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Abstract

Many industrial processes involve making parts with
an assembly of machines, where each machine carries
out an operation on a part, and the finished product
requires a whole series of operations. A well-studied
example of such a factory structure is the transfer line,
which involves a sequence of machines. Optimizing
transfer lines has been a subject of much study in the
industrial engineering and operations research fields.
A desirable goal of a lean manufacturing system is
to maximize demand, while keeping inventory levels
of unfinished product as low as possible. This prob-
lem is intractable since the number of states is usually
very large, and the underlying models are stochastic.
In this paper we present an artificial intelligence ap-
proach to optimization based on a simulation-based
dynamic programming method called reinforcement
learning. We describe a reinforcement learning algo-
rithm called SMART, and compare its performance on
optimizing manufacturing systems with that of stan-
dard heuristics used in industry.

Introduction
Industrial manufacturing usually involves making
parts with an assembly of flexible machines. The ma-
chines are programmable in some way in that their op-
erations can be selected from a repertoire of basic op-
erations, including doing one of several operations on a
part, or doing maintenance. Optimizing manufactur-
ing requires making parts with the lowest cost, which
is usually a function of the number of parts stored in
inventory (not yet finished), maintenance and failure
costs of the machines involved etc. Although there
are well-known stochastic models for optimization of
such machine assemblies, these models are intractable
to solve for large numbers of machines (usually three
or more) (Gershwin 1994).

An alternative approach to optimization is through
the use of simulation models, which are a time-honored
approach to modeling complex systems (Law & Kelton
1991). Many software tools are available to simulate

a wide range of systems including manufacturing, pro-
cess control systems, and robotic control. These tools,
however, rely on a human decision-maker to supply a
fixed procedure or policy, and only provide a statistical
profile on the quality of the policy. In this paper, we
describe a new approach to automatically find good
policies to intelligently control a complex simulation
model. Our approach is based on a machine learn-
ing framework for autonomous agents called l~i.n/o~e-
ment learning (RL) (Mahadevan & Kaelbling 1996;
Kaelbling, Littman, & Moore 1996; Sutton & Barto
1998). This framework models the sequential decision
making problem faced by an agent (i.e., what action
should the agent do in a particular state) as a Markov
Decision Process (MDP) (Puterman 1994). The 
of the agent is to learn a policy (mapping states to
actions) that maximizes its performance on the task.

Reinforcement, learning is an ideal approach to op-
timize simulation models, since these generate sample
trajectories through the state space as the agent exper-
iments with its current policy. Classical optimization
methods, such as dynamic programming (Bertsekas
1995), cannot, be applied here because they require 
transition model to predict the next state distribution,
given the current state and action. Simulation models
can generate sample next states, but cannot directly
provide the information needed by dynamic program-
ming.

In this paper, we are interested in studying a broad
class of optimization problems in the general area of
manufacturing, such as flexible product manufactur-
ing, product scheduling, maintenance, inventory con-
trol, and transfer line optimization. In particular, we
will focus on the problem of optimizing a transfer line
(as shown in Figure 1). Transfer line optimization 
a well-studied problem (Gershwin 1994), but the ana-
lytical models are intractable to analyze for lines with
more than 2-3 markdnes. Transfer lines with 20 ma-
chines are standard in industry, but generate state
spaces with 102° states or more, which seems out of
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the realm of possibility for optimization using analyt-
ical models (as noted by (Gershwin 1994)). We 
present empirical results comparing the performance
of an average reward reinforcement learning algorithm
called SMART (Mahadevan et al. 1997) on optimizing
such a transfer line, and compare it with a well-known
heuristic from the Literature called Kanban, originally
developed by Toyota Motor company (Shingo 1989;
Bonvik & Gershwin 1996).

Figure h A transfer line models an assembly line oper-
ation in many factories, where a sequence of machines
(M) make parts, that are isolated by product buffers
(B). The machines are unreliable, and may fail occa-
sionally. The problem is to optimize the throughput
of the transfer line, while minimizing the in-product
inventory, and minimizing failures.

The approach proposed in this paper can be applied
to many other problems, including flexible manufactur-
ing, product switching, ATM optimization, admission
control in queues, and so on.

Discrete-Event Sequential
Decision-Making Model

Decision-making in man}’ domains can be abstractly
viewed as follows. At each step, the agent perceives
(perhaps imperfectly) the underlying environment 
being in one of a (possibly very large, but finite) set
of states. The agent can choose one of a set of finite
actions in a given state, and carry it out. The action
modifies the environment in some way (or transports
the agent around), thereby modifying the perceived
state into a new state. Much recent work in AI on
autonomous agents, ranging from reinforcement learn-
ing (Sutton & Barto 1998), to robotics (Simmons 
Koenig 1995), has adopted this framework.

