
The Path Planning Component of an Architecture for
Autonomous Vehicles

Richard Fox, Antonio Garcia Jr. and Michael L. Nelson

Abstract

Path planning for an autonomous vehicle can oc-
cur at two different times. First, path planning
might occur at mission specification time when
the vehicle’s initial path is determined and used
to specify other mission factors. This task makes
use of some model of the environment in planning
a path that will avoid obstacles and hazardous ar-
eas. A second type of path planning might occur
while the vehicle is underway to avoid unexpected
or previously unknown obstacles and hazardous
areas. This is path re-planning. This paper con-
centrates on path planning and path re-planning
in both two-dimensional and three-dimeusional
environments as used in the STESCA general
control architecture for autonomous vehicles.

Introduction

Path planning is a fundamental task of autonomous
vehicles. A wide variety of algorithms exist that
address different factors of path planning (for in-
stance (Kavanangh & Werner 1995)). These factors
include whether the path is pre-generated (prior to
run-time), reactive (generated at run-time) or some
combination, whether the path is in a two- or three-
dimensional space, what form and importance obsta-
cles have, whether the space is static or dynamic and
in dynamic environments, how path re-planning might
occur, whether characteristics of the terrain such as
slope or texture come into play, and how efficient the
search for a path is. This paper presents algorithms for
performing path planning and path re-planning for au-
tonomous vehicles in either two-dimensional or three-
dimensional space with either static or dynamic obsta-
cles.

The path planning algorithm described herein is
based primarily on geometric equations dealing with
lines and intersections with objects. The path plan-
ning algorithm consists of three parts: a line generator
which creates a path between two points, a collision
checker which determines if the path intersects with

Copyright ~)1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

Department of Computer Science
The University of Texas Pan American

Edinburg, TX 78539, USA
Phone: (956) 381-3635

Email: fQx@cs.panam.edu
tonyg~hiline.net

nelson@cs.panam.edu

any of the obstacles in the space, and a collision pro-
cessor which alters the current path to go around the
obstacle which is causing the collision. The collision
checker may also use a heuristic function to evaluate
how safe the path segment is by considering whether
the path segment enters any hazardous areas which
might include steep slopes or unacceptably rough ter-
rains. A path selector then chooses the path which
best fulfills the mission specifications.

This research is one component of a larger project in-
vestigating the feasibility of the STESCA control strat-
egy. STESCA (Strategic-Tactical-Execution Software
Control Architecture) is an approach to providing
general-purpose control architecture for any form of
autonomous vehicle. STESCA is currently being ap-
plied to an autonomous underwater vehicle (Nelson
1998) and will be applied to a land-based wheeled ve-
hicle.

This paper will offer a brief description of STESCA,
followed by an examination of the path planning
and path re-planning algorithms. The paper will
then describe examples in two-dimensional and three-
dimensional environments. The paper will conclude
with an analysis of how the algorithm will be enhanced
for actual usage by various robotic systems.

STESCA

STESCA (Nelson 1998; Nelson & Garcia 1997; Nel-
son & Rohn 1996), the Strategic-Tactical-Execution
Software Control Architecture combines three distinct
levels of control. The top Strategic level is used for
mission specification. The middle Tactical level d~
cides how to carry out those specifications. The bot-
tom Execution level controls the actual hardware (i.e.,
sensors and control systems) of the vehicle. The Tac-
ticai level can be thought of as a collection of agents,
contributing to solve the overall mission as presented.
All interactions between the user and the vehicle oc-
cur at the Strategic level. Interactions between vehicle
components are determined at the Tactical level. An
overview of STESCA is provided in figure 1.

In STESCA, initial path planning is a part of the
Strategic level. Along with various mission specifica-

Robolics 379

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

SMission
l~ification)

Mission Status
Phase

T:~ctir~l I evelv [World Model [

I Ioo oo, I

iI

ComponentStatus Chcck Status
Command Status

i
I

V©hical
Component

Figure I: The Components of STESCA

tions, the user provides both the starting and the des-
tination locations of the vehicle. The path planning
algorithm then generates a path, using a world modal
which represents the environment of the vehicle includ-
ing any known obstacles or hazardous areas.

Once the vehicle is under way, the Tactical level over-
sees the running of the vehicle. If unforeseen circum-
stances arise, the Tactical level must decide whether
to continue with the given path. Choices include con-
tinuing with the current path, aborting the mission,
altering the path by using an avoidance algorithm, or
performing path re-planning by calling upon the path
planner at the Strategic level.

