
Some Experimental Results of Applying Heuristic Search to Route
Finding

John Pearson* and Hans W. Guesgent

Computer Science Department, University of Auckland
Private Bag 92019, Auckland, New Zealand

{jpea001, hans}@cs.anckland.ac.nz

Abstract

Search is often used to find shortest routes within real
road networks. Standard search algorithms are mem-
ory intensive and inefficient for stand alone in-car sys-
tems. In this paper, we evaluate a number of heuristic
search strategies in terms of space and time complex-
ity for the route finding problem.

Route Finding and Search

Much research in recent years has focussed on devel-
oping technologies to enable improvements in the effi-
ciency of road transport systems. Programs geared to-
ward this goal include the TravTek (Rillings & Krage
1992) and Advance (Catling 1992) programs in
United States and SOCRATES (Catling & Harris
1995) in Europe. With each of these programs em-
phasis is placed on providing traveler information in-
cluding route finding capabilities. With current tech-
nology and infrastructure, many current and proposed
systems are of the decentralized autonomous variety,
with processing and route map information stored on
a local CD (Collier & Weiland 1994). Thus with high
hardware costs, it is advantageous to keep the mem-
ory, computation, and storage device access to a min-
imum while keeping the accuracy of computed routes
high (Dillenburg & Nelson 1995). Heuristic search
offers the potential to reduce time and memory use
in route finding systems by incorporating knowledge
of the properties of the problem space. We evaluate
heuristics for route finding and a number of strate-
gies with potential to increase efficiency over standard
heuristic search.

Uniform Cost Heuristic Search
Standard uniform cost search approaches, such as Di-
jkstra’s method (1959), suffer the fate of combinato-

*Data and computing resources kindly provided by the
Spatial Analysis Facility, University of Auckland.

tSupported by the University of Auckland Research
Committee under grant A18/XXXXX/62090/F3414065.

394 Pearson

rial explosion; the time and space complexity for such
methods are of the order O(bd), where b is the branch-
ing factor and d is the depth of the search tree (Korf
1996). The A* algorithm (Hart & Nilsson 1968)
corporates heuristic search into uniform cost search,
finding optimal solutions yet decreasing the effective
branching factor. A number of heuristics which exploit
the geometric nature of roading networks are applica-
ble to the route finding problem and can be incorpo-
rated into A*.

We evaluated the air distance and Manhattan dis-
tance heuristics (the L2 and L1 metrics, respectively)
in the Auckland road network and compared the de-
crease in node expansions over an uninformed search.
Figure 1 depicts the node expansions created by the
three heuristics for a shortest path between a location
represented by the large dot on the left to a destination
given by the large dot on the right.

a) b)

c)

Figure 1: Node expansions for a) No heuristic, b) Air
distance heuristic, c) Manhattan heuristic.

As can be seen from Figure 1, the uninformed brute
force search expands almost every node in the search
area in finding the goal state. With the air distance

Copydght @ 1998, American Association for Avlificial Intelligence (www.aaai.org). All rights reserved.

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

heuristic the search is more focussed and the node ex-
pansions form a more elliptical path. The Manhattan
heuristic is even more focussed with a decrease in the
size of the minor axis of the ellipse over air distance.
These results are consistent with Pearl’s analysis of
heuristics in a network of uniformly spaced and tightly
connected cities (Pearl 1985). As the pruning power
the heuristic used increases, the pattern of expanded
nodes reduces from a circular area to a more eccentric
ellipse.

L~ Heuristic L1 Heuristic
Node Reduction ~ = 78.2% p = 83.3%

= 10.0% ~ = 13.4%
Path Inaccuracy --- ~ : 1.4%

-- o" = 2.8%

Table 1: Results using L1 and L2 heuristics.

We evaluated the heuristics over 1000 randomly se-
lected start-goal pairs, the results of which can be seen
in Table 1. Both L1 and L2 heuristics produce a dra-
matic reduction in the number of node expansions with
high average node reduction. Unlike the case for no
heuristic or air distance, the Manhattan heuristic is
inadmissible; that is it overestimates the actual cost to
the goal and therefore cannot be guaranteed to produce
optimal cost solutions. As can be seen from Table 1,
the path inaccuracy rate of the Manhattan heuristic
was only 1% above the optimal path length. Thus
the more efficient Manhattan heuristic can be used in
many situations where close to optimal solutions are
acceptable.

Heuristic Depth First Search
A disadvantage of the uniform cost heuristic search
methods is that while they reduce the number of node
expansions, they only reduce the base of the order
term for space complexity. This is of concern for low
cost mobile route finding as memory is often limited.
Korf’s IDA* algorithm (1985), a heuristic depth first
algorithm, is said to be asymptotically optimal in time
and space in comparison to A*. It performs a series of
bounded depth first searches to deliver an optimal so-
lution while maintaining the space advantages of depth
first search; space complexity of O(d). However, this
method is only useful for trees with integer-valued edge
weightings, as control over the depth of iterations is
lost.

