
Analytical Design of Reinforcement Learning Tasks

Robert E. Smith

Department of Aerospace Engineering and Mechanics
The University of Alabama
 currently on sabbatical at

The Intelligent Computing Systems Centre
The University of The West of England

Bristol, UK
email: rsmith@btc.uwe.ac.uk

Abstract
Reinforcement learning (RL) problems constitute an
important class of learning and control problems faced by
artificial intelligence systems. In these problems, one is
faced with the task of providing control signals that
maximize some measure of performance, usually taken over
time, given feedback that is not in terms of the control
signals themselves. This feedback is often called "reward" or
"punishment." However, these tasks have a direct
relationship to engineering control, as well as the more
cognitive intelligence related areas suggested by these terms
(Barto, 1990).
In recent years, many algorithms for RL have been
suggested and refined. Notable are those discussed by
Sutton, Barto, and Watkins (1989), Holland’s Bucket
Brigade (Holland et al., 1986), Watkin’s Q-learning
algorithm (Watkins and Dayan, 1992), and others. Despite
these advances, there remains no standard, analytical
methods or test suites for empirically evaluating
reinforcement learning systems. Most test problems in RL
are in abstract, difficult to analyze forms (e.g., maze
problems, the inverted pendulum, etc.).
This paper describes a method for designing arbitrary
numbers of RL test problems with clear, parameterizable
characteristics. An additional contribution of this method is
a clear identification of parameters for RL environment
complexity. Although the method described is primarily
suggested for RL problem design and RL method
evaluation, its parameters could be used for analysis of
extant RL test problems.
The following sections outline basic RL nomenclature,
followed by the development of Walsh transform based
design techniques for a limited class of RL problems.
Straight forward extensions of these techniques to a broad
class of RL problems are also provided. Use of these
techniques are further extensions are discussed.

Introductory Assumptions and RL
Nomenclature

To begin, consider deterministic, finite horizon, un-
discounted, binary decision tasks. That is, at each time step
t, the plant being controlled is in one of a finite number of
states, s(t). The environment provides a signal accurately
indicating the system’s state. The system must submit a
binary action signal at (right or left, right or wrong, -1 or
+1). Once this signal is submitted, the system makes a
deterministic transition to another state, s(t+1). The
environment provides a reward signal, r(t,s(t),a(t)). Assume
that this process goes on for a known, maximum number of
time steps L . To illustrate environments, we will use
diagrams like that shown in Table 1. Each cell in this table
represents a state of the environment, and the digits in the
cell represent the action sequence that leads to that state.
Note that going to the left of right below any given cell
adds the appropriate action bit to the action sequence.

Time
Step

Action Sequences a (right = -1 action,
left = +1 action)

0 (null, this is the starting state)
1 +1 -1
2 +1+1 -1+1 +1-1 -1-1
3 +1

+1
+1

-1
+1
+1

+1
-1
+1

-1
-1
+1

+1
+1
-1

-1
+1
-1

+1
-1
-1

-1
-1
-1

Table 1

Although L=3 examples will be used in this paper’s tables
for clarity and brevity, all techniques discussed apply to
problems of more meaningful length.

1 Copyright © 1998, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Assume that the total value of the system’s performance is
simply the (undiscounted) sum of all the rewards,

R a r t s t a t
t

L

() (, (), ())=
=
∑

1

In following calculations we will refer to the vector of
binary actions for t=1…L simply as a.
Note that we will later relax many of these assumptions,
notably the assumptions of undiscounted reward, binary
actions, and deterministic behavior. They are made here
only to ease the initial Walsh transform calculations

Introduction to Walsh Transforms

The Walsh transform (Beauchamp, 1984; Goldberg, 1989a;
1989b) is analogous to the Fourier Transform. The Fourier
Transform maps a continuous (or discrete) series of values
spread over a continuous (or discrete) time domain to
coefficients for various frequencies in that series. By
analogy, the Walsh transform maps a discrete series of
values spread over the domain of binary integers to
coefficients for various sequencies in that series. The
notion of a sequenecy is a bit less intuitive than that of a
frequency, and requires some introduction. Sequencies can
be thought of as partitions of the binary space. To
distinguish partitions of this space from members of the
space, we will describe partitions with the binary alphabet
{0,1}, and members with the binary alphabet {-1,+1}. The
partition 001 of the three bit binary space divides that space
in two. Strings that have -1 in the third bit position, for
instance -1-1-1, are in one half of the partition. Strings that
have +1 in the third bit, for instance +1+1+1, are in the
other half. Likewise, the partition 100 divides the space
into two different halves. A two bit partition, like 101
divides the space into quarters, and so forth. We will refer
to these partitions (or sequencies) by both their binary
string representation (using the symbol J), and by their
decimal interpretation as binary integers (using the symbol
j). For instance, J=001 is partition j=1, J=100 is partition
j=4, and J=101 is partition j=5.
To take the Walsh transform, assume we are given all the R
values of a set of binary strings. An example is given in
Table 2.