The Tactical level uses a collection of software com-
ponents to carry out its responsibilities. The vehicle
commander coordinates the activities of all the other
components of this level. A navigator is responsible for

determining the vehicle’s current location. The com-
mand sender is responsible for creating the appropriate
set of vehicle component commands to carry out the
specified mission. An engineer maintains the status of
vehicle components. A mission specialist is responsible
for collecting data during the mission.

The Tactical level also maintains three data stores:
the world model, the mission model, and the data
recorder. The world model is pre-loaded with informa-
tion about the area of operation including whatever ob-
stacles are known to exist within this area. The world
model is used for path planning and path re-planning
(if necessary). During the course of the mission, sen-
sors and other information gathering agents update the
world model as necessary to have it properly reflect the
environment. The mission model maintains a copy of
the stated mission, along with the vehicle component
commands which were generated to carry out the mis-
sion. This information is used for post-mission analy-
sis. The data recorder is used by the mission specialist
to store information collected during the mission.

Path Planning and Selection
A key element of any mission carried out by an au-
tonomous vehicle is planning a path or sequence of
steps to take the vehicle from its present location
to its destination. The "path planner" is the com-
ponent of the software system that determines this
path or sequence of steps. It uses some representa-
tion of the environment to take into account such fac-
tors as obstacles, rough terrains, and risky areas in
order to avoid them (Chen, Szczerba, & Jr. 1995;
Kamon & Rivlin 1995). For STESCA, initial path
planning takes place at the Strategic level. The user
specifies the starting point of the vehicle and the des-
tination. The path planner works in either a two-
dimensional space, for instance a land-based robot, or
a three-dimensional space, for instance an underwater
vehicle. The path planner requires some representation
of the environment space, which includes information
about obstacles (e.g., buildings, hills, rocks), terrain
(e.g., rough versus smooth terrain, steep versus shallow
slope) and risky elements (e.g., a mine field). Addition-
ally, in the three-dimensional model for an underwater
environment, information about currents may be in-
cluded.

Once the vehicle is under way, the Tactical level must
decide, if unforeseen circumstances arise, whether to
continue with the given path, alter the path by using
an avoidance algorithm, or perform path re-planning
by calling upon the path planner at the Strategic level.
Figure 2 shows the three primary levels of STESCA
and how path planning and path re-planning interact.

The path generated by the path planner is com-
posed of a series of line segments that are described by
their endpoints in Cartesian two-dimensional or three-
dimensional space. Each line segment is a path that is
free of obstacles although it may enter an area of rough

380 Fox

LevelJ Mission SpecificationStrategic
Pat~ Planning

\
Vehicle Commande~

Tactical Level~ \ "Path Re-Planning
Dam Stores

~
W~ld Model

Figure 2: Path Planning and Path Re-planning in
STESCA

or risky terrain. The obstacles ave denoted, at present,
as circles, spheres or cylinders, with a center point, ra-
dius, and a height (for cylinders). Further, a heuristic
function can be applied, using the world model, to a
line segment to determine if it enters a hazardous area.

Generating a path is divided into three steps. The
first step is to generate the straight line between the
source and destination points. The second step is to
search through the list of known obstacles in the world
model to determine if the given line intercepts any of
them, and to use heuristics to determine if the path
ventures into a hazardous area. If a collision is de-
tected or an unsafe area is discovered, the third step,
obstacle avoidance, occurs. Obstacle avoidance is pro-
cessed by first generating a point outside of the obsta-
cle or hazardous area, and then generating two new line
segments, one from the source node to the new point
and the other from the new point to the destination
node. The two new line segments are then checked for
collisions and hazardous areas.

Collisions between the line segment and any obsta-
cles in the environment are determined by examining
each obstacle in turn, and seeing if the line segments
intercept that object at any point. Computing a colli-
sion is a simple matter of comparing the closest point of
the line segment to the center of the circle (or sphere)
and seeing if this distance is less than the radius plus
a safety margin. If the distance is less, then the line
segment comes too close or collides with the obstacle
and the path must be rerouted around the obstacle.

Hazardous areas ave detected by applying a heuris-
tic function to each line segment. The function de-
termines if the line intersects any area deemed haz-
avdous. The function returns a value which is the de-
gree that the area was deemed unsafe. A safety factor
(provided at mission specification time) is used to de-
termine whether the line segment is acceptable or not.
Unsafe areas occur due to rough terrain, steep slopes,

close proximity to dangerous obstacles or items, and
so forth. If a line segment enters an unsafe area, the
entire segment is deemed unsafe.

Obstacle avoidance (including hazardous area avoid-
ance) is performed by selecting a point outside of the
obstacle and altering the path to go from the source
node to the new point and then on to the destina-
tion point. That is, the collision is avoided by going
around the obstacle. There are numerous points to se-
lect from. Figure 3 demonstrates two possible points
to select for obstacle avoidance, each on opposite sides
of the obstacle. This figure also shows the two new
paths generated from these points.