For the purpose of optimizing simulation, we need
to extend the discrete-time framework to a discrete-
event framework, thereby generalizing it in two ways.
Time is explicitly modeled as a continuous variable,
but the agent observes the environment and makes
decisions only at certain discrete points (or decision
epochs). In between these epochs, the state of the sys-
tem can be changing in some complex way, but these
changes may not provide the agent with any additional
information. Furthermore, actions take non-constant
time periods, modeled by some arbitrary time distribu-
tion. It is not possible to model the optimization of fac-
tory processes as a discrete-time MDP, without drastic

loss of information (for example, Poisson demand pro-
cesses or failure distributions require using real-valued
stochastic time distributions). This is well known in
the simulation community, since discrete-event mod-
els have been used as the basis for simulation studies
in a multitude of domains, ranging from manufactur-
ing, queueing, networking, and transportation (Law 
Kelton 1991).

Formally, the evolution of the environment at de-
cision epochs can be modeled as a semi-Markov deci-
sion process (SMDP) (Puterman 1994). It is termed
a semi-Markov model, because the transition depends
not only on the current state and action, but also on
how long the system has been in the current state. An
SMDP is defined as a five tuple (S,A,P,R,F), where
S is a finite set of states, A is a set of actions, P is a set
of state and action dependent transition probabilities,
R is a reward function, and F specifies the probabil-
ity distribution of transition times for each state-action
pair. P(y [ x., a) denotes the probability that action a
will cause the system to transition from state x E S to
y E S. This transition probability function describes
the transitions at decision epochs only.

The reward function for SMDP’s is more complex
than in the MDP model. In addition to the fixed
reward k(x,a), accrued due to an action taken at a
decision epoch, an additional reward may be accumu-
lated at rate c(y,z, a) for the time the natural pro-
cess remains in state y between the decision epochs.
Note that the natural process may change state several
times between decision epochs, and therefore, the rate
at which the rewards are accumulated between decision
epochs may vary. For example, in our experiments, the
average size of the inventory level is translated into a
rate cost that is computed as the area under the buffer
size curve. We will describe the cost model in more
detail below.

Reinforcement learning infers the optimal policy in-
directly by inferring instead a value function (mapping
states or state-action pairs to real numbers). Poli-
cies determine a value function based on an optimality
metric, which is usually either a discounted model, or
an average-reward model. We will primarily use the
average-reward model in our work.

Value Functions for Average Reward
SMDPs

The expected reward between two decision epochs,
given that the system in state x, and a is chosen at
the first decision epoch, may be expressed as

(/o r(z, a) = k(z, a) + E~ cCWt, x, a)dt (1)
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where r is the transition time to the second decision
epoch, and Wt denotes the state of the natural process.
Now, starting from state x at time 0, and using a policy
Ir for n decision epochs until time t, the expected total
reward can be expressed as

= + kC=,,,a,,)
q=O

(2)
where k(xn, an) is the fixed reward earned at the nth

decision epoch, and c(y, xn,an) is the rate at which
reward is accumulated from the nth to the (n + 1)th
decision epoch. The average reward p= for a policy
7r can be defined by taking the limit inferior of the
ratio of the expected total reward up until the nth
decision epoch to the expected total time until the nth
epoch. So the average reward of a policy p"(x) can 
expressed as the ratio

lira
n-~oo

n T,E; {E,=0 i}
(3)

For each transition, the expected transition time is
defined as:

for each x E S, and a E A.

t E Q(dt, z I x, a) (4)
-’ES

The Bellman optimality equation for unichain av-
erage reward SMDP’s is analogous to that for the
discrete-time model, and can be written as

V*(x) = "ax r(x’a) -p*y(x’a) + E Pzz(a)V*(z))zes

(5)
Here, V* is the optimal value function and p* is the
optimal average reward. Note that we are assuming
unichain SMDP’s, where the average reward is con-
stant across states. Many real-world SMDP’s, includ-
ing the elevator task (Crites & Barto 1996) and the
production inventory task and transfer line problems
described below, are unichain.

SMART: A Simulation-based
Average-Reward Reinforcement

Learning Algorithm
We now describe an average-reward algorithm called
SMART (for Semi-Markov Average Reward Tech-
nique), which was originally described in (Mahade~’an
et al. 1997). This algorithm is based on representing
the value function using action values R(x, a), which
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is the utility of doing action a in state x. These action
values can be learned by running a simulation model
of the manufacturing domain, and using a feedforward
neural net to approximate the action values.