Variants on IDA* for real-valued edges (Sarkar et
al. 1991) in graphs together with cycle checking (Dil-
lenburg & Nelson 1993; Taylor & Korf 1993) were
implemented. These methods attempt to control re-
expansion depth by estimating the total edge weight-

ing for the current iteration by looking at the expected
number of nodes to be expanded. It was found that cy-
cle checking increased computation time while varying
edge branching factors in the road graph make con-
trolled re-expansion impossible to manage (Pearson
1998). More appropriate methods for limited mem-
ory heuristic search maybe to use Chakrabarti et al.’s
MA* algorithm (1989) or to use pruning to discard
likely off-path nodes (Pearl 1985). Aside from these
methods memory usage can be limited by introducing
better heuristic strategies which limit both node ex-
pansions and memory usage.

Search Using Subgoals

As well as using an appropriate heuristic to guide
search, use can be made of subgoals to reduce node
expansions still further. Kuipers, as part of model-
ing human spatial cognition, suggests that human way
finders use landmarks of previously traversed paths as
part of route finding (Kuipers 1978). Koff also sug-
gests that the merging of the planning concept of sub-
goals with search can improve search efficiency (Korf
1987). In particular, the complexity of such a search is
dependent on only the most complex search between
subgoals, O(bd’~°’). Thus subgoal search methods not
only act to decrease the effective branching factor but
also the effective depth of a search.

Subgoal search methods have potential for route
finding as knowledge of commonly traversed and ob-
stacle avoiding intersections is often known prior to
search. Dubois & Semet (1995) and Yang et al. (1991)
propose algorithms which use topographical informa-
tion to guide search around obstacles. Dillenburg
& Nelson’s Algorithm In (1995) incorporates knowl-
edge of previously traversed nodes and thus topological
knowledge is not required. These previously traversed
nodes are potential subgoals and are referred to as mul-
tiple level island sets, IS. By using a parameter E, an
estimate of the number of islands on the optimal path,
the search can be guided through E islands out of the
island set. Figure 2 shows islands for a search between
two points, S and G, from Auckland city center to the
suburb of St. Heliers. The islands a and b avoid the
obstacle posed by Hobson Bay while island c is an in-
tersection through which most traffic passes. For this
situation an appropriate value for E would be 2.

We implemented Algorithm In and used Dillenburg
& Nelson’s suggested method for discovering islands.
We split the Auckland road map into regions of 4 km2

and calculated all shortest paths between the nodes
of each pairs of regions, noting those nodes that ap-
peared in 95% of all possible shortest paths between
each set of region pairs. These nodes form a multiple

Robotics 395

Figure 2: Islands for a search traversing Hobson Bay.

level island set for each set of region pairs. We found
that for many regions we could not find nodes which
reached the criteria of occurring in 95% of all routes.
This is due in part to the density of the Auckland road
network and a lack of real average travel times used in
computing optimal routes. If real travel times could be
used it is expected that the existence of islands would
be more apparent.

Dillenburg & Nelson introduces a permuted heuris-
tic to avoid island interference. Island interference can
occur when the island heuristic guides search by tak-
ing into account a minimum path through a single is-
land in isolation rather than through multiple islands.
With a non-permuted heuristic a search in the situa-
tion in Figure 2 will guide the search directly to island
c, when a path directed toward a then c or b then c
would produce a more efficient search. We tested Al-
gorithm In using a series of 700 randomly chosen start-
goal pairs from two regions using air distance as a guid-
ing metric. We found that using islands reduces node
expansions by up to 10% over the non-island heuristic
search. We also found that using a permuted heuristic
reduces the number of node expansions over a non-
permuted heuristic, especially when the value used for
E overestimates the actual number of optimal lying
islands (Pearson 1998). While the reduction in node
expansions is not great, it is a significant improvement
in efficiency. It would be beneficial to repeat these
trials using actual travel times as we believe both ef-
ficiency and island discovery could be improved using
realistic test data.

An Ordered Island Heuristic
The permuted heuristic requires O(IXSlPE) heuristic
computations for each node generation. Thus as the
expected number of optimal lying islands increases,
the time taken to compute the heuristic can be greater
than the saving made be a reduction in node expan-
sions. Using branch and bound with this method re-

396 Pearson

duces complexity but for larger numbers of islands
computing the heuristic is still impractical. We found
that excessive heuristic computation could be avoided
by using an ordering of islands such that a combination
of islands could be used in computing the heuristic.
This reduced the complexity of heuristic computation
to O(IZSlcE) while maintaining solution optimality.

