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Abstract
Using an adequate representation is often the key to solve
complex problems in Artificial Intelligence. Hierarchical
shape representations are very convenient in domains -such
as vision-based robotics- that require a trade-off between ef-
ficiency and accuracy. In this paper, we present new tech-
niques and results concerning a hierarchical shape represen-
tation based only on spheres. We focus on the global aspects
of the model that are relevant to AI applications and present
a summary of its main features and the employed proce-
dures. Since the underlying object model is the generalized
cylinder, the representation lends easily itself to its utiliza-
tion in conjunction with a vision system.

Introduction

A suitable spatial representation is the key for solving a
great number of problems in some domains, such as Artifi-
cial Intelligence and Robotics. A good approximation
model should be simple enough to simplify the solution of
the problem and at the same time, accurate in order not to
loose information. There exist two ways of dealing with
complex objects (Chazelle 1987): simplify them by means
of computing an approximation or rewrite the objects as a
combination of simpler parts.

Hierarchical representations are very useful in Robotics
for path planning applications. They are a good spatial
model in those applications where a trade between accu-
racy and simplicity is needed. Different approximations of
the object with different levels of accuracy are generated
and used when needed, so the application can work in real
time.

Robot Motion planning has been studied for nearly two
decades and many important contributions to the problem
have been made. However, it has made few inroads into
practical applications in the real world (Gupta and del Pobil
1998). A fact that partly accounts for this situation is that
motion planning algorithms are often tested in simulations
using simplistic geometric models. The examples reported
in the literature usually involve simple geometries such as
line segments. When current approaches are applied to
real-world problems with complex geometric models
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(Chang 1995), relatively simple applications took 23 hours,
and even in some cases almost 100 hours.

Another important point for practical applications of mo-
tion planning in the future (Gupta and del Pobil 1998) is
that the input to the system cannot be assumed to be avail-
able as a CAD model –which is always the case in the lit-
erature– but rather should be based on computer vision.

The challenge is then to obtain very fast algorithms re-
sulting in acceptable computation times for large complex
domains with multiple moving objects. The efficiency of
the algorithms is critically dependent on the representation
that is used to model the robots and the environment.
Bounding volumes have been used, typically axis-aligned
boxes (Hayward 1986), (Lin et al. 1996) and, more re-
cently, hierarchical spatial representations (del Pobil, Serna
and Llovet 1992), (Lin et al. 1996), (Quinlan 1994).

Current approaches usually constrain objects to be de-
scribed as the union of convex polytopes. If curved objects
are modeled as polyhedra in a realistic way as is usual, the
great number of involved features will make these methods
inefficient, this is particularly important in the case of
curved concavities, where no partition algorithm into con-
vex parts can be used.

We have developed a hierarchical shape representation,
where the only primitive used is the sphere. Starting with a
single sphere that covers the whole object, the system can
successively refine the representation by replacing spheres
and always considering the shape of the object to find the
best fitting set of spheres. The system can work in two dif-
ferent ways: the global mode and the local mode. The
global mode is intended as an approximation of the global
shape of the object. The local mode takes advantage of the
system's capacity to automatically build new representa-
tions to improve locally the approximation in some parts of
the object. In this paper, we are going to focus on the
global shape representation as a general tool for AI applica-
tions; the local mode is more relevant to collision detection
and is described in detail elsewhere (Gupta and del Pobil
1998) and (Martínez-Salvador, del Pobil and Pérez- Fran-
cisco 1998).

Our system is suitable for large and complex scenarios.
The model aims at 3D objects described as a generalized
cylinder (GC) or as a set of them. GCs are well-known in
Computer Vision. They can describe a vast quantity of ev-
ery-day objects. They are used for part-based recognition
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and, due to the invariant and quasi-invariant properties of
their contours, they are often used for recovering 3D vol-
umes with curved sides from 2D contours.

Recovering and representing the shape of complex ob-
jects is a main task in Computer Vision. A good model is
useful not only for object recognition but also for manipu-
lation, navigation and even learning (Zerroug and Nevatia
1996). Articulated objects can be naturally represented as a
set of simpler parts and their relationships. Each part can be
described by a volumetric primitive such a GC.