The SMART algorithm can be derived straightfor-
wardly from the Bellman equation for SMDP’s (Equa-
tion 5). First, we reformulate Equation 5 using the
concept of action-values. The average-adjusted sum of
rewards received for the non-stationary policy of do-
ing action a once, and then subsequently following a
stationary policy ~r can be defined as

M~(x, a) = r(x, a)-p~y(x, a)+~ Pzz(a) ~ (z, b
zES b

(6)
The temporal difference between the action-values of

the current state and the actual next state is used to
update the action values. In this case, the expected
transition time is replaced by the actual transition
time, and the expected reward is replaced by the ac-
tual immediate reward. Therefore, the action values
are updated as foUows:1

R(x,a) ~- (rimm(X,a) - pT + maxR(z,b))b (7)

where ri,,,~(x,a) is the actual cumulative reward
earned between decision epochs due to taking action
a in state x, z is the successor state, p is the aver-
age reward, and a,~ is a learning rate parameter. Note
that p is actually the reward rate, and it is estimated
by taking the ratio of the total reward so far, to the
total simulation time.

E =o (8)p =
E; =o

where rimm (xn, an) is the total reward accumulated
between the nth, and (n -t- 1)th decision epochs, and
rn is the corresponding transition time. Details of the
algorithm axe given in Figure 2. The learning rate an
and the exploration rate Pn are both decayed slowly
to 0 (we used a Moody-Darken search-then-converge
procedure).

Value Function Approximation in SMDP’s

In most interesting problems, such as the transfer line
problem in Figure 1, the number of states is quite large,
and rules out tabular representation of the action val-
ues. One standard approach, which we followed, is
to use a feedforward net to represent the action value

tWe line the notation u 2,-. v as an abbreviation for the
stochastic approximation update rule u ~-- (1 - e~)u + av.



1. Set decision epoch n - 0, and initialize action values
Rn(x, a) = O. Choose the current state x arbitrarily.
Set the total reward c,~ and total time tn to 0.

2. While n < MAX_STEPS do

(a) With high probability p,~, choose an action a that
maximizes R,~(x,a), otherwise choose a random
action.

(b) Perform action a. Let the state at the next deci-
sion epoch be z, the transition time be r, and rimm
be the cumulative reward earned in this epoch as
a result of taking action a in state x.

(c) Update Rn(x, a) using 

P~+l(x,a) (r ,,.m-pnr + m~P~(z,b))

(d) In case a nonrandom action was chosen in step
2(a)

¯ Update total reward cn ( cn -{- rimm
¯ Update total time tne--- tn -{- ~"
¯ Update average reward p~ <

(e) Set current state x to new state z, and n +- n-t-1.

Figure 2: The SMART algorithm for unichain
SMDP’s.

function (Crites & Barto 1996). Equation 7 used 
SMART is replaced by a step which involves updat-
ing the the weights of the net. So after each action
choice, in step 2(c) of the algorithm, the weights of the
corresponding action net is updated according to:

(9)

where c(x, z, a, rimrn, ~) is the temporal difference er-
ror

[rimm(x,a) -- pnT-~ ma=t~(z,b,4~) P~(x,a,~)]

and ~ is the vector of weights of the net, an is the
learning rate, and V~Rn(x, a, ~) is thc vector of partial
derivatives of R,~(x, a, ~b) with respect to each compo-
nent of ~b.

Experimental Results

Single machine optimization

We now present detailed results of the SMART algo-
rithm for optimization of manufacturing processes. To
set the context, we begin by reviewing our earlier work

on optimizing single machines with SMART (Mahade-
van et al. 1997). A single fiexible manufacturing ma-
chine can make several parts, each of which go into a
separate buffer. The transfer line generalizes this ex-
ample to several interconnected machines. The system
we consider consists of a machine capable of produc-
ing 5 different products. The main parameters for the
system are estimated as follows:

¯ Demand arrival process for each product i is Poisson

¯ Production time for each product has a Gamma

(di, Ai) distribution

¯ Time between failures has a Gamma (k,/~) distribu-
tion

¯ Time required for maintenance has a Uniform (a, b)
distribution

¯ Time for repair has a Gamma (r, &) distribution

The reinforcement learning algorithm is imple-
mented using CSIM, a commercially available discrete-
event simulator (see Figure 3). An example re-
sult of using the reinforcement learning algorithm to
optimize a single flexible manufacturing machine is
shown in Figure 4. As the figure shows, the pro-
duction/maintenance policy learned by reinforcement
learning is much better than the ones derived from two
heuristic procedures.