Figure 3 shows a comparison of CPU times for the
permuted, permuted branch and bound and ordered
heuristics averaged over 700 trials. The figure indi-
cates that the permuted and branch and bound heuris-
tics require excessive amounts of CPU time, especially
when the expected number of islands is large. Con-
trasting with this, the ordered heuristic requires con-
siderably less CPU time with maximum CPU time oc-
curing when the expected number of islands is half that
of the size of the island set.

"!
Perrnmed Heurmt¢

Per rnulecl Branch and

1000 - Bound

I I I I I I

o I 2 3 4 s 8

Expected Number of I|bnO

Figure 3: CPU Times for various island heuristics.

An ordering of potential subgoals is found by modi-
fying the island discovery method. Each node found on
the optimal paths between region pairs has its depth
noted. When a choice is made for inclusion of a node
in each island set the depth of the node is averaged
over all routes that it occurs in. The average depth is
then used to place nodes in the island set in order of
increasing search depth.

Hierarchical Search

Hierarchical search methods can greatly reduce the
complexity of search by simplifying the search into a
series of searches among levels of smaller size. Each
level in a hierarchical problem space is an abstraction
of a lower level and thus a search through these levels
has a lower complexity than a search in just a single
base level. The use of hierarchies is well known in the
AI literature but is also known in a number of other
fields related to route finding. In the context of spatial
reasoning Car & Frank (1994) and Timpf et al. (1992)
explicitly recognize hierarchies as important as a model

for road navigation.
Korf (1987) discusses hierarchical search for route

finding in the context of planning. He suggests two
forms of abstraction for route finding: the subset model
and the region model. The subset model is appropri-
ate for route finding where total solution cost is impor-
tant; nodes are preserved between levels and the sim-
plification of the network is achieved by keeping and
simplifying the more important edges at higher levels.
A search then recursively proceeds through these ab-
straction levels in the following manner:

I. Search in the base state space to the nearest node in
the next abstract space.

2. Search in the abstract space from the terminating
node of the step 1 search to the nearest node in the
abstract space to the goal node.

3. Search from the terminating node in step 2 to the
goal node in the base state space.

The size of the graph that such a search must ad-
dress is thus O(IogN), where N is the size of the state
space. Thus hierarchical search has potential in re-
ducing search complexity for route finding. We imple-
mented the hierarchical algorithm suggested by Car &
Frank (1994) which uses the subset model. The algo-
rithm uses a search space partitioned along the lines
of road classifications. Level 0 represents the highest
level of abstraction, level K being the base state con-
taining all roads and intersections. By partioning the
space in this manner higher speed roads are placed at
the highest level. Thus a search up through the hier-
archy will not only simplify search but also maintain
some level of path optimality.

Partitioning the search space creates regions formed
by the boundaries of higher speed roads on the next
hierarchical level. Thus a node at one level is related
to the nearest node on the region boundary of the
next highest level. The algorithm uses the hierarchical
method as outlined above but will default to search-
ing in just the base state space if the start and goal
are deemed to be in the same region. The hierarchi-
cal network that we used for Auckland is depicted in
Figure 4. Level 2 contains all roads, level 1 contains
main roads and motorways, and level 0 contains just
motorways.

Car & Frank’s algorithm uses Dijkstra’s method, but
we use A* with the air distance heuristic to add an ex-
tra performance increase. Thus the method can be
thought of as having two heuristic guiding principles:
guidance using geometric distance together with the
use of intermediate subgoals which guide the search
through higher speed roads. Using the assumption

-’~.’~.

/ voll
/

1

/

:/Level 2 __

~:-/-.-.--~-(

Figure 4: Hierarchies for the Auckland road network.

that optimal paths will always follow a hierarchical
path means that the method is not guaranteed to be
optimal, even though the air distance heuristic is ad-
missible.

We conducted a series of trials using the hierarchical
method and compared results with A* using the admis-
sible air distance heuristic. We make a distinction be-
tween two types of result owing to the small size of the
Auckland road map. Frequently a trial did not make
use of the hierarchical network and defaulted to using
A* in the base state space. Thus we present results
which include searches in the lowest level (searches
through all k to 0 levels) and results which include
only those searches which make use of the hierarchical
network (searches in levels k - 1 to 0).

K-1 toO K toO
Node Decrease 81.7% 30.6%

Path Inaccuracy 13.1% 4.0%

Table 2: Results for 1000 trims of hierarchical A*.