Binary String (a) Value (R(t,s,a))

-1-1-1 5

-1-1+1 -7

-1+1-1 15

-1+1+1 11

+1-1-1 13

+1-1+1 1

+1+1-1 -17

+1+1+1 -21

Table 2

In the Walsh transform, each partition j has a
corresponding Walsh coefficient w(j) (which we will also
call w(J)). Using the representation presented here, the
Walsh coefficients are given by the following calculation:

 ()w j R a a i J iL
a iL

L

() () (), ()
{ , }

=
∈ − =
∑ ∏1

2 1 1 1

2

Ψ

where a(I) is the ith bit of the action string a, and J(I) is the
ith bit of the partition string, and j=1,2,3…2L. The four
possible values of the function ΨΨΨΨ are shown in Table 3.

ai
Ji ()Ψ a Ji i,

-1 0 +1
-1 1 -1
+1 0 +1
+1 1 +1

Table 3

Note that this function takes the value of the sign of the
action bit, if that bit corresponds to a 1 bit in the partition
string.
To illustrate the Walsh transform, Table 4 contains the
Walsh coefficients for the reward values shown in Table 2.

J j w(J) or w(j)

000 0 0
001 1 4
010 2 3
011 3 2
100 4 6
101 5 0
110 6 -10
111 7 0

Table 4

To take the inverse Walsh transform, one simply sums the
Walsh coefficients, sign being determined by the parity of
the bit product of the corresponding partition and binary
string:

()R t s a w j a i J i
i

L

j

L

(, ,) () (), ()=
==
∏∑ Ψ

10

2

Walsh Canonical Representation of RL Tasks

Once again restricting ourselves to deterministic, finite
horizon, undiscounted, binary decision tasks, one can easily
take the Walsh transform of R, the total value of the length
L binary sequence of actions, at, t = 0,1,2…L.
Clearly, there are an infinite number of RL tasks of this
type that would have the same Walsh coefficients.
Therefore, it will be useful to introduce a Walsh canonical
RL task representation. In this representation, the reward
given at time step t is given by the Walsh sum for the first
t-bit substring of the entire L-bit action sequence. This form

is depicted in Table 5. Note that each cell in this table is
associated with a state shown in Table 1, and the signs
within the cell represent the sign of the associated Walsh
coefficients (w(j)) in the reward for time step t of the action
sequence.

t j Sign of w(j) in reward values
R(a(t))

0 0 +

1 1 - +

2 2
3

-
+

+
-

-
-

+
+

3 4
5
6
7

-
+
+
-

+
-
-
+

-
+
-
+

+
-
+
-

-
-
+
+

+
+
-
-

-
-
-
-

+
+
+
+

Table 5

Note that it parallels the procedure of the inverse Walsh
transform. Rewards for the Walsh canonical form of the
task shown in Table 2 are shown in Table 6. Note that a
one-step “greedy” approach to this problem will yield a
sub-optimal reward value of 13. If one uses one step look
ahead, the optimal reward value of 15 can be obtained.

t Reward values R(a) (right = -1 action,
left = +1 action)

0 0
1 -4 4
2 -1 1 -5 5
3 -16 16 4 -4 -16 16 4 -4

Table 6

Interpreting the Walsh Coefficients

To interpret the Walsh coefficients in an RL context, one
must first introduce two important parameters of the Walsh
partitions. For this, we will borrow some terminology from
genetic algorithms analysis (Goldberg, 1989c), which has
extensively employed Walsh transform analysis.
First, one must consider the order of each partition. The
order is the number of bits along which a partition divides
the space. In the {1,0} alphabetic representation we have
used, this is the number of 1 bits in the partition. For
instance, partitions j= 1 (J=001), j= 2 (J=010), and j= 4
(J=100) are all order one, and partition j= 7 (J=111) is
order three.
Second, one must consider the defining length of each
partition. The defining length of a given partition is the
maximum number of time steps between bits that divide
the space. In our representation, this is the distance
between outermost 1 bits in the partition. The order zero
partition (J=000) and all the order one partitions (e.g.,

