

Movement was horizontal at constant speed and parallel
to the optical plane of the video camera. Scene
illumination was constant and diffuse throughout the
recording of the base sequence. A Sony model CCD-TR81
color video camera recorder was used to acquire all video
sequences. Each frame was an 160x120 array of 8-bit
pixels. The base sequence consisted of 186 frames of a
person walking from the left side to the right side of the
field of view.

The IFOD for the base sequence was computed by
dividing the width of each image in pixels (160) by the
number of frames required for a specific point on the object
of interest to move from the left edge to the right edge of
the ficld of view. Training sequences were extracted from
the base sequence using IFOD values that were multiples
of the base sequence IFOD, as shown in Table 2.

Sampling Number of
Image Sequence IFOD Value (m) Images
Base 0.94 1 186
Training 1 1.9 2 v3
Training 2 47 5 37
Training 3 8.5 9 20
'l‘ra%al 13.2 14 13

Table 2: Digitized image sequence data.
Training sequences were obtained by sampling the first

image of the hase sequence and every n images thereafter,
where 7 is the sampling value shown in Table 2. Sub-
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sampled-control-sequences for cach training sequence were
obtained by sampling the base scequence with the same
sampling value as the training sequence, but beginning
with a different starting image.

Because the sub-sampled control images are out of phase
with the training images, the number of sub-sampled-
control-sequences and the number of images in each
sequence were dependent on the sampling value for the
training scquence. l'or example, if the sampling valuc was
5 (every Sth image was uscd for training), a set of 4 sub-
sampled-control-sequences were generated, one for starting
image number 2, 3, 4, and 5. The number of sub-sampled-
control-sequences is, therefore, one less than the sample
value. The number of images in cach sub-sampled-control-
sequence was the same (£1) as the number of images in
the training sequence.

An ALISA cngine (MacAIISA version 5.2.2) was
trained on each training sequence for every treatment, i.e.,
every combination of position-precision and analysis-
token-size, resulting in 16 trained histograms per training
sequence, Lach of the 16 trained histograms was then
tested on the sub-sampled-control-sequences associated
with the training sequence. Average NAR values for cach
sub-sampled-control-sequence  were  computed.  The
maximum value over all sub-sampled-control-sequences in
the set associated with the training sequence was used as
the NAT value for that training sequence. This value was
actually the maximum non-normality that had to be
tolerated in order for the trained ALISA engine 1o detect
out-of-phase images as normal. It was used as a threshold
to define the boundary between normal and non-normal
motion.

Each trained ALISA histogram was then tested on a test
sequence consisting of 30 images of a person running.
(See I'igure 1b) The average NAR for cach test was
computed and, along with the corresponding NAT value,
used to compute the MDM performance metric.

Results and Conclusions

The following rescarch hypothesis was asserted for this
experiment: Under the given conditions, there is
an optimal set of factors that enables the
ALISA engine to discriminate between walking
and running motion. To validate this rescarch
hypothesis, the following null hypothesis was asserted:
Under the given conditions, for every set of
factor values the ability of the ALISA engine
to discriminate between walking and running
motion can be attributed to chance. To validaic
the rescarch hypothesis, it was necessary 1o be able to
reject this null hypothesis with a high confidence.

Figure 2 shows the MPDM performance metric plotted as
a function of the experiment factors. Large positive MDM
values in Figure 2 are strongly correlated with a
combination of factor values (operating point) for which
motion in the set of test images (person running) is non-
normal with a very high degree of confidence.
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Figure 2: Motion discrimination by the ALISA engine as a function of the experiment factors.
The numbered peaks show which combinations of factors enable the ALISA engine
to discriminate between walking and running motion with very high confidence.

The three most significant operating points (labeled 1,
2, and 3 in Figure 2) are given by the 3-tuples (1FOD,
position-precision, analysis-token-size): (13.2, 17, 3),
(8.5, 23, 5) and (13.2, 23, 5). Thesc operating points
resulted in NAR values for the running person which
exceeded their corresponding NAT values with a confidence
greater than 99%, clearly identifying the motion as non-
normal. Thus, the null hypothesis can be rcjected with
99% confidence. This strongly suggests that under
the given conditions, there is an optimal set of
factors that enables the ALISA engine to
discriminate between walking and running
motion. Seven other operating points that exhibit a
confidence for rejecting the null hypothesis of greater than
80% are labeled 4 through 10 in Figurc 2 in order of
decreasing confidence.