As can be seen from the results in Table 2, for trials
which include search at the lowest level both node re-
ductions and path length increases are modest. Trials
including just hierarchical search yield a large decrease
in node expansions over flat A* but with a significant
increase in path length over optimal. This path in-

Robotics 397

crease maybe unacceptable for systems which place a
high reliance on the accuracy of path length but maybe
acceptable when weighed against the large reduction in
search complexity. However, this result is due in large
part to the construction of the hierarchical network
used in testing. Regions were constructed at levels 1
and 0 which contained dead-end roads or leaf nodes.
The algorithm does not always choose the most opti-
mal route in these situations. Careful construction of
the hierarchy of spate spaces can limit these difficulties
by including more edges at higher levels so that no leaf
nodes exist.

Summary

This paper looks at the results of applying various
heuristic search methods to route finding. We show
that the Manhattan heuristic delivers more efficient so-
lutions than the air distance heuristic for only a small
increase in path cost. We implemented island search
and found that search efficiency increased although we
had difficulty in discovering islands. We examined the
use of ordered island sets to decrease heuristic compu-
tation time and found this to be an effective method.
Hierarchical search is an effective method of increasing
search efficiency although we found that the path inac-
curacy rate is very high. We hope to test these methods
using real average travel times and assess their relative
benefits in a more realistic context.

References

Car, A., and Frank, A. 1994. General principles of
hierarchical spatial reasoning - the case of wayfind-
ing. In Waugh, T., and Healey, R., eds., Advances in
GIS Research, Proc. 6th International Symposium on
Spatial Data Handling, 10-12.

Catling, I., and Harris, R. 1995. Socrates - from
research to commercial implementation. In Proc. Ap-
plications of Advanced Technologies in Transportation
Engineering, 588-593. New York, USA: ASCE.

Catling, I., ed. 1992. Advanced Technology for Road
Transport IVHS and ATT. Artech House. chapter
11 ADVANCE-The Illinois Dynamic Navigation and
Route Guidance Deomnstration Program, 247-270.

Chakrabarti, P.; Ghose, S.; Acharya, A.; and
de Sarkar, S. 1989. Heuristic search in restricted
memory. Artificial Intelligence 1:197-221.

Collier, W. C., and Weiland, R. J. 1994. Smart cars,
smart highways. IEEE Spectrum 2(2):27-33.

Dijkstra, E. 1959. A note on two problems in con-
nexion with graphs. Numerische Mathematik 1.

398 Pearson

Dillenburg, J. F., and Nelson, P. C. 1993. Improving
the efficiency of depth-first search by cycle elimina-
tion. Information Processing Letters 45(1):5-10.

Dillenburg, J. F., and Nelson, P. C. 1995. Improving
search efficiency using possible subgoals. Mathemati-
cal and Computer Modelling 22(4-7):397-414.

Dubois, N., and Semet, F. 1995. Estimation and de-
termination of shortest path length in a road network
with obstacles. European Journal of Operational Re-
search 83:105-116.

Hart, P. E., and Nilsson, N. J. 1968. A formal ba-
sis for the heuristic determination of minimum cost
paths. IEEE Transactions of Systems Science and
Cybernetics 4(2):100-107.

Korf, R. E. 1985. Depth-first iterative-deepening: An
optimal admissible tree search. Artificial Intelligence
27:97-109.

Korf, R. E. 1987. Planning as search: A quantitative
approach. Artificial Intelligence 33:65-88.

Korf, R. E. 1996. Artificial intelligence search algo-
rithms. Technical Report TR 96-29, Computer Sci-
ence Department, UCLA, Los Angeles, USA.

Kuipers, B. 1978. Modeling spatial knowledge. Cog-
nitive Science 2:129-153.

Pearl, J. 1985. Heuristics lntlligent Search Strategies
for Computer Problem Soving. Addison-Wesley.

Pearson, J. 1998. Heuristic search in route finding.
Master’s thesis, Computer Science Department, Uni-
versity of Auckland, Auckland, New Zealand.

Rillings, J., and Krage, M. 1992. Travtek: An oper-
ational advanced driver information system. In Proc.
Society of Automotive Engineers, volume P-260, 461-
472. Warrendale, PA, USA: SAE.

Sarkar, U.; Chakrabarti, P.; Ghose, S.; and de Sarkar,
S. 1991. Reducing rexpansions in iterative-deepening
search by controllong cutoff bounds. Artificial Intel-
hgence 50:207-221.

Taylor, L. A., and Korf, R. E. 1993. Pruning duplicate
nodes in depth-first search. In Proc. AAAI-g3, 756--
761.

Timpf, S.; Volta, G. S.; Pollack, D. W.; and Egenofer,
M.J. 1992. A conceptual model of wayfinding us-
ing multiple levels of abstraction. In Theories and
Methods of Spatio-Temporal Reasoning in Geographic
Space, volume 639, 348-367. Springer Verlag.

Yang, T.; Shekhar, S.; Hamidazeh, B.; and Han-
cock, P. 1991. Path planning and evaluation in ivhs
databases. In Proc. VNIS, 283-290.