(J=001) and (J=010)) have defining length 0. Partition j= 7
(J=111), as an example, has defining length 2, as does
partition j= 5 (J=101).
Given this terminology, one can interpret the Walsh
coefficients as having clear meaning in RL tasks. The order
of a partition represents the number of action decisions that
influence a reward-gaining event. The defining length of a
partition represents the delay in time of the influence of
those actions. For instance, consider partition j= 7 (J=111).
The coefficient of this partition represents the joint reward-
gaining effect of the actions at time steps 1, 2, and 3. As
another example, consider partition j= 6 (J=101). Its
coefficient represents the joint reward gaining effect of
actions at time steps 1 and 3.
To see how order and can be used to interpret the
complexity of a RL task, once again consider the task
shown in Table 2, its Walsh coefficients in Table 4, and its
Walsh canonical representation in Table 6. Orders and
defining lengths for partitions in this problem are noted in
Table 7.

j Partition
(J)

Order Defining
Length

Walsh
Coefficient
(w(j))

0 000 0 0 0
1 001 1 0 4
2 010 1 0 3
3 011 2 1 2
4 100 1 0 6
5 101 2 2 0
6 110 2 1 -10
7 111 3 2 0

Table 7

The largest order of a partition that has a non-zero Walsh
coefficient indicates the maximum number of actions that
influence each other’s reward-gaining effects. Therefore,
we will refer to the maximum order of partitions that have
non-zero Walsh coefficients as the effective action size of
the given RL task. In the case of Table 7, the effective
action size is 2.
The maximum defining length of a partition that has a non-
zero Walsh coefficient indicates the maximum number of
time steps between actions that influence each other’s
reward-gaining effects. Therefore, we will refer to the
maximum defining length of partitions that have non-zero
Walsh coefficients as the effective action span. Note that
the effective action span cannot be less than the effective
action size minus one, by definition. In the case of Table 7,
the effective action span is 1.
Note that these factors explain why one step look ahead
was necessary and sufficient for obtaining the optimal
reward value. One must consider actions of size 2, that are
separated in time by no more than 1 step.
The effective action size and span are parameters that
describe the complexity of a reinforcement learning task.

Moreover, these parameters are controllable through Walsh
coefficient manipulation in problem design.

Pure Reward Delay

The taxonomy of complexity offered above leaves out one
important aspect of RL tasks. To see this, consider the RL
task depicted in Table 8, and its Walsh canonical
representation, depicted in Table 9.

Time
Step

Reward values R(a) (right = -1 action,
left = +1 action)

0 0
1 5 -5
2 -15 -5 5 15
3 6 -6 6 -6 6 -6 -6 6

Table 8

Time
Step

Reward values R(a) (right = -1 action,
left = +1 action)

0 0
1 -5 5
2 -5 5 -5 5
3 6 -6 6 -6 6 -6 6 -6

Table 9

In the original representation of the task, some of the
effects of the first action were delayed by one step.
Therefore, a greedy approach will yield a suboptimal
reward value of 6. However, in the Walsh canonical
representation, this effect is removed. A greedy approach
here yields the optimal reward value of 16. As this would
suggest, examination of the Walsh coefficients (shown in
Table 10) shows that the task has an effective action size of
one and an effective action span of zero.

j Partition
(J)

Order Defining
Length

Walsh
Coefficient
(w(j))

0 000 0 0 0
1 001 1 0 5
2 010 1 0 5
3 011 2 1 0
4 100 1 0 -6
5 101 2 2 0
6 110 2 1 0
7 111 3 2 0

Table 10

This shows that the key complexity of the task does not
arise from either of these factors. This is a case of what we
will refer to as pure reward delay.
Although the Walsh canonical representation removes pure
reward delay, one can introduce arbitrary levels of pure
reward delay from the Walsh representation by delaying

the time when a Walsh coefficient is added to the reward.,
and by introducing constant rewards that are removed at
later time steps. The number of steps that these effects are
delayed is the amount of pure reward delay. For instance,
consider the non-canonical Walsh representation in Table
11, which delays w(1) one step, adds a temporary reward of
5 for one step, and yields the single step of reward delay
shown in Table 8.