::::
-- ~.uostacle / ~ ~’:-, Destination._

/.
~Z’~Two possible points

And two possible paths

Figure 3: Obstacle Avoidance in STESCA

The path planner can operate in two different modes.
In mode one, the point selected to avoid an obstacle is
the point which is closer to the position of the collision.
However, in mode two, the path planner will gener-
ate both points and retain both new paths as possible
choices. The path planner operating in mode one will
generate a single path composed of line segments. The
path planner operating in mode two will recursively
generate all possible paths using the two points around
each obstacle. In mode two, the path planner then se-
lects a path by using the following criteria. Which path
is optimally shortest? Which path has the fewest line
segments (i.e., the fewest course alterations)? Which
path is deemed the safest in terms of hazardous ter-
rain? Based on the mission specifications, one path
will be selected.

It should be apparent that the algorithm in mode
two could generate an exponential number of paths
depending on the number of obstacle collisions. There-
fore, the path planner can run in mode one if path effi-
ciency is less important than generating a path rapidly
and having the vehicle get underway. In mode one, the
first safe path generated is selected no matter the dis-
tance. This version of the algorithm will use heuristics
to ensure safety, but will not recursively generate more
than a single path.

Path Re-planning
Because the path planner generates a path prior to the
start of the mission, unforeseen factors may arise that
must be taken into account. For instance, the vehi-
cle may encounter an obstacle not represented in the

Robotics 381

original world model or come across an unsafe area.
In an underwater environment, unsafe areas might in-
clude heavy currents or shallow water. In a land-based
environment, unsafe areas might include steep slopes
or rough terrains. In both environments, uncharted
mines may be discovered. During the execution of the
mission plan, sensors are used to detect obstacles and
identify hazardous areas. If such obstacles or areas are
found by the vehicle sensors, then the world model is
updated. The Tactical level of the control architecture
includes a vehicle commander, whose task is to ensure
that the mission is being carried out appropriately. As
the world model is updated, the vehicle commander de-
termines if the new information will in any way affect
the current mission (for instance, obstacles found to be
in the current path may require avoiding). The Tac-
tical level also contains a path re-planner, which has
the task of determining how the current path should
be altered in such a situation.

If path re-planning is required, there are several pos-
sible options. First, the vehicle commander may de-
cide to continue along the current path assuming that
the changes to the world model are immaterial or non-
threatening. This decision can be made if the heuristics
applied to evaluating the current path using the up-
dated world model indicate no change to vehicle safety.

Second, path planning can start anew from the cur-
rent location using the updated world model and using
the same destination point. This makes sense if there
is enough time to perform a new path planning ses-
sion and if the world model has changed sufficiently to
warrant the amount of time it might take. In such a
situation, the Tactical level hands command back to
the Strategic level, which then generates a new mis-
sion plan based on the updated world model. The new
mission plan might require additional or different com-
mands at the Tactical level. Once the new mission
plan, including the new path, is computed, control is
returned to the Tactical level which then resumes the
mission at the new point.

A third option is to backtrack to a previous position
and simply select an alternative path around the ob-
stacle, meeting up with the previous path at some later
point. A fourth option is to attempt to "patch" up the
path by going back to the original list from the initial
path planning, and selecting a new route (if available)
from the current point. Note that this option is only
available if the original path was generated using mode
two.

A fifth option is to abort the mission entirely.
This last possibility was implemented in the NPS Au-
tonomous Underwater Vehicle (AUV), which was pro-
grammed to surface and circle if the decision to abort
was made (Nelson & Rohn 1996).

Examples
Two examples are demonstrated here. The first shows
how the path planner charts a course in a two-

dimensional space around circular objects using mode
two. The second shows how the path planner charts
a course in a three-dimensional space around spherical
or cylindrical objects and hazardous areas. The sec-
ond example, which is simplified for space, also demon-
strates the need for path re-planning.

The two-dimensional example shows, in figure 4, the
path generated for a land-based autonomous vehicle
around a series of obstacles. The course of the vehicle
is to start at point (1, 1) and navigate to point (15,
15). The initial path is shown as a hyphenated line.
This path must be altered to avoid a collision with
the obstacle located at position (6, 5). Two points
are generated around the first obstacle, at (3, 8) and
at (9, 2). Two new path segments are generated
get around the first obstacle. The segment that goes
from (1, 1) to (3, 8) also collides with the obstacle
(2, 5) and two new points are generated to avoid this
obstacle, at (0, 6) and at (4, 3). The segment that
from (3, 8) to (15, 15) also collides with an obstacle,
(10, 13). Two additional points are generated to avoid
this obstacle, at (7, 16) and (13, 10). The path
(1, 1) to (9, 2) to (15, 15) does not have any further
collisions.