Related Work

O’Rourke and Badler (1979) described a method for ob-
taining a unique representation of an object as a set of over-
lapping spheres. More recently, Quinlan (1994) and Hub-
bard (1996) build hierarchies of spheres for objects. Both
approaches build the hierarchy in a bottom-up fashion
starting from a predefined lower level of spheres that
cannot be improved. Comparative results of our approach
in terms of quality and time have been provided with
respect to the most closely related approach (Martínez-
Salvador, del Pobil, Pérez-Francisco 1998).

Spherical representations have also been used for recog-
nition of complex curved surfaces (Hebert et al. 1995) and
for achieving a stable volumetric representation based on
spheres (Ranjan and Fournier 1994).

The spatial representation we present is based on a initial
representation developed by del Pobil et al. (1992). That
model was limited to straight prisms having convex polyg-
onal cross-sections. The system has been extended to ap-
proximate the shape of a vast quantity of objects described
as GCs. It can approximate non-convex objects and curved
surfaces with the desired accuracy. Our approach is in-
tended as a shape representation.

The model has successfully been applied to efficiently
solve the collision detection problem in motion planning
(Gupta and del Pobil 1998) and (Pérez-Francisco, del Pobil
and Martínez-Salvador 1998).

The Spherical Representation

We aim at obtaining a set of spherical approximations of an
object described as a generalized cylinder. The set of ap-
proximations represent the shape of the object with differ-
ent level of accuracy and tends to a zero-error model.

The class of solids whose shape we can approximate are
those that can be described as a generalized cylinder or a
set of them. A GC is a swept volume described by a cross-
section, a sweeping axis (or spine), a sweeping rule and a
sweeping angle. Our system can approximate GCs whose
cross-section is any planar shape (generalized polygon) that
can change its size along the spine according to the sweep-
ing rule. The sweeping axis can be any curve in the plane
or space. The angle between the cross-section plane and the
tangent to the sweeping axis in a point is referred as the

sweeping angle. The sweeping angle can be different of 90º
but it remains constant for all the points in the spine.

Given a solid, we want to obtain a set of exterior spheres
that completely covers its boundary surface. The problem
we are concerned with is NP-hard (Meggido and Supowit
1984) even in the planar case, so the solution of the prob-
lem must have a great heuristic component.

In order to obtain a complete covering of the solid, a
covering of the cross-section by a set of circles is obtained.
The cross-section is swept along the spine and each circle
gives rise to a circular generalized cylinder (CGC). Then,
each CGC is covered by spheres.

To compute the 2D covering, we follow a top-down ap-
proach. First the whole cross-section is covered by a unique
circle. Then, this circle is replaced by two new ones that
completely cover the planar shape. In the successive steps,
one circle is selected and replaced by two new ones.

Curved sides can be represented in a realistic way by us-
ing a great number of vertices without impairing the per-
formance of the system thanks to the efficient edge heuris-
tics.

The efficient edge heuristics proposes a qualitative vision
of the shape that does not rely on the number of vertices
used to represent the shape. It can be said that there is not a
direct relation between the shape and the number of points.
Two neighbor edges in a polygon are considered to belong
to the same efficient edge if the angle between then is
greater than a certain threshold angle (135º in our case).
See (del Pobil and Serna 1995) for more details about the
efficient edge heuristics in the general case.

The system internally groups the edges of the general-
ized polygon into efficient edges. The error set is made of
those points in the representation that do not belong to the
real object. The error set is divided into the efficient edges
(del Pobil and Serna 1995). The worst efficient edge is that
with greater error area associated. The set of efficient edges
covered by the same circle make a list. Thus, each list is
covered by a single circle.

The algorithm for covering the boundary of a planar
shape can be outlined as follows:
• Group the boundary into efficient edges (number of effi-

cient edges must be greater than 2).
• Compute the error surface corresponding to each effi-

cient edge.
• Initially, there is only one list.
• Compute the smallest enclosing circle for the list.
• Repeat

• Select the list that contains the worst efficient edge.
• Divide the selected list into two sublists.
• Compute the smallest enclosing circle for each sub-

list.
• Compute the error areas for the edges of both sub-

lists.
Few approaches deal with non-convex objects. In our

system non-convex generalized polygons are treated as a
whole, without using partitioning algorithms. Thus, this
approach is useful to deal with curved concavities where no
partitioning algorithm can be applied.