t j Sign of w(j) in reward values R(a(t))
0 0 +
1 delayed +5 -5
2 1

2
3

-
-
-
-5

-
+
-
-5

-
-
+

+5

-
+
+

+5
3 4

5
6
7

-
+
+
-

+
-
-
+

-
+
-
+

+
-
+
-

-
-
+
+

+
+
-
-

-
-
-
-

+
+
+
+

Table 11

Using Walsh Coefficients to Design RL Tasks
The advantage of the Walsh approach and taxonomy
offered above is that it casts the complexities of RL tasks
into a set of definite parameters (the Walsh coefficients)
and a few related parameters that directly effect RL task
complexity (the effective action size, span, and the amount
of pure reward delay). At first, the adjustment of the 2L
Walsh coefficients to arrive at a given task complexity may
seem as difficult as adjusting the reward matrix directly.
However, if one focuses on the effective action size, span,
and pure reward delay, task design becomes much simpler.
To develop a RL task with a given level of complexity, one
could set all Walsh coefficients that have the same order
and the same defining length to be equal.
It is important to note that although action size, span and
reward delay indicate the potential complexity of an RL
task, they do not tell the entire story. For instance, consider
a task that has an action size of three. In such a task it may
be possible to obtain optimal performance by considering
only an action span of one. This is possible because the
relative value of immediate reward may override the effects
of reward from any three coupled actions. Moreover, the
best behavior for three separate actions can also give the
best behavior for combinations of three actions.
However, one can design RL tasks where the effects of
larger combinations of actions override those of smaller
combinations (or vice versa) by considering the relative
sizes of Walsh coefficients. A complete discussion of these
effects is beyond the scope of this paper. A more thorough
consideration of these issues can be gleaned from genetic
algorithms analysis (Goldberg, 1989b).
Moreover, one can design RL tasks by randomly assigning
values to appropriate Walsh coefficients, selected to insure
desired values of action size, span, and reward delay. Then,

by considering probability distributions of the relative sizes
of Walsh coefficients, the expected complexity of a suite of
such problems can be derived. Such problem design
techniques are similar to those used in NK landscapes
(Kauffman, 1993). A thorough consideration of the
probabilities involved in this design technique is being
developed (Smith and Smith, in preparation).

Extensions

The previous discussion employs undiscounted, binary,
deterministic RL tasks. However, the techniques discussed
can be easily extended to a much broader category of RL
problems. Although, complete arguments and examples of
these extensions cannot be included here for the sake of
brevity, some discussion of these extensions is useful.
The reward measure used in the previous discussion was
undiscounted. A more commonly used measure of
performance is a discounted sum of rewards:

R a r t s t a tt

t

L

() (, (), ())=
=
∑γ

1

where 0<γ<1 is the discount parameter. Walsh coefficients
can be derived from this measure of performance in the
same manner discussed before. However, when designing a
task using the Walsh canonical form, one must take
discounting into account. This can be done by determining
the coefficients as in the undiscounted case, and then
multiplying the values of the coefficient combinations at
each time step t by (1/γ)t.
To extend the techniques discussed here to decision tasks
where more than two action alternatives are available at
each state, one only need realize that a binary number can
be assigned to actions at each state. By examining the form
of the Walsh transform over a complete action sequence in
this form, one can reformulate notions of effective action
size, span, and pure reward delay.
The techniques can also be extended to non-deterministic
tasks through appropriate consideration of the expected
value of reward.

Final Comments

The suggested Walsh transform-based method offers
several advantages for the design of RL test environments.
Specifically:
〈 It provides for specific, tunable parameters to control

problem complexity (i.e., the Walsh coefficients).
〈 It provides a set of separate parameters they accurately

describe problem complexity:
← The effective action size,
← The effective action span, and
← The amount of pure reward delay.

〈 It provides a framework for generating an infinite
number of test problems of known complexity for
testing RL methods.

〈 It allows RL test problem designers to draw on genetic
algorithm analysis, where using Walsh transforms in
problem design is well established. (Goldberg, 1989a;
1989b; 1989c; Smith and Smith, in preparation)

Given the suggested techniques, detailed, careful
comparisons of RL methods can be performed. Given the
key role such methods play in AI in intelligent control,
such comparisons are of paramount importance

References

Barto, A. G., Sutton, R. S., and Watkins, C. J. C. H. (1989).
Learning and Sequential Decision Making, COINS
Technical Report, 89-95, University of Massachusetts,
Amherst, MA

Barto, A. G. (1990). Some Learning Tasks From a Control
Perspective, COINS Technical Report 90-122, University
of Massachusetts, Amherst, MA

Beauchamp, K. G. (1984). Applications of Walsh and
Related Functions. New York: Academic Press.

Goldberg, D. E. (1989a). Genetic algorithms and Walsh
Functions: Part I, A Gentle Introduction. Complex Systems
3: 129-152.

Goldberg, D. E. (1989b). Genetic algorithms and Walsh
Functions: Part II, Deception and Its Analysis. Complex
Systems 3: 153-171.

Goldberg, D. E. (1989). Genetic algorithms in search,
optimization, and machine learning. Reading, MA:
Addison-Wesley

Holland, J. H., Holyoak, K. J., Nisbett, R. E., and Thagard,
P. R. (1986). Induction: Processes of Inference, Learning,
and Discovery. Cambridge, MA: MIT Press.

Kauffman, S. A. (1993). The Origins of Order: Self-
Organization and Selection in Evolution. New York:
Oxford University Press.

Smith, R. E. and Smith, J. (in preparation). Walsh Analysis
of Random Landscapes. Intelligent Computing Systems
Centre. The University of The West of England.

Watkins, C. J. C. H. and Dayan, P. (1992). Technical Note:
Q-Learning. Machine Learning 8: 279-292.