(7, 16)
16 o’’.-

e ~5, ,5) cm~

, .m,
/ ,

14
/ - 2)

12 ,~- \
//~. / ¯u

/ /.-lo /... --"/" o3, m)
9 ~ ~.~.. ¯ y" /
8 (3, s).: / /
v """ / :~7/

\ /St. ~=l)’~/ rad=2]
/

3 ~ /.." (4,3) ./|
2 /.’"

(I, 1) Start

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 4: Two-Dimensional Land-Based Example

The result of using mode two of the path planning
algorithm is a set of all generated paths, as shown in
figure 4. Based on the mission specification, the se-
lected path may be any of these generated paths. In
this example, the shortest path is chosen (represented
in the figure as a solid line in the figure). Another
path, denoted with dotted and dashed lines is rejected
because it is longer. In mode one, the algorithm would

382 Fox

only generated a single path, shown in the figure using
a dotted line. This line was also generated in mode two
and rejected because it is not the shortest. It should be
noted that a mission specification might be "the fewest
path alterations possible" meaning the fewest number
of path segments. The path chosen here as shortest
would also qualify as the one with the fewest path seg-
ments. It should also be noted that this example does
not include any hazardous regions.

The second example demonstrates an underwater
environment and is shown in figure 5. The original
path takes the vehicle from a position high in the wa-
ter to a lower position. The original path collides with
a single obstacle (represented as a cylinder from the
sea floor) and therefore two alternative paths are cre-
ated that go around the obstacle. The shorter path is
selected. Once under way to the destination, a strong
current is detected by the vehicle’s sensors. The vehi-
cle commander notes that this is a hazard and orders
path re-planning. Path re-planner may select one of
several choices depending upon the necessity. First,
the current may be ignored (for instance, if it were not
very strong or threatening). Second, the mission might
be aborted having the vehicle surface. Third, the cur-
rent path could be altered to go around the current. A
fourth option is to backtrack around the current prior
to engaging any of the prior options so that the vehi-
cle does not get pushed off course. Again, the mission
specifications combined with the strength of the cur-
rent will provide the information necessary to make the
decision.

x(Img~j

Figure 5: Three Dimensional Underwater "Example

Future Work and Conclusions
The STESCA architecture is currently being tested on
an autonomous underwater vehicle which had previ-
ously been programmed using a different control archi-
tecture. The intent is to reprogram it using STESCA,
which should prove to be a more general control ar-
chitecture. All work has been done on a simulator.
The architecture is currently being implemented on a
land-based robot. The path planning algorithm, de-
scribed in this paper, has already been tested on a
number of cases using both two-dimensional and three-
dimensional world models. The algorithm is currently
being modified to use heuristics in order to evaluate
the safety of each generated path. There are also plans
to include a greater variety of obstacle representations
rather than circular or spherical. To date, all research
has been very encouraging.

Acknowledgments
This work was supported in part by a Faculty Award
for Research (FAR) from NASA. Many faculty and stu-
dents at the University of Texas - Pan American have
assisted in the overall creation and testing of STESCA.

References
Chen, D. Z.; Szczerba, R. J.; and Jr., J. J. U. 1995.
Planning conditional shortest paths through an un-
known environment: A framed-quadtree approach.
In Proceedings of the 1995 IEEE/RSJ International
Conference on Intelligent Robots and System Human
Interaction and Cooperation, volume 3, 33-38. IEEE
Press.

Kamon, I., and Rivlin, F,. 1995. Sesnory based mo-
tion planning with global proofs. In Proceedings of
the 1995 IEEE/RSJ International Conference on In-
telligent Robots and System Human Interaction and
Cooperation, volume 2, 435-440. IEEE Press.
Kavanaugh, M. E., and Werner, B., eds. 1995. Pro-
ceedings of the 1995 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Volumes 1-3.
IEEE Computer Society Press.
Nelson, M. L., and Garcia, V. 1997. An object-
oriented approach to autonomous underwater vehicle
control. In Proceedings of the l Oth International Sym-
posium on Unmanned Untethered Submersible Tech-
nology, 385-393.

Nelson, M. L., and Rohn, V. 1996. Mission specifica-
tion for autonomous underwater vehicles. In Proceed-
ings of Oceans ’96, 407-410. MTS/IEEE Press.

Nelson, M. L. 1998. A software control architecture
for autonomous vehicles. In Proceedings of the 31st
Ha~oaii International Conference on System Sciences
(HICSS-31), volume HI, 226-232.

Robotics 383