As it has been stated, the two-dimensional covering is
swept and each circle gives rise to a CGC. These CGCs are
even more general that the given definition of GCs since
the sweeping angle might change along the spine. The pro-
cedure to cover a CGC by a set of spheres consists in divid-
ing the axis of the CGC into lists and compute a sphere that
covers the piece of CGC corresponding to each list. The al-
gorithm is described in (Martínez-Salvador and del Pobil
1998).

Stability is the property of a representation such that
changes in the data induce commensurate and predictable
changes in the representation (Ranjan and Fournier 1994).
In our case, the number of spheres in an instance of the
representation is basically independent of the number of
vertices, edges and faces in the underlying polyhedral
model, as long as the shape is not significantly changed.
This property allows curves and curved surfaces to be rep-
resented with as many details as needed without impairing
the performance of the algorithm. Results that demonstrate
the stability of the approach can be found in (Martínez-Sal-
vador and del Pobil 1998).

The Expert Spherizer

To automatically build a hierarchy of representations we
use a top-down approach which allows a better control over
the resulting approximations. Starting with a first represen-
tation consisting of a single sphere, the system improves
the actual representation by replacing the sphere by two
new ones that better fit the shape of the object. The cover-
ing is conservative, that is, the new spheres will cover the
same part of the object the old sphere did. The hierarchy of
representations is improvable since given a representation
it is always possible to obtain a new representation that bet-
ter fits the shape of the object.

The model fulfills the coverage criterion which means
that the set of spheres in a instance of the representation
completely covers the object. Moreover, we try to find the
best representation for a given number of spheres and to
keep the number of spheres low.

The resulting hierarchy is spatially balanced, whereas
most current approaches result only in a structurally bal-
anced tree, as discussed by Xavier (1996). Spatial balance
is hardly to implement efficiently, but it greatly improves
the quality of the involved approximations and optimizes
the ratio between the number of spheres and the resulting
local precision.

A solid represented as a GC is composed of three differ-
ent surfaces: the cross-sections at the initial and final posi-
tions of the sweeping axis and the side surface that arises
when sweeping the cross-section. In order to fulfill the
above mentioned properties, the complete covering of a
solid consists of five different coverings: the covering of
the cross-sections at the initial and final positions — top
and bottom —, the covering of the side surface —side—
and, in some cases, two portions of the side surface next to
the top and the bottom — upper and lower tip, respectively.

As it was mentioned, all the points in a representation
that belong to any of the spheres but not to the real object,
belong to the error set. For the two-dimensional covering
the error set is measured by ε, defined as the ratio of the er-
ror surface to the covered boundary of the cross section. In
3D, the error set has been divided into two subsets: the er-
ror set of the CGC respect to the real object and the error
set of the spheres respect to the CGC. In both cases, the
quality is measured as the ratio of the volume of the error
set to the covered surface and the coefficients are denoted
as ξ and δ, respectively. This concept can be extended to
any of the partial coverings in a representation.

Given a certain representation characterized by a set of
quality coefficients we want to obtain a new representation
by modifying its predecessor by means of a certain action
on it. The resulting representation must fulfill the desired
properties: to be balanced, to keep low the number of
spheres and to cover the whole object.

An heuristic system —called the Expert Spherizer— de-
cides among all the possible actions which is the best ac-
tion to obtain the new representation. This system has been
implemented with the structure of a rule-based system. A
complete description of the rules can be found in
(Martínez-Salvador and del Pobil 1996).

Usually, the action consists in replacing a set of spheres
by a new set that refines the representation. The Expert
Spherizer compares the quality coefficient between the dif-
ferent partial coverings and the decides which set of
spheres must be modified. Considering how the spherical
representation is built, the set of spheres in a covering can
be modified in two different ways: modifying the 2D
covering —by replacing a circle by two new ones— or
adding more spheres to cover the CGCs. The Expert
Spherizer chooses between both actions by comparing the ξ
and δ coefficients.