Transfer Line Optimization: Multiple
machines

We now present results of optimizing a 3 machine
transfer line, as shown in Figure 1, and compare it to
the performance of a standard well-accepted heuristic
called Kanban. The goal of optimizing a transfer line
is to maximize satisfied demand (which means deliver-
ing finished product to customers, any time a such a
demand occurs), while keeping the inventory levels as
low as possible.

The Kanban heuristic: This heuristic was devel-
oped at the Toyota Motor company, which is usually
credited as an originator of the concept of lean man-
ufacturing (Shingo 1989). The basic idea behind the
heuristic is illustrated in Figure 5. The heuristic uses
the concept of cards (or Kanbans) that circulate be-
tween a buffer and the immediate upstream machine,
and are a signal for a machine to stop or start produc-
tion. Essentially, in this method a machine produces
until its output buffer is full. If a unit of finished prod-
uct is consumed by demand, the last machine receives
a Kanban card authorizing it to produce an additional
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Figure 3: The SMART reinforcement learning al-
gorithm is implemented using CSIM, a commercial
discrete-event simulator. CSIM allows construction of
simulation models of arbitrary size, since it is directly
based on the C language.

part. This machine then picks up its raw materials
from the buffer immediately behind it, which releases
the Kanban card for that part. This way, information
flows back upstream to all the machines for them to
produce one additional part.

The following cost model for optimizing a transfer
line was adopted. Repairs are modeled as incurring a
cost of -1000. Each unit of satisfied demand is worth a
positive reward of 10. In addition, there is a continual
rate cost based on the average inventory levels, which
is scaled by 0.1. In our experiments, each of the three
machines receives the same reward.

Table 1 compares the performance of the SMART
algorithm with the Kanban heuristic. The table shows
the total inventory levels needed by SMART and Kan-
ban for various target demand levels. In each case,
the fill rate (percentage of demand satisfied) was about
98%, indicating that most of the demand was satisfied.
As the table shows, SMART outperforms the Kanban
heuristic in needing much fewer items in the inventory.

Target Demand SMART I Kanban
0.2 106.7 135.27
0.5 100.69 117.3
0.6 85 101.15

Table 1: Comparison of Total Average Inventory Lev-
els of SMART with Kanban heuristic.
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Figure 4: All curves show median-averaged costs of
production of 5 parts using an unreliable machine. The
top curve corresponds to the policy learned by the rein-
forcement learning algorithm. The bottom two corre-
spond to fixed policies representing two heuristic meth-
ods.
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Figure 5: Diagram showing the Kanban heuristic pol-
icy for optimizing a transfer line.

Inventory levels are of course, only part of the over-
all improvement offered by SMART. In particular, be-
cause SMART actually learn a maintenance policy in
addition to a production policy, the total number of
failures is far fewer when using SMART. Table 2 com-
pares the number of failures incurred under SMART
and under Kanban. Note that since the Kanban heuris-
tic does not incorporate any maintenance policy, it will
obviously incur a far higher number of failures, as the
table shows. The higher number of failures implies
that the Kanban heuristic will result in a much lower
average reward, as shown in Figure 6.

I Target Demand I SMART Kanban
0.2 843 2878
0.5 1880 6458
0.6 2992 8980

Table 2: Comparison of Total Number of Machine Fail-
ures for SMART with Kanban heuristic.

Limitations and Future Work

The results described in this paper should be viewed as
preliminary, particularly those for optimizing a trans-
fer line. We are currently running additional experi-
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Figure 6: This figure compares the average reward of
the policy learned by SMART with that produced by
the Kanban heuristic.

ments, which we expect to report during the presenta-
tion of this paper. Here, we briefly discuss the nature
of the additional experiments being planned.

There are several additional heuristics that have
been developed, such as the CONWIP (constant work-
in-process) strategy (Spearman, Woodruff, & Hopp
1990), as well as hybrid methods (Bonvik & Gersh-
win 1996) which combines a kanban with a CONWIP
strategy. We plan to compare SMART to these other
heuristics.

Another research direction is to investigate hierar-
chical reinforcement learning methods to scale to large
transfer lines, as well as generalizations of transfer lines
to job shops and flow shops. Hierarchical optimiza-
tion of such assemblies has been theoretically inves-
tigated in depth (Sethi & Zhang 1994), but however,
the computational study of such optimization meth-
ods is limited. There is currently much interest in the
reinforcement learning literature on hierarchical meth-
ods (Parr & Russell 1998), but there has yet been 
demonstrable results on interesting large scale prob-
lems. We believe the factory optimization domain to
be an excellent testbed for hierarchical reinforcement
learning algorithms. Finally, each machine is given the
same global reward, and we plan to conduct compara-
tive experiments where each machine is given different
local rewards.
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