Figure 3 shows four examples of graphs of the average
NAR for sub-sampled-control-sequences plotted against the
corresponding starting image (phase) in the hase sequence.
Recall that the sub-sampled-control-sequences correspond
to images of object motion out of phase with the images
used for training. Sub-sampled-control-sequences close to
either the left or right side of each graph correspond to
images almost in phase with the training images, while
those in the middlc correspond to images very out of phase
with the training images.

In all cases, the average non-normality arcaratio (NAR)
increases as the precision used for the position featurcs
increases. Average NAR also increases as the analysis-
token-size decreases. Both of these observations arc
consistent and reasonable, since a higher feature resolution
necessarily results in a larger histogram, decreasing the
proportion of the feature space that can be effectively
explored during training with afixed number of images. In
other words, smoothing (using lower precision and larger
analysis-token-size) results in a more thorough exploration
of the comesponding partition of the featurc space,
enabling the ALISA cngine 1o interpolate between frames
more accurately.

In the sub-sampled-control-sequences, although lower
position-precisions and larger analysis-token-sizes worked
together to smooth images, resulting in lower average
NAR values, additional informal cxperiments revealed that
this was not the case when clearly anomalous objects were
present. In such test images (not shown) lower precision
for the position features tended to reduce noise in the
normality maps, while larger analysis-token-size ended to
increasc noise in the normality maps. Low position-
precision, thercfore, consistently reducednoise and resulted
in superior image interpolation, allowing a lower image
sampling rate and hence fewer images for object motion
training.
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Figure 3: Lxamples of average NAR for sub-sampled-control-sequences as a function of phase

Although a larger analysis-token-size improved image
interpolation and reduced the NAT obtained from sub-
sampled-control-sequences, countcrintuitively it also
increased the noise in the associated normality maps. ‘This
may be duc to the possibility that smoothing of
anomalous rcgions only increases the area over which the
points are anomalous, which works in opposition to the
benefits obtained from lower position-precision. Except for
the increased computational requirements, this can be
advantageous, hecanse it suggests that with larger analysis-
token-size, conjunctive henefits result, i.e., anomalies are
emphasized and image interpolation is enhanced.

It is interesting to note that the variation of average
NAR with image phase was contrary to expectation. The
average NAR for images nearly in phase with the training
images was almost the same as the average NAR of
images farthest away in phasc from the training images.
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This is truc for most combinations of rcsearch factors,
except for combinations of large IFOI) and large analysis-
token-size (see ligure 3b and 3d). The effect appears to
increase with position-precision and becomes significant
with a confidence greater than 75% when IFOD is greater
than twice the resolution of the position coordinates.
Provided this condition is true, this implics that the
AlLISA engine is capable of interpolating equally well (or
equally poorly) regardless of the phase of the missing
images.

tinally, the peculiar periodic fluctuations in average
NAR for IFOID=13.2 (see Figure 3a and 3b) arise from
aliasing, because this 1FOD is close to the period of the
person's walk.

To eliminate aliasing and reduce ambiguities in the
results, it may be useful to repeat this work with objects
that are not symmetrical and do not exhibit periodicities in



motion. [However, because motion analysis often involves
real scencs with all kinds of motion, this may not always
be possible. Unfortunately, it is unclear il the optimum
operating points obtained for [IFOD=13.2 are duc to an
interesting combination of factors, or merely coincidences
arising from aliasing. The optimum opcrating point for
IFOD=8.5, however, may be quite real. If so, this begs the
question of why the subtle distinctions between running
motion and walking motion would he more apparent (o the
ALISA engine with a more sparsely populated histogram
(ITOD=8.5 and 1FOD=13.2) than to the ALISA cnginc
with a more densely populated histogram (1'OD=1.9 ad
IOD=4.9). The results of this work clearly emphasize the
need for as low a value of IFOID as possible to reduce the
possibility of aliasing, but warrant further investigation.
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