Moreover, the rules implement other actions to ensure a
complete covering of the object and to keep the number of
spheres low. When it cannot be ensured that the set of
spheres of the side covers the cross-sections at the initial
and final positions of the axis, the coverings for the top and
bottom are defined. If the error of the spheres of the side
covering over the top and/or bottom surfaces is worst than
the error of the top and/or bottom coverings, then the cho-
sen rule is to define a different covering for the upper tip
and/or lower tip regions. These regions are covered in the
same way as the side surface but using more circles in the
2D covering. Thus, the number of spheres is only increased
in these parts and not for the whole object (see figures in
next section).

Experimental Results

Figure 1 shows the spherical representation for a torus.
This is a typical example of a non-convex object that can-
not be partitioned into convex subparts. Our system does
not apply any partitioning algorithm and the spherical rep-
resentation is independent of the polygonal approximation
of the torus.



The system can represent a vast class of GCs with
curved surfaces. Figure 2 depicts the spherical representa-
tion of a GC having a non-planar curved axis. Figure 2(b)
shows how the cross-section is swept along the axis. Fig-
ures 2(c) and 2(d) show different levels in the hierarchical
representation. First, only one circle is used to cover the
cross-section; consequently, there is only one CGC (figure
2(c)). When the representation is refined, two circles cover
the cross-section; therefore, two CGCs are covered with
spheres (figure 2(d)).

Figure 1  Spherical representation of a torus.

Figure 3 depicts a straight GC with curved non-convex
cross-section, the sweeping angle is different from 90º
(non-right GC) and the cross-section changes its size
(decreasing and increasing). The spherical representation
for this solid consists of five different coverings: the top
and the bottom, the side and the upper and lower tips. The
lower and upper tip coverings can clearly be observed in
the figures. While for the side covering, the system is using
just one CGC, for both tips the number of CGCs is in-
creased to better fit the shape of the object in these parts.

(a) (b) (c) (d)
Figure 2  Representation of a general GC.

The hierarchy of representations tends to a zero-error
model. Figure 4 plots the evolution of the δ coefficient
—that measures the quality of each approximation— with
the number of spheres for the object in Fig. 3. The quality
of the approximations is improved — δ decreases very
fast—in the first levels of the hierarchy by adding a few
spheres. The fluctuations in the plot are due to some actions

like making a new covering for the top or bottom or for the
tip regions. These decisions are taken by the Expert
Spherizer to ensure the complete covering of the solid and
to keep the number of spheres low.

(a) (b) (c)
Figure 3  Representation of a GC with non-convex cross-section.

Figure 4  Quality of the hierarchy of approximations.

Contributions and Future Work

We have presented a system for representing general and
complex objects described as generalized cylinders. The
approach results in a conservative, quasi-optimal, stable
and structurally balanced hierarchy of representations that
tends to a zero-error approximation by using only spheres.

The model is suitable for dealing with real objects in
complex scenarios. First, the use of the sphere as an unique
primitive simplifies the solution of many problems. Sec-
ond, the performance of the system is not impaired by the
number of geometric features of the objects, therefore
curved surfaces can be represented with as many details as
desired and objects can be non-convex. Finally, the hierar-
chy of approximations allows a trade-off between accuracy
and simplicity and it is always possible to obtain a repre-
sentation as accurate as needed.



The system always considers the shape of the real object.
It follows a top-down scheme which allows a better control
on the quality of the approximations. Quality coefficients
are defined for measuring the accuracy of each approxima-
tion with respect to the real object. A rule-based system
called the Expert Spherizer decides which is the best action
to improve the representation.

Non-convex objects can be represented without using
partitioning algorithms. The system can handle a vast class
of generalized cylinders. In fact, the approach presented is
independent of the features of the generalized cylinder that
represents the real object and can cover with spheres a
more general class than GCs.

The model combines two volumetric primitives. It has
the advantages of the simplicity of the sphere and the abil-
ity of representing a vast range of volumetric forms as
GCs.

Since GCs are very well-suited for representing the parts
of the human body, we are also working on real-time coop-
eration between robots and human models. We are consid-
ering environments where there is an interaction between
persons and robots for which safety is a critical concern.
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